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Sequential transitions of bathtub vortex flow
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The bathtub vortex has been found to autonomously arise owing to instability of a
symmetric flow in a rectangular vessel when water is drained. We consider a model
flow through a vessel with a rectangular horizontal cross section and a drain hole at
the center of the bottom to investigate the physical mechanism for generation of swirling
fluid motion like the bathtub vortex and the sequential transitions of the flow by numerical
simulations and the linear stability analyses. The water surface is assumed to be flat even
after instability. If the flow becomes unstable under this assumption, it assures that the
surface deformation is irrelevant to the instability. It is emphasized that our interest is not
limited to the real bathtub vortex but directed to occurrence of a large vortex in a flow
having two reflectional symmetries. The configuration of the vessel has the double plane
symmetry (DPS), which allows the flow have the same DPS at small Reynolds numbers. It is
found that the instabilities and hence transitions occur accompanying symmetry-breaking
of the flow field. Namely, the DPS flow experiences instability to yield vortical motion
above a critical Reynolds number, losing the DPS but retaining the π -rotational (twofold
rotational) symmetry around the center axis. The vortical flow also becomes unstable at a
higher Reynolds number, makes a transition, and loses the π -rotational symmetry, but still
keeps the time-translation symmetry, i.e., steadiness. The steadiness is broken at an even
higher Reynolds number, owing to instability caused by an oscillatory mode of disturbance.
The first and second transitions of the flow are identified as pitchfork bifurcations, and the
third transition is identified as a Hopf bifurcation.
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I. INTRODUCTION

In our everyday lives, we often get sight of vortical fluid motions, among which the vortex
appearing above a drain hole of washbowls, kitchen sinks, and bathtubs attracts our interest. A
popular belief is that the vortex swirls counterclockwise in the Northern Hemisphere and clockwise
in the Southern Hemisphere. It was Shapiro’s motivation to determine the validity of the widespread
belief. He performed experiments [1] to reveal the effect of Earth’s rotation on the formation process
of the bathtub vortex. In his experiments, he used a cylindrical vessel and took care to prevent noises
and disturbances, which break the axisymmetry of the experimental apparatus. His experiments
showed that the bathtub vortex swirled in the counterclockwise direction nine times out of ten
in Boston. Subsequent experiments repeated in Australia [2] also confirmed the effect of Earth’s
rotation showing that the bathtub vortex swirled in the clockwise direction.

The generation mechanism of the bathtub vortex has long been investigated by the use of circular
vessels based on the assumption that the whole system has the axisymmetry [3–6], and its structure
has also been studied in detail [7–10]. Here, the axisymmetric system is referred to as the system that
has both the zero circumferential derivatives of physical quantities of the flow and the axisymmetric
boundary conditions.

Numerical simulation has an advantage over experiments to exclude miscellaneous factors such as
imperfection of the shape of the vessel, inclination in the base setting, inhomogeneous temperature
distribution in the water, and most importantly, residual angular momentum in water. When the
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system has axisymmetry, the numerical simulation gave more definite conclusions on the formation
mechanism of the bathtub vortex than experiments [11]. It was clarified that the bathtub vortex is
transiently formed by gathering residual angular momentum that remained when the drain is pulled
open, if the whole system is set on a stationary ground. Thus, angular momentum must be supplied
to make a steady bathtub vortex [12]. On the other hand, when the whole system rotates, a vortex that
has the same swirl direction with system’s rotation appears owing to the Coriolis force after decay
of the transient vortex due to the residual angular momentum. It was proved that the formation of
the bathtub vortex in the axisymmetric system is not related to instability or bifurcation. The shape
of the vessel is crucial for the formation of the bathtub vortex and also for the determination of swirl
direction of the vortex.

The transition or instability of flow is usually accompanied by symmetry breaking [13].
The relation between the bifurcations and the symmetries of the system has been widely
formulated [14,15]. If the emergence of the bathtub vortex is attributable to the instability of
flow that accompanies any spatial symmetry-breaking, it must be a consequence of the pitchfork
bifurcation. Through a pitchfork bifurcation, the flow makes a transition from a steady state
with some spatial symmetries into another steady state by losing one spatial symmetry. This
transition is caused by instability due to growth of disturbance having antisymmetry with respect
to the broken symmetry. On the other hand, a Hopf bifurcation arises when the flow field
loses its time-translation symmetry. In this case, time-periodic disturbances grow to cause flow
oscillations.

