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Chemical reactions in thin liquid films are found in many industrial applications, e.g.,
in combustion chambers of internal combustion engines where a fuel film can develop on
pistons or cylinder walls. The reactions within the film and the turbulent outer gas flow
influence film stability and lead to film breakup, which in turn can lead to deposit formation.
In this work we examine the evolution and stability of a thin liquid film in the presence of
a first-order chemical reaction and under the influence of a turbulent gas flow. Long-wave
theory with a double perturbation analysis is used to reduce the complexity of the problem
and obtain an evolution equation for the film thickness. The chemical reaction is assumed to
be slow compared to film evolution and the amount of reactant in the film is limited, which
means that the reaction rate decreases with time as the reactant is consumed. A linear
stability analysis is performed to identify the influence of reaction parameters, material
properties, and environmental conditions on the film stability limits. Results indicate that
exothermic reactions have a stabilizing effect whereas endothermic reactions destabilize
the film and can lead to rupture. It is shown that an initially unstable film can become stable
with time as the reaction rate decreases. The shearing of the film by the external gas flow
leads to the appearance of traveling waves. The shear stress magnitude has a nonmonotonic
influence on film stability.

DOI: 10.1103/PhysRevFluids.2.084002

I. INTRODUCTION

Fuels and engine oils form wall films in combustion chambers of internal combustion engines
after injection through droplet-wall interactions and develop deposits on ports, cylinder walls, and
pistons [1–3]. Typically, the turbulent gas flow inside the combustion chamber shears and spreads
the film. Deposits form from these liquid films through cross-linking and chemical reactions [4–7].
These deposits have a negative influence on the combustion cycle [8] and lead to decreased engine
efficiency and an increased amount of pollutants.

Under engine operating conditions higher wall temperatures lead to an increase in deposit
formation [9]. The wall temperature typically increases in the region of film rupture and formation
of dry spots. It can be suggested that deposits tend to be formed during dewetting preferably near the
three-phase contact line, where the liquid-gas interface meets the wall. This preferential deposition
formation near the contact line has been observed for several multicomponent systems, in particular,
in urea-water solutions [10]. The observed behavior makes it important to understand the processes
that lead to film instability and breakup under combustion chamber conditions.

Even though the stability of thin liquid films has been studied in a wide variety of scenarios, the
effect of chemical reactions in the film has not received much attention. Dagan and Pismen [11]
investigated the impact of a multistable kinetic system on the solutal Marangoni effect. von Gottberg
[12] conducted a linear stability analysis for a rapid, reversible interfacial reaction acting in two
semi-infinite liquid phases. Qi and Johnson [13] studied a falling reactive film with viscosity being a
function of composition. Braun et al. [14] examined the influence of temperature-dependent surface
tension on a drop spreading on a solid plate in the presence of an isothermal chemical reaction.
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Gallez et al. [15] investigated the influence of a surface chemical reaction on the dynamics of a thin
liquid film on a solid substrate. The chemical reaction leads to surface tension gradients and gives
rise to dynamics that cannot be found in the pure hydrodynamic model of the free surface.

Trevelyan et al. [16] considered a vertical falling film in contact with a wall of constant
temperature. A first-order chemical reaction is present in the film. The liquid-gas interface is adiabatic
and of constant reactant concentration. This leads to an unlimited supply of reactant in the film
through diffusive mass transport. A stationary distribution of reactant concentration is established in
the film after an initial transient phase. That investigation aims to find the film behavior when a small
deviation from the stationary state occurs. The chemical reaction is considered to be slow, leading
to small Damköhler numbers. A double perturbation analysis is conducted to find the evolution
equation for the film height. Analysis of the basic state reveals that a slow exothermic chemical
reaction has a stabilizing effect on the film as long as the surface tension decreases with increasing
temperature. Additionally, an exothermic reaction reduces mass transport. An endothermic reaction,
however, has a destabilizing effect on the film and may lead to film rupture.

Trevelyan and Kalliadasis [17] extended the work of Trevelyan et al. [16] to large Péclet numbers
and included higher orders in the derivation of the evolution equation in order to cover the whole
feedback cycle of the problem. The chemical reaction alters the surface tension through temperature
gradients, which affects the film evolution, which in turn affects the rate of reaction and therefore
the reactive energy release.