In fact, the formation mechanism of the bathtub vortex was once predicted to be instability of the
flow without any vortical motion by experiments [16,17] in a noncylindrical vessel, where a vessel
having a rectangular cross section was adopted, though an octagonal shape of percolator is set to
suppress disturbances in the central region. The experimental result was quite different from the case
of the cylindrical vessel, suggesting that the emergence of the bathtub vortex is a critical phenomenon.
It was confirmed in numerical simulations that the bathtub vortex is certainly induced by instability
when the flow rate is larger than a threshold [18] if the flow does not have the axisymmetry but has a
double plane symmetry. It was also shown that the transition from the double-plane symmetric flow
having no bathtub vortex to the bathtub vortex flow is caused by a pitchfork bifurcation, where even
a small perturbation can determine the swirl direction of the bathtub vortex. Moreover, the pitchfork
bifurcation is known to be structurally unstable, and an imperfect pitchfork bifurcation appears
instead if any factor of perturbation which breaks its symmetry is added to the system. Therefore,
the Coriolis force can determine the swirl direction to be cyclonic. In a rectangular vessel, once the
swirling motion arises, the swirling motion is accelerated autonomously by self-excitation cycles
through the pressure acting on the side walls. The acceleration of the angular momentum is brought
only by the pressure on the side walls, if the Coriolis force is not applied. It was also shown that
the pressure distribution is caused by two secondary vortices adjacent to the side walls. Then, the
locations of the secondary vortices as well as the symmetries of the flow play an important role to
maintain the bathtub vortex.

It is anticipated that the bathtub-vortex flow in the rectangular vessel would become unstable
again and make transitions into oscillatory flow eventually. We reconsider the instability of the flow
through a vessel with a rectangular cross section taking the same configuration as our previous paper
[18], and pursue further transitions of the flow by numerical simulations and the linear stability
analyses in the present paper. The water surface is assumed to be flat even after a vortical motion
is induced. This assumption assures that the surface deformation is irrelevant to the generation
mechanism of the bathtub vortex if instability occurs on the assumption. Our concern is not limited
to the real bathtub vortex but directed to more general instabilities occurring in a flow that has two
reflectional symmetries. We will discuss the instabilities and transitions relating symmetry breaking
up to three sequential transitions in the Reynolds number range of Re � 300. The transition to
the oscillatory flow appearing at Re ≈ 280 is discussed only qualitatively, because it is confirmed
only by the numerical simulations with a coarser grid than required to assure sufficient numerical
accuracy.
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FIG. 1. Computational model of the bathtub. (a) top view, (b) front view, (c) side view, and (d) bird view.

This paper is organized as follows. The formulation and numerical scheme for numerical
simulations and linear stability analyses are given in Sec. II. The numerical results are shown
in Sec. III. The last section is devoted to the summary and discussion.

II. FORMULATION AND NUMERICAL SCHEME

A. Governing equations and boundary conditions

We consider the flow in a container consisting of a rectangular vessel and a square drain pipe
attached to the drain hole located at the center of the bottom as shown in Fig. 1. Water inflows
through the two inlets AA′D′D and EE′H ′H , goes through the rectangular vessel and the drain
pipe, and outflows through the outlet IJKL. The origin O is placed at the center of the drain
hole, and the x and y axes are taken parallel to each pair of side walls on the horizontal bottom,
while the z axis is vertically upward. The side length of the square drain hole is expressed by d,
and the sides of the rectangular vessel are a = 10d and b = 3d in the x and y directions. The height
of the solid wall normal to the y axis is taken to be larger than d to keep the water level h = d, while
the side walls normal to the x axis are set to be 3d/4 to allow water come through between the top
of the walls and the water level. The water surface is assumed to be flat, being nondeformable. The
length of the drain pipe is � = 5d. Two points, indicated by P1(d/2,0,d/2) and P2(−d/2,0,d/2) in
Fig. 1, are the representative points chosen to characterize the flow field by using the y-component
velocities at the locations.

The flow is assumed to be incompressible and viscous. The side length d of the square outlet and
the mean outflow velocity in the z direction W = Q/d2 at the outlet are employed as the characteristic
length and velocity scales, respectively, where Q is the outflow volumetric flux per unit time. Using
the characteristic length and velocity scales we make all physical quantities nondimensional and
define the Reynolds number as Re = Q/(νd) with d, W and the kinematic viscosity of water ν.
Then, the time is made nondimensional with d/W and pressure with ρW 2. From now on, we will
use only nondimensional variables. For example, both the nondimensional depth and the side length
of the drain hole is 1 in terms of nondimensional variables, since the water level h is taken to be
equal to d. The governing equations for the nondimensional velocity u = (u,v,w) and the pressure
p, the incompressible Navier-Stokes equation and the continuity equation, are expressed as

∇ · u = 0,
∂u
∂t

+ (u · ∇)u = −∇p + 1

Re
�u. (1)

083903-3



JIRO MIZUSHIMA, KAZUKI ABE, AND NAOTO YOKOYAMA

The gravity is incorporated into the pressure term, so that the external force due to gravity does not
appear in Eq. (1). The typical MAC method is used to numerically solve Eq. (1) as an initial-value
and boundary-value problem.

The parabolic profile in the y direction of the x component of velocity and vanishing y and z

velocity components,

u = ∓
{

1 −
(

2y

3

)2}
, v = 0, w = 0 for x = ±5, 3/4 < z � 1, (2)

are employed for the boundary condition on the inlets AA′D′D and EE′H ′H . The boundary
condition for the pressure is given to satisfy the Navier-Stokes equation on the inlets as

∂p

∂x
= −u

∂u

∂x
+ 1

Re

(
∂2u

∂x2
+ ∂2u

∂y2

)
. (3)

The boundary condition on the outlet is the natural outflow condition:

∂u

∂z
= 0,

∂v

∂z
= 0,

∂w

∂z
= 0. (4)

The pressure is set to 0 over the whole outlet cross-section. Another boundary condition where the
pressure is set to 0 only at the center of the outlet is confirmed to give the same flow fields within
seven significant digits in numerical results.

On the flat water surface, the slip condition,

∂u

∂z
= 0,

∂v

∂z
= 0, w = 0, (5a)

∂p

∂z
= 1

Re

∂2w

∂z2
, (5b)

is used, and the water height is assumed to be constant. The nonslip condition,

u = 0, v = 0, w = 0, (6)

is used on all the solid boundaries. The boundary condition for p is given in terms of the normal
velocity component un and the normal coordinate n to each solid boundary as

∂p

∂n
= 1

Re

∂2un

∂n2
. (7)

In numerical calculations, including numerical simulations, calculation of the steady flows, and
linear stability analyses, we adopt a uniformly distributed staggered grid with the same finite
difference in the x, y, and z spatial coordinates, �x = �y = �z = �h = 0.03125. The second-
order central difference is used for the spatial derivatives. In solving the Navier-Stokes equation, the
Euler method with a time step �t = 2×10−3 is used for the time integration. The initial conditions
of the velocity field at small Reynolds numbers are taken to have the double plane symmetry (DPS).
That is, the flow field is symmetric with respect to the x = 0 plane and the y = 0 plane at the initial
time. On the other hand, the initial conditions at large Reynolds numbers, where the bathtub vortex
is formed, are taken from the velocity field at slightly smaller Reynolds numbers than those under
examination. The Poisson equation for the pressure is solved with the successive over relaxation
(SOR) method taking the acceleration parameter ε = 1.2–1.4.

To verify the numerical accuracy of the numerical simulation results, the horizontal velocity
(u1,v1), the z component of vorticity ω1 at the point P1, and the total angular momentum with
respect to the z axis Lz are compared for different grid spacings �x = �y = �z = �h and time
steps �t . We take one example of Re = 100 to examine the numerical accuracy, where the flow
attains a steady state having the π -rotational symmetry with the bathtub vortex. The magnitudes of
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TABLE I. Accuracy assessment of numerical simulations. Re = 100, steady states (t = 800). The relative
error ε in each physical quantity is evaluated based on the value for the case of �h = 0.025. A = 10/3. u1: x

component of velocity at P1, v1: y component of velocity at P1, ω1: z component of vorticity at P1, Lz: total
angular momentum with respect to the z axis.

�h �t u1 v1 ω1 Lz

0.025 2×10−3 −3.083×10−1 2.397×10−1 6.101×10−1 1.386
ε − − − − −
0.03125 2×10−3 −3.064×10−1 2.410×10−1 6.083×10−1 1.393
ε − 0.598% 0.559% 0.302% 0.530%
0.05 5×10−3 −3.017×10−1 2.462×10−1 5.967×10−1 1.418
ε − 2.13% 2.70% 2.21% 2.30%

u1, v1, ω1, and Lz are tabulated in Table I. The comparison of these physical quantities between
numerical results with �h = 0.025 (�t = 2×10−3) and 0.03125 (�t = 2×10−3) confirms that the
numerical results with �h = 0.025 are accurate within 1% relative errors. Thus, we mainly employ
the grid spacing �h = 0.03125 and the time step �t = 2×10−3 for the numerical simulations. The
details of the formulation and numerical scheme are found in our previous paper [18].

B. Linear stability analysis and flow symmetries

The boundary conditions of the flow having the DPS allow the solution to possess the same DPS
at small Reynolds numbers, but the solution originally having the DPS makes transitions to lose the
symmetries one by one in sequential experience of instability. Here, we introduce three operators
to denote the symmetry breaking: reflections with respect to the x = 0 plane and the y = 0 plane,
Mx ((x,y,z) → (−x,y,z)) and My ((x,y,z) → (x,−y,z)), and the π rotation around the z axis, Rzπ

((x,y,z) → (−x,−y,z)). The π -rotation operation is expressed as Rzπ = My×Mx , which leads to
My = Mx×Rzπ . Namely, one reflection operation My is equivalent to the sequential operation made
of the π -rotation operation Rzπ followed by the other reflection operation Mx .

The flow is eventually attracted to the steady state having the DPS at small Reynolds numbers,
being invariant under the operations Mx and My , and also invariant under Rzπ . The DPS is also
interpreted as the composition of the π -rotational (twofold rotational) symmetry around to the z axis
(RS) and one plane symmetry with respect to the x = 0 or y = 0 plane. Thus, if the system has the
DPS, the system necessarily has the RS, but the RS does not always imply the DPS.