Matar and Spelt [18] investigated a thin liquid film that is bounded on both sides by an inviscid
fluid with constant density and temperature. An exothermal chemical reaction is present in the film
following an Arrhenius law. Gravitational effects are not considered since the film is so thin that the
Bond number is very low. The van der Waals forces play a role for the film thickness considered in
that work. The energy release from the reaction decreases the film density and viscosity and may
lead to thermocapillary effects. Density and viscosity are a function of temperature and composition.
Density reduction has a stabilizing effect, while the viscosity reduction and thermocapillary effect
are destabilizing.

Peirera et al. [19] investigated a horizontal film with a reactive surface active agent (surfactant).
The reacting surfactant has a destabilizing effect on the film and gives rise to solitary pulses at the
interface.

In the present work we examine a thin liquid film that is sheared by a turbulent gas flow and
heated from below by a wall with constant temperature. A first-order chemical reaction is present
in the film and the amount of reactant in the film is limited. The heat released (for an exothermic
reaction) or consumed (for an endothermic reaction) by the reaction leads to temperature gradients
at the liquid-gas interface and gives rise to the Marangoni effect. Long-wave theory [20,21] is used
to reduce the complexity of the problem and obtain an evolution equation for the film thickness.
In contrast to most previous investigations, we consider a time-dependent chemical reaction where
the reaction rate slows down as more and more reactant is consumed. Additionally, the influence of
shear stress at the interface on stability and evolution is included.

The rest of this paper is structured as follows. The problem is formulated, the relevant governing
equations are given, and the first-order evolution equation for the film height is derived in Sec. II. In
Sec. III the linear stability of the problem is examined, followed by some remarks on the numerical
scheme in Sec. IV. Results are presented in Sec. V, where a discussion of the results is given as well.
A summary is given in Sec. VI.

II. FORMULATION

A. Problem definition

A thin two-dimensional film on a rigid, planar, and impermeable wall with constant temperature
Tw (Fig. 1) is considered. The film is thin enough that buoyancy can be neglected but so thick that
van der Waals forces do not a play role. The ambient gas flow shears the film at the liquid-gas
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FIG. 1. Sketch of the two-dimensional problem. The thin film rests on a wall with constant temperature and
is sheared by a gas flow. A chemical reaction takes place in the film.

interface with a constant shear stress πint, which accounts for the effect of the outer gas flow. The
film consists of two species (named arbitrarily A and B). Initially the film consists only of species
A. There is no mass flux through the liquid-gas interface, so the sum of the mass of the two species
within the film remains constant. There is a first-order chemical reaction going on in the film, where

A → B ± heat. (1)

Species A as the reactant undergoes a first-order (endothermic or exothermic) chemical decays while
it reacts with the product species B. With increasing time the concentration of A will decrease, while
the concentration of B will increase, leading to a reduced reaction rate. Both species are assumed
to be passive, meaning that the concentration profile has no effect on the flow field. Furthermore,
the fluid is assumed to be nonvolatile, so evaporation can be neglected. The heat generated or
consumed by the reaction leads to temperature gradients at the liquid-gas interface and gives rise to
a thermocapillary Marangoni effect, which in turn affects the fluid flow, interface shape, and shear
rate at the interface. However, the temperature differences are small enough that material values can
be calculated for an average temperature without considerable error. The Marangoni effect induced
by a concentration gradient is not taken into account. The liquid-gas interface is further assumed to
be adiabatic because the thermal conductivity in the gas is much smaller than in the liquid phase.

B. Derivation of the evolution equation

The governing equation for mass, momentum, energy, and species transport of the reactant for a
two-dimensional film have the following dimensional form:

ux + wz = 0, (2)

ut + uux + wuz = − 1

ρ
px + ν(uxx + uzz), (3)

wt + uwx + wwz = − 1

ρ
pz + ν(wxx + wzz) − g, (4)

Tt + uTx + wTz = a(Txx + Tzz) + r
qc

ρcp

, (5)

ct + ucx + wcz = D(cxx + czz) − rc. (6)

Here u and w are the velocity components in the x (parallel to the wall) and z (perpendicular to
the wall) directions, T is the temperature, p is the pressure, c is the concentration of the reactant
species A, g is the gravitational acceleration, and t is the time. The material values ρ, ν, cp, a, and
D of the liquid phase are the fluid density, kinematic viscosity, heat capacity, thermal conductivity,
and binary diffusion coefficient, respectively. The heat released or consumed by the reaction q does
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not depend on the temperature. For an endothermic reaction this parameter takes negative values
(q < 0) and for an exothermic reaction positive values (q > 0). The reaction rate r is a function of
temperature r = r(T ) and follows an Arrhenius equation for a first-order reaction

r = r0e
−EA/RT , (7)

where r0 is the preexponential factor, EA is the activation energy, and R the ideal gas constant.
The boundary conditions on the bottom wall z = 0 correspond to no-slip and no-penetration

conditions, constant wall temperature, and no species flux and are given by

u = 0, w = 0, T = Tw, cz = 0. (8)