The DPS flow is the basic flow for the first linear stability analysis, which may become unstable
to a disturbance that has the antisymmetry under the operations Mx and My above a critical Reynolds
number. It is noted that the unstable DPS solutions can be obtained with the SOR method numerically,
or even in numerical simulations of the governing Eq. (1) if the DPS is imposed to the velocity and
pressure, assuming as

u(x,y,z) = u(x,−y,z) = −u(−x,y,z), v(x,y,z) = −v(x,−y,z) = v(−x,y,z),

w(x,y,z) = w(x,−y,z) = w(−x,y,z), p(x,y,z) = p(x,−y,z) = p(−x,y,z). (8)

The first equality in each equation in Eq. (8) shows invariance under My , and the equality of the
leftmost side with the rightmost side expresses invariance under Mx , while the second equality
indicates the RS. The resultant flow arising from the first instability is the bathtub vortex flow,
which keeps the RS though the DPS is lost. The RS flow turns out to be the basic flow for the
second linear stability analysis, which becomes unstable to a disturbance that has the antisymmetry
under the operation Rzπ at Reynolds numbers larger than another critical value. Such basic flows
possessing RS are obtained again with the SOR method or in numerical simulations by imposing
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the RS:

u(x,y,z) = −u(−x,−y,z), v(x,y,z) = −v(−x,−y,z),

w(x,y,z) = w(−x,−y,z), p(x,y,z) = p(−x,−y,z), (9)

on the solutions.
The linear stability analysis assumes a small disturbance û and p̂ added to the basic flow ū and

p̄, which may have the DPS, the RS, or no spatial symmetry, and the velocity u and the pressure
p are expressed as the summation of the basic solution and the disturbance, i.e., u = ū + û and
p = p̄ + p̂, respectively. Substituting these expressions to the governing Eq. (1), subtracting the
equation for the basic-flow solution and omitting the nonlinear terms of the disturbance, the linear
disturbance equation for (û,p̂) is obtained as

∇ · û = 0,
∂ û
∂t

+ (û · ∇)ū + (ū · ∇)û = −∇p̂ + 1

Re
�û. (10)

Usually, û and p̂ is assumed to have exponential time dependence as û = ũeλt and p̂ = p̃eλt with a
complex constant λ in the linear stability theory. Then, Eq. (10) is expressed as

∇ · ũ = 0, λũ = −(̃u · ∇)ū − (ū · ∇)̃u − ∇p̃ + 1

Re
�ũ. (11)

If the real part of λ, Re[λ], is positive, the basic flow is unstable, and stable if Re[λ] < 0. The
imaginary part of λ, Im[λ], indicates the oscillation frequency of the disturbance.

The boundary conditions for û or ũ are the same with Eqs. (4), (5a), and (6) for u. Because
no disturbance is assumed to flow in, û = 0 on the inlets [see Eq. (2)]. The pressure boundary
conditions for p̂ or p̃ is derived from Eqs. (10) or (11), similarly to Eqs. (5b) and (7) in the numerical
simulations. The pressure gradient on the inlets (x = ±5, 3/4 < z � 1) is expressed as

∂p̂

∂x
= −ū

∂û

∂x
+ 1

Re

∂2û

∂x2
. (12)

Although there exist infinite eigenvalues and eigen functions each set of which is called a mode,
we are interested in the most unstable mode having the largest real part of λ. We adopt the time
integration scheme in solving Eq. (10) with the typical MAC method to find the most unstable mode
similarly to the numerical simulations of Eq. (1) rather than solving Eq. (11) with the SOR method.
To numerically solve Eq. (10) as an initial-value problem, the time derivative is approximated with
the Euler method and the spatial derivatives with the second-order central difference for the time
integration, and the Poisson equation solver is the same as the numerical simulations of Eq. (1).
In the case where the most unstable mode is stationary, the eigen value λ is a real value. Then,
we take an appropriate initial condition (û(0),p̂(0)) for (û,p̂), which we normalize to be v̂

(0)
1 = 1

at P1, calculate the velocity field (û(1),p̂(1)) at the next time step t = �t and then normalize them
to be v̂

(1)
1 = 1 again. The growth rate Re[λ(0)] is evaluated by ln(v̂(1)

1 /v̂
(0)
1 )/�t . If repetition of this

procedure leads to a convergent series of (û(n),p̂(n)) and Re[λ(n)], then the converged flow field
is the eigen function (̃u,p̃) and the converged value of Re[λ(n)] gives the eigen value of Re[λ].
For oscillatory modes of disturbance, the solution technique for stationary disturbances cannot be
applied, so that numerical simulation of Eq. (10) is easier to calculate the most unstable mode of
eigenvalue and eigen function, where the solution (û(n),p̂(n)) shows periodic oscillation in time
after a long elapse of time. During the time evolution of numerical data, we take two successive
local maximum values of v

(n)
1 and v

(n+m)
1 at t = n�t and (n + m)�t and calculate the growth

rate by Re[λ(n)] = ln(v̂(n+m)
1 /v̂

(n)
1 )/(m�t). If Re[λ(n)] converges toward a value, it is the real part

of eigenvalue Re[λ] and the solution (û(n), p̂(n)) is the real parts of the eigen function (̃u,p̃). The
imaginary part of λ is evaluated by Im[λ] = 2π/(m�t), and the imaginary part of the eigen functions
are given by (−û(n+m/4), −p̂(n+m/4)) because the imaginary part appears 3π/4 rad late in the phase
behind the real part. We normalize the complex eigen function (̃u,p̃) to be ṽ1 = 1.
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FIG. 2. (a) Bifurcation diagram in 0 � Re � 300, and (b) enlargement of (a). v1: y component of velocity
at points P1 (=(1/2,0,1/2)). The diagrams in 0 � Re � 275 are drawn with two grid spacings �h = 0.03125
and �h = 0.05. The diagram in 275 � Re � 300 is drawn only with a grid spacing �h = 0.05.

III. NUMERICAL RESULTS

A. Bifurcation and symmetry-breaking

We have performed numerical simulations in the range of Re � 300 and found that the flow
exhibits different properties not only quantitatively but also qualitatively as the Reynolds number
increases. The qualitative change of flow indicates transitions from one state to another, each of
which accompanies a change in the number of solutions for the fundamental equations. Each origin
of the transitions will be explored by the linear stability analysis in the next subsection. Such
transitions of flow are depicted by a bifurcation diagram as shown in Fig. 2, where the y-component
velocity v1 = v(P1) at P1 (=(1/2,0,1/2)) indicated in Fig. 1 is used to characterize the flow field.
The velocity v1 can be substituted by v2 at P2 (=(−1/2,0,1/2)) if the double plane symmetry (DPS)
or the π -rotational symmetry around the z axis (RS) is considered as explained later. Note that only
stable solutions are drawn while unstable solutions are omitted in Fig. 2.

The thick and thin lines in Figs. 2(a) and 2(b) indicate numerical results obtained by using the
fine grid spacing �h = 0.03125 and the coarse grid spacing �h = 0.05, respectively. We assert
the numerical accuracy of the bifurcation diagram indicated by the thick lines from the fine grid
simulation, but the numerical simulations in the fine grid requires too much computation time beyond
our tolerance to pursue extension of the diagram to larger Reynolds numbers than Re = 275 with
accuracy within 1% in the relative error, so that simulation results in the coarser grid are added to
supplement the bifurcation structure. The similarity of the two diagrams supports the correctness of
both numerical results.

The solution branch along v1 = 0 indicated by DPS is the only solution for Re < ReI
c, having the

DPS without any vortical motion. At Re = ReI
c, two other solution branches having finite values of

v1, emerge from the DPS solution with v1 = 0, which indicates emergence of a bathtub vortex. The
positive value of v1 comes from the existence of a bathtub vortex swirling in the counterclockwise.
Since the system’s configuration has the DPS, once the flow with the counterclockwise swirling
bathtub vortex is observed, its counterpart having a vortex in the clockwise rotation could appear
instead. Then, the whole DPS would be preserved, which is reflected on the bifurcation diagram.
Thus, two branches RS+ and RS− appear. The abbreviation RS represents that the flow field has the
π -rotational symmetry [Eq. (9)], and the signs + and −, respectively, represent v1 > 0 and v1 < 0.
The swirling direction of the bathtub vortex is not uniquely determined theoretically but chosen by
a slight asymmetry included in the vessel configuration or residual angular momentum remaining
in water when the water drain begins. Therefore, the bifurcation diagram is symmetric with respect
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TABLE II. Accuracy assessment of numerical simulations. The relative errors ε

in the critical Reynolds numbers are evaluated by comparing the values with those
for �h = 0.03125.

�h �t ReI
c ReII

c

0.03125 2×10−3 62.81 251.01
ε − − −
0.05 5×10−3 62.24 245.25
ε − 0.907% 2.29%

to the Re axis. The first critical Reynolds number is determined as ReI
c = 62.81, and the relation

v2
1 ∝ (Re − ReI

c) holds near the critical Reynolds number. The relation shows that the bifurcation is
a pitchfork bifurcation at ReI

c. It is added that in the case where the whole system is rotating, the
pitchfork bifurcation is degenerated into an imperfect one owing to structural instability [18]. Then,
the bathtub vortex that appears will have the same swirling direction as the rotation of the system,
i.e., cyclonic, unless residual disturbance is so large to surpass the imperfection.

Another bifurcation occurs at ReII
c = 251.01, which turns out to be another pitchfork bifurcation.

Four branches of steady solutions, NSS++, NSS+−, NSS−+, and NSS−−, stem from the bifurcation
points owing to the instability at Re = ReII

c , where the abbreviation NSS stands for no spatial
symmetries. Although the NSS flows have no spatial symmetries, the bifurcation diagram in Fig. 2
is symmetric with respect to the Re axis. This symmetry is inherited from RS before the bifurcation
at ReII

c . If any flow solution on the NSS++ branch has the value of v1, then the magnitude of v2 on
the NSS++ branch is equal to v1 on the NSS−+ branch, for instance. Thus, the two solution NSS−+
and NSS−− are, respectively, obtained from NSS++ and NSS+− by the π rotation around the z axis,
when v1 is exchanged with v2.