At the liquid-gas interface z = h we formulate the normal and tangential stress balance including
surface tension effects and the shear stress from the outer gas

T · n · n = −p + 2μ
ux

(
h2

x − 1
) − hx(uz + wx)(
1 + h2

x

)
= σ

hxx(
1 + h2

x

)3/2 , (9)

T · n · τ = μ

(
1 − h2

x

)
(uz + wx) + 2hx(wz − ux)(

1 + h2
x

)1/2

= ∂σ

∂T
(Tx + hxTz) + πint. (10)

Furthermore, there is no heat transfer from or to the outer gas and no species transport across the
interface

Txhx + Tz = 0, (11)

cxhx + cz = 0. (12)

Finally, the kinematic boundary condition at the interface must be fulfilled:

ht + uhx − w = 0. (13)

In Eqs. (9) and (10) T is the stress tensor, which, using the Stokes hypothesis and the assumption of
an incompressible Newtonian fluid, can be expressed as

T = −pI + μ[∇u + (∇u)T ], (14)

with the identity tensor I , the velocity vector u = [u,w], and the dynamic viscosity μ. The normal
n and tangential τ vectors can be expressed as

n = hxex + ez(
1 + h2

x

)1/2 , τ = ex + hxez(
1 + h2

x

)1/2 . (15)

The surface tension of a pure liquid decreases with increasing temperature and vanishes at the critical
point. It is assumed that species concentration gradients do not influence the surface tension and
that the surface tension is only a function of temperature (∂σ/∂T = dσ/dT ). Moreover, a linear
dependence of the surface tension on temperature is assumed [22]

σ = σ0 + dσ

dT
(T − T0), (16)
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with dσ/dT = const and the surface tension σ0 at reference temperature T0. For typical liquids
dσ/dT < 0 can be observed. The Marangoni effect is modeled assuming that temperature gradients
at the interface will lead to a tangential stress (10).

The balance equations and boundary conditions can be nondimensionalized. The time is
nondimensionalized with the reaction time scale, while velocities are nondimensionalized with
respect to the velocity of the outer gas flow. Accordingly, the nondimensional parameters
read

ε = d

l
, X = x

l
= xε

d
, Z = z

d
, U = μu

πintd
, W = μw

πintdε
,

τ = r0e
−βt, 
 = T − Tw

|q|c0

ρcp

, P = p

πint
, C = c

c0
, H = h

d
,

where d is the initial film thickness, l is the film length, which is also a length scale of film
deformation, and c0 is the initial concentration of species A in the film.

Note that the term qc0/ρcp in the definition of 
 constitutes a characteristic temperature
difference. This can be understood as the temperature change in a film established after the reaction
is finished completely in the absence of heat transport.

Additionally, the Damköhler number Da, the dimensionless interfacial shear stress �, the Prandtl
number Pr, the Schmidt number Sc, the nondimensional gravity G, the surface tension force S,
the Marangoni number Ma, and the dimensionless activation energy β are defined as important
nondimensional parameters of the problem:

Da = d2r0e
−β

ν
, � = d2πint

μν
, Pr = ν

a
, Sc = ν

D
, G = d3g

ν2
,

S = σd

μν
, Ma = − dσ

dT

d
qc0

ρcp

μa
, β = EA

RTw
.

The Damköhler number Da describes the ratio between the viscosity time scale and the reactive time
scale. The dimensionless interfacial shear stress � compares the interfacial shear stress to viscous
stresses in the film. The Prandtl number Pr is defined as the ratio between viscous momentum
transfer and conductive heat transfer, while the Schmidt number Sc describes the ratio between
viscous momentum transfer and diffusive mass transfer. Gravity and surface tension are made
nondimensional by comparing the gravitational force to viscous forces and the stresses arising
from surface tension to viscous stresses, respectively. The Marangoni number Ma is defined using
the characteristic temperature difference qc0/ρcp described above. The activation energy is made
nondimensional with the ideal gas constant and the wall temperature.

The dimensionless variables are now plugged back into the governing equations (2)–(6) and
boundary conditions (8)–(13). This yields, for the nondimensional governing equations,

UX + WZ = 0, (17)

Da Uτ + ε�(UUX + WUZ) = −εPX + ε2UXX + UZZ, (18)

Da εWτ + ε2�(UWX + WWZ) = −PZ + ε3WXX + εWZZ − G

�
, (19)

Da Pr 
τ + ε Pr �(U
X + W
Z) = ε2
XX + 
ZZ + sgn(q)Da Pr Ceβ
/(
+1), (20)

Da Sc Cτ + ε Sc �(UCX + WCZ) = ε2CXX + CZZ − Da Sc Ceβ
/(
+1). (21)

For the lower boundary at Z = 0 the boundary conditions are

U = 0, W = 0, 
 = 0, CZ = 0. (22)
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While the boundary conditions for the liquid-gas interface at Z = H are

− P + 2ε
UX

(
ε2H 2

X − 1
) − HX(UZ + ε2WX)

1 + ε2H 2
X

= ε2 S

�

HXX(
1 + ε2H 2

X

)3/2 , (23)

(
1 − ε2H 2

X

)
(UZ + ε2WX) + 2ε2HX(WZ − UX)(

1 + ε2H 2
X

)1/2 = −ε
sgn(q)Ma

Pr�
(
X + HX
Z) + 1, (24)


Z + ε2HX
X = 0, (25)

CZ + ε2HXCX = 0, (26)

Hτ + �ε

Da
(UHX − W ) = 0. (27)

For the following derivation rapid mass diffusion in the Z direction is assumed (CZZ = 0), leading
to a constant concentration over the film height (well mixed). This assumption is valid for thin films
[23,24].

A double perturbation analysis [16] is carried out in ε and Da to derive an evolution equation for
the film height. The basic assumption is that the film is thin in comparison with the length scale of
the film thickness variation. It is assumed that the scale of the film thickness variation is the film
length, so ε � 1. Further, the chemical reaction is slow (Da � 1), but ε < Da � ε1/2. Using these
relations, all dependent variables can be expanded as shown for the dimensionless temperature


 ∝ 
00 + Da 
01 + ε
10 + Da2
02 + εDa 
11 + ε2
20 + O(Da3). (28)

Strong surface tension effects S = O(ε−2) are assumed so that the surface tension term enters the
equation in the zeroth order O(0). The tangential shear stress, originating from Marangoni forces,
can be found in O(ε). Thus, it is required that ε sgn(q)Ma 
X/Pr � = O(ε), with 
X = O(Da) and
Pr = (1) leading to Ma = O(Da−1). Finally, G = O(1) and � = O(1) are assumed, so gravitation
and the shear stress influence from the outer gas enter the velocity field in zeroth order and Sc = O(1).
For convenience, the substitutions S̃ = ε2S and M̃a = Da Ma are made. Plugging the results of the
O(0), O(Da), and O(ε) analysis in the kinematic boundary condition (13) leads to an order ε

equation for the evolution of the dimensionless film height H ,

Hτ + ε

Da

{
1

2
�H 2 + ε

[
1

3
H 3(S̃HXXX − GHX) − 1

2
M̃aHXH 3e−τ

]}
X

= 0. (29)

The second term of the evolution equation can be identified as the influence of the shear stress
from the outer gas flow. The third term includes surface tension effects that act to minimize the
interfacial energy. The fourth term arises through gravity. The last term finally originates from
surface tension gradients at the free surface. These surface tension gradients result from temperature
gradients that are developed due to the heat release or consumption during the chemical reaction.
Notice the exponential decay of this term with time (e−τ ). In the chosen setting with limited reactant
supply the reaction rate decreases exponentially with τ and the effect of the reaction on the interface
temperature decreases accordingly.

III. LINEAR STABILITY ANALYSIS

The evolution equation (29) is linearized around the undisturbed state to examine the stability of
the basic state. The dimensionless film height H can be written as

H (x,τ ) = 1 + δH ′(x,τ ), (30)

with

δ � 1. (31)
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FIG. 2. Time development of the disturbance growth rate over wave number with three exemplary wave
numbers highlighted for Fig. 9 (2π , 6π , and 10π ).