The accuracy of the numerical simulations are assessed here again in terms of the critical Reynolds
numbers for the two pitchfork bifurcations. The critical values of ReI

c and ReII
c are evaluated on the

computation grids with �h = 0.03125 and 0.05 and tabulated in Table II. Both the relative errors ε

in the first critical Reynolds number ReI
c and the second ReII

c are smaller than 2.5%. Therefore, we
confirm that the numerical accuracy is enough to resolve the small-scale flows even for the instability
phenomena.

The flow is always oscillatory for Re > ReIII
c . The solution branches of the oscillatory flow

have not been completely obtained in numerical simulations with �h = 0.03125 but with a coarser
grid of �h = 0.05 as displayed in the bifurcation diagram (Fig. 2). The transition from steady to
oscillatory flow is the third bifurcation, which is found to be a Hopf bifurcation, and the critical
Reynolds number is determined as ReIII

c = 278.0, though ReIII
c is expected to become a little larger

in more precise results. The time-periodic solutions are referred to as TP++, TP+−, TP−+, and
TP−− in the bifurcation diagram (Fig. 2), each corresponding to one of the four NSS branches
in ReII

c < Re < ReIII
c . The abbreviation TP represents that the flow field is time-periodic. These

branches satisfy the same spatial symmetries as NSS++, NSS+−, NSS−+, and NSS−− expressed in
Eq. (14).

We will show the physical implication in the sequential transitions, investigating the instability
phenomena from the viewpoint of the symmetry breaking. The flow has the DPS at small Reynolds
numbers, an example of which is shown for Re = 60 in Figs. 3(a) and 3(b). Figure 3(a) shows
streamlines and isosurfaces of ωz. The streamlines are drawn as traces of fluid particles which inflow
through the line segment of x = ±5 and z = 7/8. The fluid particles come toward the drain hole
centripetally, and outflow from the outlet through the drain pipe, where each group of particles coming
from the opposite side of x = 5 and −5 outflow through each distinct region of x > 0 or x < 0 at the
outlet, never mingling with each other and showing no emergence of bathtub vortex. Four regions of
relatively large vorticity, depicted by isosurfaces in Fig. 3(a), spread from the inlets to near the drain
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(a) (b)

(c) (d)

(e) (f)

FIG. 3. Flow fields at Re = 60 ((a) and (b), DSP), Re = 65 ((c) and (d), RS+), and Re = 260 ((e) and (f),
NSS++). Streamlines passing inward from the segment x = ±5 and z = 7/8 are drawn. Isosurfaces of ωz are
drawn in (a), (c), (e) (bird view), and isosurfaces of lz in (b), (d), and (f) (top view). (a), (c) ωz = 0.5 (red)
and ωz = −0.5 (blue). (b), (d) lz = 0.15 (red) and lz = −0.15 (blue). (e) ωz = 8 (red). (f) lz = 0.3 (red) and
lz = −0.3 (blue).

hole, each pair of the isosurfaces of ωz with the opposite sign facing to the other antisymmetrically.
Here, we note that the vorticity at the inlets (x = ±5) is given as ωz ≈ −∂u/∂y = ∓8y/9 and that
the signs of isosurfaces of ωz are negative in the regions of xy > 0 and positive in xy < 0. Two
more couples of tubular large-vorticity regions are observed to spread from the water surface above
the drain hole into the drain pipe, whose signs are also negative in the regions xy > 0 and positive
in xy < 0.

The isosurfaces of the z-component local angular momentum per unit volume lz = ±0.15 are
drawn together with streamlines in Fig. 3(b), where lz is defined by lz = xv − yu. Similarly to
the large-vorticity regions, four regions of large magnitude of lz spread from the inlets. Note that
the angular momenta are lz = ±y{1 − (2y/3)2} on the inlets (x = ±5) and they are positive in the
region of xy > 0 and negative in xy < 0, contrary to ωz. The angular momentum decays to 0 when
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the fluid particles approach the drain hole. The DPS that the angular momentum distribution shows
confirms the absence of any bathtub vortex at this Reynolds number as well.

At Re = 65, a slightly larger value than ReI
c, a steady bathtub vortex appears above the drain

hole and also within the drain pipe as shown in Figs. 3(c) and 3(d). Differently from the no-vortex
flow for Re < ReI

c, the fluid particles coming through the inlets exhibit swirling motions around
the drain hole before leaving from the outlet as the streamlines show in Fig. 3(c). The two positive
large-vorticity regions, having been located in the domains of xy < 0 at Re = 60, merge with each
other at Re = 65. The merged large-vorticity region is flattened in the diagonal direction across the
drain hole and drained into the drain pipe forming an elongated column. On the other hand, the
negative large-vorticity regions are not so different from those at Re = 60.