Equation (30) is substituted into the evolution equation (29). Since δ is small, only linear terms of δ

are considered. This leads to

H ′
τ + ε

Da

{
�H ′

X + ε

[
1

3
(S̃H ′

XXXX − GH ′
XX) − 1

2
M̃a e−τH ′

XX

]}
= 0. (32)

Thus, a linear equation has been derived. However, this linear equation does not have constant
coefficients because of the term containing e−τ . If the reaction time scale is assumed to be much
larger than the time scale of the growth of disturbance, we can assume e−τ ≈ const for the scope of
this analysis, since the change in e−τ is smaller than the change in τ for large times. For small times
this analysis is applicable if we assume large perturbation growth rates ω (compare Fig. 2, where
for τ = 0, for example, the approximation is valid for 10 < k < 35). This has already been done
implicitly by choosing Da � 1 in the derivation of the evolution equation. The evolution equation
and this analysis is suitable for slow chemical reactions as found in many industrial applications.
Under this assumption, the solutions of Eq. (32) can be sought using the normal mode approach

H ′(x,τ ) ∝ eωτ+ikX. (33)

In this equation k is the wave number and ω is the growth rate of the perturbations. This ansatz is
now used to derive an equation for the disturbance growth rate as a function of the wave number.
The perturbations decay if the real part of the growth rate is smaller than zero Re(ω) < 0. The
disturbance growth rate is obtained as

ω = ε

Da

{
− i�k + k2

[
ε

3
(−G − k2S̃) − 1

2
ε M̃a e−τ

]}
. (34)

This analysis is strictly justified for fast growth of the disturbance in comparison to reaction time,
which leads to ω � 1 as the validity condition for Eq. (34). This means that this analysis is valid far
from the neutral stability region.
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Surface tension has a stabilizing effect. This term depends on k4 and is consequently highly
wave-number dependent. If terms of order k2 are investigated we find a stabilizing effect as long as

G

3
+ 1

2
M̃a e−τ > 0. (35)

This dependence is examined further in the following. In the absence of gravitational forces (G = 0)
every endothermic reaction (M̃a < 0) leads to an unstable behavior, while an exothermic reaction
leads to a stable behavior. Gravity (G > 0) has a stabilizing effect on the film as long as the gravity
vector points from the interface to the wall. In this case endothermic reactions are stable if

G > 3
2 |M̃a|e−τ . (36)

Since this relation is time dependent, one may find a primarily unstable film becoming stable with
time as τ increases under the assumption that the initial disturbance did not grow essentially and the
linear approximation of the evolution equation stays valid. If the stabilizing effect of surface tension
is negligible (S̃ = 0), the disturbance would grow while τ satisfies the condition

ln

(
3|M̃a|

2G

)
> τ. (37)

When τ passes this point the disturbances will decay, leading to a flat film. This behavior does not
depend on the film height.

Moreover, a critical wave number can be identified for which a maximum growth rate ω can be
found. This wave number kcrit fulfills the condition

∂ Re(ω)

∂k
= 0, (38)

which leads to

kcrit =
√

3 M̃a + 2G

−4S̃
. (39)

The influence of the interfacial shear stress can be examined using Eq. (34). The term containing the
shear stress is imaginary, so the applied interfacial shear stress does not affect the linear stability and
is not expected to influence the development of the film height in the linear approximation. However,
beyond the linear behavior, the interfacial shear stress affects the film stability and evolution, which
will be analyzed in Sec. V.

A plot of the real part of the disturbance growth rate over wave number is shown in Fig. 2 for
an endothermic reaction. One can see that the growth rate is zero for a wave number of zero. With
increasing wave number the growth rate increases until it reaches a maximum value. For high wave
numbers the growth rate becomes negative. Additionally, a big impact of time on the shape of the
function is found. The maximum growth rate decreases with increasing time because the reaction
rate decreases. The maximum growth rate also shifts to lower wave numbers with increasing time.
The cutoff wave number [corresponding to the condition Re(ω) = 0] also decreases with increasing
time. For very large times, when the reaction is completed, the linear stability is determined by the
stabilizing influence of gravity and surface tension, so the disturbance growth rate is negative for
all wave numbers. The influence of the initial disturbance on the development of the film height is
investigated in more detail in Sec. V.

IV. NUMERICAL SCHEME

The evolution equation is a fourth-order partial differential equation. This equation is solved
numerically using finite-difference discretization for the spatial derivatives. Second-order central
differences are used, which require up to four neighboring points for the fourth derivative in X [25].
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FIG. 3. Film evolution for a film with a moderate endothermic reaction.

A second-order-accurate Crank-Nicolson method is used for time. However, because of the
exponential dependence of the last term in Eq. (29) on time, this scheme is not fully implicit.
Therefore, rather small time steps have to be chosen to achieve convergence. Additionally, the
nonlinearity of Eq. (29) makes the solution of the equation system very costly in terms of
computational time. Hence, the Crank-Nicolson method is used in linearized form. The film height
at time n + 1 is equal to the film height at time n plus the difference h̃ at every point i:

Hn+1
i = Hn

i + h̃i . (40)

If the chosen time steps are small enough, it can be assumed that h̃ � H ≈ 1, where h̃ and H are
vectors containing the values h̃i and Hn

i for all points i, respectively. Now Eq. (40) is substituted
into the discretized evolution equation. All terms containing h̃ of higher order [O(h̃) and O(h̃2)] are
small compared to terms of order one and can be neglected. Using this, all terms of the evolution
equation can be transformed to linear terms. Since the right-hand side of the evolution equation is
equal to zero, it is now possible to formulate a system of linear equations in the form

R · h̃ = RM, (41)

with h̃ as the desired solution vector. Matrix R collects all terms containing h̃ or its derivatives,
while matrix RM contains all terms independent of h̃. This system of equations is solved for every
time step using MATLAB. Periodic boundary conditions are chosen at the left and right edges of the
domain to simulate an infinite film. A spatial resolution of NX = 300 is found to be sufficient to
describe the film shape and to compute the fourth spatial derivative with sufficient accuracy even
for highly disturbed films. A time-step size of �τ = 10−6–10−4 is chosen to accurately capture the
film dynamics and the exponential decay of the reaction rate with time. The calculation is stopped
if the film height at any point is lower than 0.001, with the assumption of film rupture occurring at
that moment.

V. RESULTS

The physical parameters chosen for this section are those of a film of engine oil with a film
thickness of h = 50 μm and length l = 1 mm on a wall with the constant temperature Tw = 450 K.
The chemical reaction resembles a hydrocarbon oxidation and leads to a characteristic temperature
difference of |q|c0/ρcp = 60 K (with q = −9.2 × 107 J m−3, c0 = 1, cp = 1800 J kg−1 K−1, and
ρ = 850 kg m−3). This leads to the following nondimensional parameters: ε = 0.05, Da = 0.1,
� = 0.75, Pr = 30, G = 2.3 × 10−3, S̃ = 2.2 × 10−3, and M̃a = −2.3.
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FIG. 4. Time evolution of the temperature field.

The film evolution for an exemplary moderate endothermic reaction is shown in Fig. 3. A
sinusoidal initial disturbance is prescribed. The wave travels through the domain from left to right,
driven by the imposed shear stress. An increase of the crest of the film can be observed for small
times, leading to a maximum at τ ≈ 1.5, before the peak height decays again.

This interesting behavior can be explained by the influence of the Marangoni effect caused by
the chemical reaction. The reaction rate has a maximum value for τ = 0 and decays exponentially
with time. The heat consumed by the reaction leads to the temperature profile displayed in Fig. 4.
The interface temperature has a minimum value at the film crests and higher values at the wave
troughs. Since surface tension decreases with temperature, the resulting surface tension field drives
fluid from the troughs to the crests, leading to an increase of the peak height. As the reaction rate
slows down with increasing time, less and less heat is consumed. In addition, thermal conduction
reduces the temperature gradients at the film surface and thus the driving force of the instability.
Surface tension and gravity are now dominant and begin leveling out the film, eventually leading to
complete film flattening.

Moreover, the development of smaller side maxima around the peak can be observed, which
eventually merge with the highest peak (see Fig. 3). The merging process is caused by the fact
that the horizontal velocity increases with increasing film height, which is evident from Fig. 5. The
horizontal velocity is zero at the wall due to the no-slip boundary condition and grows with wall
distance. The velocity has its maximum on the upstream side of the highest peak, which leads to an
increase of peak height and a decrease of peak width with increasing time. Consequently, the highest
peak travels with a higher velocity than a smaller side peak. In Fig. 3 one can see that the highest
peak has merged with a downstream side peak at τ = 2.0. The side peaks on the upstream side of the
highest peak travel with a lower velocity and can be observed for a longer time. Eventually though,
only one film height maximum remains and the film returns to an almost sinusoidal shape.