The isosurfaces of lz are shown for Re = 65 in Fig. 3(d), which clearly shows breaking of the DPS
and only the π -rotational symmetry around the z axis (RS) remains. The RS assures the coincidence
of the axis of the bathtub vortex with the center line of the drain hole. As explained in Sec. II B, only
two of three symmetries, i.e., the two plane symmetries and the RS, are independent. Because the
RS remains while the two plane symmetries with respect to the x = 0 and y = 0 planes are broken,
the bifurcation at Re = ReI

c are regarded as a single symmetry-breaking. Therefore, the bifurcation
at Re = ReI

c is confirmed to be a pitchfork bifurcation also in terms of the symmetry consideration.
The flow field depicted in Figs. 3(c) and 3(d) is the solution manifested by a point at Re = 65

on the RS+ branch (v1 > 0) in the bifurcation diagram (Fig. 2), while its counterpart on the RS−
branch (v1 < 0) is obtained by reflection with respect to the x = 0 or y = 0 plane. This consequence
comes from breaking of the DPS in each individual solution, while the whole system must keep the
DPS after bifurcation, which yields the counterpart of the solution that lost the DPS. The relation
between the flow field (u+,v+,w+,p+) on the RS+ branch and (u−,v−,w−,p−) on the RS+ branch
is expressed as

u−(x,y,z) = u+(x,−y,z) = −u+(−x,y,z), (13a)

v−(x,y,z) = −v+(x,−y,z) = v+(−x,y,z), (13b)

w−(x,y,z) = w+(x,−y,z) = w+(−x,y,z), (13c)

p−(x,y,z) = p+(x,−y,z) = p+(−x,y,z). (13d)

The second equality on each in Eq. (13) holds owing to the RS of the flow fields on each of the RS+
and RS− branches. Because of the symmetry Eq. (13b), the value of v2, which is the y-component
velocity at P2, of the solution on the RS+ branch is equal to that of v1 on the RS− branch. Discussion
on the flow field on the RS− branch is omitted because it is reproduced by reflecting the solution on
the RS+ branch in Figs. 3(c) and 3(d) with respect to the x = 0 plane or the y = 0 plane.

As shown in Fig. 2, the second bifurcation occurs at ReII
c = 251.01. The flow pattern at Re = 260

(Figs. 3(e) and 3(f), NSS++) is more complex than that of Re = 65 [Figs. 3(c) and 3(d)], where
the streamlines twist around the large-vorticity region before they outflow. The axis of the bathtub
vortex does not coincide with the z axis. Affected by the secondary vortices appearing near the side
walls at y = ±3/2, some streamlines draw complex trajectories before getting entangled into the
bathtub vortex. Although the isosurface of ωz = 8 is visible in Fig. 3(e), no portion of isosurface
of ωz = −8 appears because negative vorticity is weaker than |ωz| = 8. The tubular large-vorticity
region near the z axis has a core apart from the z axis lying in the domain of x > 0 and y < 0. Thus,
the RS of the flow field is broken, and the flow field has no spatial symmetries at Re = 260.

The broken RS is obvious in the lz distribution in Fig. 3(f). Only the positive large-angular-
momentum tube spreading from a domain of y < 0 at the inlet x = −5 reaches the drain hole, while
the other tube coming from the domain of y > 0 at the inlet x = 5 ends before arriving the drain
hole, though the distinction may not be clear in this figure. The asymmetry is prominent in the shape
of the secondary vortices with positive lz near the side walls at y = ±3/2; the upper left one is
much longer and thicker than the lower right counterpart located diagonally in Fig. 3(f). Therefore,
another pitchfork bifurcation is found to appear at Re = ReII

c , out of breaking of the RS. The flow
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FIG. 4. Time evolution of the y-component velocities v1 at P1 = (1/2,0,1/2) and v2 at P2 = (−1/2,0,1/2).
Re = 285. The point at t = 1638.4 denotes the time at which the flow field is drawn in Fig. 5.

field has no spatial symmetry at Re > ReII
c , but reserves the time-translation symmetry, i.e., the

steadiness.
Although there exist four stable solutions at Re = 260 in Fig. 2 only the flow field of NSS++ is

shown in Figs. 3(e) and 3(f). Another solution on the NSS+− branch in Fig. 2, can be obtained by
the π -rotation operation with respect to the z axis of the NSS++ solution. This is also the reason that
the broken RS in the individual solution must be compensable allowing the counterpart to keep the
RS as a whole. Thus, the solution on the NSS+− branch is expressed in terms of that on the NSS++
branch as

u+−(x,y,z) = −u++(−x,−y,z), v+−(x,y,z) = −v++(−x,−y,z),

w+−(x,y,z) = w++(−x,−y,z), p+−(x,y,z) = p++(−x,−y,z), (14)

where the suffixes ++ and +−, respectively, represent the NSS++ and the NSS+− branches. The
solutions on the NSS−+ branch and the NSS−− branch are, respectively, obtained by the reflection
operation with respect to the plane of x = 0 or y = 0 of that on the NSS+− branch and the NSS++
branch, similar to the relation between the RS+ and RS− branches at the first bifurcation. Therefore,
the value of v2 on the NS++ (NS+−) branch is equal to that of v1 on the NS−+ (NS−−) branch.

The oscillatory flow is confirmed to certainly appear at Re = 285 with the finer grid of �h =
0.03125, and the time evolutions of the velocity components v1 at P1 and v2 and P2 are depicted in
Fig. 4, in which the periodic time series clearly shows that the time-translation symmetry is broken.
The time period in the oscillation is approximately 37.6. Because the mean values of v1 and v2 are
approximately 0.223 and −0.227, respectively, the mean circumferential velocity on the circle that
passes P1 and P2, x2 + y2 = (1/2)2 and z = 1/2, is evaluated as 0.225. The characteristic time for
one circulation of the bathtub vortex on the circle with its center at the z axis passing through P1

and P2 is estimated as 14.0. Thus, the period of the variation of the flow field is roughly three times
longer than the characteristic time of circulation of the bathtub vortex.