The observed behavior is exemplary for a certain set of parameters. In the following a parametric
study of the influence of interfacial shear stress, surface tension, gravity, reaction parameters,
and wavelength of the initial disturbance on film evolution is presented. The evolution of the
maximum film height is chosen as an indicator for the behavior of the entire film. Here �0 = 0.75,
S̃0 = 2.2 × 10−3, G0 = 2.3 × 10−3, and M̃a0 = −2.3 are defined as standard parameters for a thin
engine oil film (d = 50 μm) sheared by an ambient flow at inner engine conditions and with a
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FIG. 5. Time evolution of the horizontal velocity field.

moderate reaction rate. The parameters are varied individually to determine their influence on the
film development.

A. Influence of interfacial shear stress

The influence of the interfacial shear stress on the evolution of the maximum film height can be
seen in Fig. 6. The behavior described in the preceding section can be observed. The maximum film
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FIG. 6. Development of the film height maximum over time for varying interfacial shear stress.
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FIG. 7. Development of the film height maximum over time for varying surface tension force and gravity.

height increases with time until it reaches a peak value and then decreases asymptotically to the flat
film height H = 1. From Fig. 6 one can conclude that the interfacial shear stress has a stabilizing
effect on the film, since increasing shear stress leads to a reduced film height maximum. This result
cannot be gained from the linear stability analysis in Sec. III and can only be found when solving
the nonlinear evolution equation.

Furthermore, the film height maximum is reached at earlier time instances with increasing shear
stress. In addition, the initial growth rate of the maximum film height is higher. This can be explained
by looking at the horizontal velocity profile in Fig. 5. The velocity on the upstream side of the peak is
higher than on the downstream side for small times, leading to the development of a narrow and high
peak. This effect becomes stronger with increasing shear stress as the velocity magnitude increases.

Higher shear stress also leads to a quicker reduction of the maximum film height after the reaction
has slowed down and the maximum disturbance is reached. With increasing shear stress, the peaks
become narrower and the curvature higher. Thus, the surface tension force is larger in cases with
high shear stress. This leads to to a faster decrease of the peaks after the influence of the reaction
becomes negligible and the film evolution is dominated by surface tension.

B. Influence of surface tension and gravity

Figure 7 summarizes the surface tension and gravitational effect on the film evolution. As one can
see, increasing the surface tension force leads to a more stable film, as has also been concluded from
the linear stability analysis in Sec. III. In Fig. 7 a film with double the surface tension compared to
the reference case shows a 48% decrease in the peak film height and also reaches the state of a flat
film earlier after the reaction rate has decreased.

Gravity also has a stabilizing effect on the film, as is evident from Fig. 7. However, the effect is
much weaker than that of surface tension. A five times higher gravitational force than in the reference
case only leads to a decrease in maximum film height of about 5%. The initial film development is
almost the same. Only with increasing time does the gravitational effect become more noticeable. It
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FIG. 8. Development of the film height maximum over time for varying reaction parameters.

can be concluded that the gravitational effect can be neglected when investigating thin shear stress
driven oil films with chemical reactions in the chosen parametric setting. In this case the evolution
equation can be reduced to

Hτ + ε

Da

[
1

2
�H 2 + ε

(
1

3
S̃H 3HXXX − 1

2
M̃a HXH 3e−τ

)]
X

= 0. (42)

C. Influence of reaction parameters

It has been shown that an endothermic reaction has a destabilizing effect on the film, while
an exothermic reaction is stabilizing as long as surface tension decreases with temperature. With
increasing heat consumed by an endothermic reaction the maximum film height increases (Fig. 8).
The film is very sensitive to the reaction parameters. An increase of the heat consumed by the
reaction of 66% (from 0.6 M̃a0 to 1.0 M̃a0) leads to an increase of the peak film height of 190%. If
the reaction is a little bit faster or consumes a little more heat than in the reference case, film rupture
can be observed (1.4 M̃a0). In the case of rupture the calculation is stopped since the derived model
does not account for contact line phenomena.

Figure 8 also shows a film with no reaction (M̃a = 0). In this case no growing film height
maximum can be observed and surface tension and gravitational forces slowly lead to a flat film.

The stabilization is enhanced by an exothermic reaction (−1.0 M̃a0) where the heat released by
the reaction causes temperature maxima at the film crests and minima at the troughs. The resulting
Marangoni effect leads to a convective flow from the crests to the troughs, and thus reduces film
height maxima. The influence of the exothermic reaction on the stabilization of the film reduces
with time as the reaction rate decreases, which can be seen in Fig. 8 when comparing the exothermic
reaction to the film with no reaction.
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FIG. 9. Time evolution for different wave numbers of initial disturbance.

D. Influence of initial disturbance wavelength

Equation (34) shows the functional dependence of the growth rate on the wave number. Figure 2
shows the real part of the growth rate over the wave number for different times. For small times the
growth rate increases from zero for small wave numbers, reaches a maximum value, decreases, and
eventually becomes negative. With increasing time the maximum growth rate decreases and shifts
to lower wave numbers. The three vertical lines in Fig. 2 correspond to films with three identical
parameters but different initial disturbance wavelengths.

The evolution of the maximum film height over time for these three cases is shown in Fig. 9. In
the low-wave-number case (k = 2π ) the growth rates are low for all times (compare Fig. 2). This
leads to a moderate increase in the maximum film height and also a moderate decrease after the
reaction has slowed down at τ ≈ 1.4.

For a higher wave number of the initial disturbance (k = 6π ) larger growth rates especially at
lower times compared to the low-wave-number case are found (Fig. 2). This leads to a higher slope
in the film height maximum. Additionally, a higher peak value is reached for k = 6π . For τ ≈ 1.5
the growth rate becomes negative for k = 6π and the film height maxima decrease. This decrease is
faster than for the film with the initial disturbance of low wave number (Fig. 9).

It can be shown that the highest crests in the film are observed for k ≈ 6π in this parameter
setting. This is somewhat surprising since the growth rate at τ = 0 has its maximum at k ≈ 9π

(Fig. 2). However, the maximum growth rate shifts to lower wave numbers with increasing time and
at τ ≈ 0.6 the maximal growth rate corresponds to k = 6π . Additionally, the disturbance growth
rate stays positive for a longer period when the wave number is smaller. It should be noted that, due
to nonlinear effects, it is not possible to predict the disturbance wavelength corresponding to highest
peaks of film thickness or to film rupture from the laminar stability analysis.

If the wave number of the initial disturbance is increased even further (k = 10π ), the initial
increase rate in the maximum film height is similar to that in the case k = 6π (Fig. 9). This can be
explained from Fig. 2 with the similar growth rates of τ = 0. However, the peak in the maximum
film height is reached much earlier for k = 10π (τ ≈ 0.4) and has a lower value. From there the
maximum film height decreases rapidly and reaches a flat film shape for τ ≈ 1.5. In Fig. 2 this
behavior correlates very well with the shown growth rates. For τ = 0.5 the growth rate is already
negative in this case and continues to drop rapidly with increasing time.
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VI. CONCLUSION

A two-dimensional thin liquid film sheared by an outer gas flow has been investigated in which
a chemical reaction takes place and leads to thermal Marangoni effects. The amount of reactant in
the film is limited, so the reaction rate decreases with time. A long-wave evolution equation for the
film thickness has been derived using a double perturbation analysis. A linear stability analysis has
been performed. It has been found that surface tension and gravity stabilize the film. The chemical
reaction is destabilizing for an endothermic reaction and stabilizing for an exothermic reaction,
which is consistent with the results of previous studies (e.g., [16,17,26]).

Since the reaction rate is a decreasing function of time, the effect of the reaction on film stability
and dynamics becomes weaker with time. For an endothermic reaction an initially unstable film can
become stable with time. The reaction causes a growth of the initial disturbance to a maximum value
before surface tension and gravity lead to the film flattening. For high reaction rates, however, the
film ruptures before gravity and surface tension overcome the destabilizing effect of the chemical
reaction.

The shear stress at the liquid-gas interface has a significant effect on the film evolution. With
increasing shear stress, the growth rate of the disturbances is initially higher as the shear stress
leads to higher and thinner film height maxima. With increasing time and decreasing reaction rate,
however, surface tension decreases film height maxima. Due to the higher curvature of the peaks for
higher interfacial shear stress, the surface tension force increases with increasing shear stress, which
leads to faster film flattening. Overall, the interfacial shear stress was found to have a stabilizing
effect on the film. This can only be found from solving the complete evolution equation and cannot
be revealed from the linear stability analysis.

The wavelength of the initial disturbance has been found to have a crucial influence on the film
evolution. The dependence of growth rate on wave number changes with time, so the critical initial
disturbance has to be found iteratively.

In this work diffusive mass transport in the direction normal to the wall was neglected because the
film is very thin. For future work it would be interesting to extend the evolution equation to include
diffusive mass transport. In addition, solutocapillarity should be considered if the surface tension of
the reactant and product species are significantly different. Higher-order convective terms could be
included to get a more detailed look at the influence of those effects on the evolution of the film.
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