Since the flow field varies periodically in time, the streamlines and the isosurfaces of ωz =
8 are drawn for an instant of the solution on the NSS++ branch at Re = 285 in Fig. 5. The
instant, t = 1638.4, is chosen because v1 has the maximal value at the moment. Although the
flow field at t = 1657.2, when v1 attains to its minimum, is omitted, the differences between
the flows at t = 1638.4 and at t = 1657.2 appear only in the locations and the strengths of the
vortex. Both flows show a thin tubular large-vorticity region along the z axis and streamlines twist
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FIG. 5. Isosurfaces of ωz = 8 at t = 1638.4 when v1 is maximal at Re = 285 on TP++. Streamlines passing
inward from the segment x = ±5 and z = 7/8, and isosurfaces of ωz are drawn.

around the large-vorticity region as shown in Fig. 5 similarly to the flow at Re = 260 shown in
Figs. 3(e) and 3(f).

The second bifurcation was brought by a slight shift of the vortex center to the lower right or the
upper left from the z axis as shown in Fig. 6. The third bifurcation occurs when the center of the
vortex oscillates back and forth in the diagonal direction with a very small amplitude accompanying
oscillation in the vortex strength. This oscillation of the vortex center and strength yields the

FIG. 6. Locations of maximal and (locally) minimal ωz on the z = 1/2 plane. The x axis is directed to the
right and the y axis upward with the origin being the center. The maximal locations and the (locally) minimal
locations are, respectively, represented by circles and triangles. Solid symbols and open symbols respectively
represent steady flows at Re < ReIII

c and oscillatory flow at Re = 285 > ReIII
c . The locations of the maximal

and locally minimal ωz at the instant when v1 peaks at its maximum and minimum in the oscillatory flow at
Re = 285 are indicated by 285 (max) and 285 (min), respectively. Only the domain |x|,|y| � 3/2 is drawn.
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oscillatory flow, or vice versa. When v1 attains the largest (smallest) value, the magnitude of v2

is also most (least) negative. Thus, the variations of v1 and v2 are synchronous in the oscillatory
bathtub-vortex flow.

To observe the spatial symmetries of the flow field and their breakings more clearly, locations of
the maxima and (local) minima of ωz on the plane z = 1/2 are drawn for several Reynolds numbers
in Fig. 6, where the x axis is directed to the right and the y axis upward with the origin being the
center. At Re = 60 (<ReI

c), the two positive maxima on the plane appear above the opposing corners
of the drain hole, and the two minima having a negative value emerge above the other opposing
corners. The absolute values of the two maxima and the two minima are the same. The DPS is clearly
confirmed by the alignment of the maxima and minima of ωz.

The two maxima, having been located above the opposing corners at Re = 60, come to the center
with formation of the bathtub vortex and coalesce into one on the z axis at Re = 65 > ReI

c. As Re
increases, the minimum in the y > 0 side changes its location to the negative x direction (to the
left in Fig. 6), and the other minimum in the y < 0 side to the positive x direction. The change of
the locations of the two minima are caused by the vortical flow that swirls stronger for larger Re in the
counterclockwise direction. At Re ≈ 90, each of the two minima reaches almost above the opposite
corner of the drain hole and turns toward the side wall. This change of direction is brought by the
colliding streams of the vortical flow and the main flow coming from the inlets to the drain hole.
During the increase in Re up to ReII

c , the two minima are always located in the diagonal direction,
and the maximum stays on the z axis. The two minima have the same negative value, whose absolute
value is smaller than the maximum. Thus, the RS is confirmed also by the alignment of the maximum
and the minima.

The values of the two minima differ and their locations deviate from the diagonal line across the
z axis for Re > ReII

c . The local minimum in the region of y > 0 drifts to the positive x direction
along the side wall at Re ≈ 260 while the counterpart in y < 0 does not move so much at Re � 200.
The former has the larger magnitude |ωz| than the latter. Furthermore, the maximum deviates from
the z axis. It is confirmed in Fig. 6 that the flow field has no spatial symmetry. It must be noted
that only the traces of the maxima and (local) minima of ωz which appear at Re = 60 are drawn in
Fig. 6, and the minima of ωz having larger negative values emerge in the boundary layer near the
side wall for Re > 260. At Re = 285, the locations of the maximum and local minima periodically
oscillate in time because of the periodicity of the flow field. In Fig. 6, the locations of the maximum
and local minima at which the y component of velocity v1 peaks at its maximum and minimum
values at Re = 285 are indicated by 285 (max) and 285 (min), respectively. This shows the periodic
oscillation of the bathtub vortex, which is characterized by the oscillatory movement of the center
of the vortex.

B. Linear stability analysis

To prove that each transition of flow is certainly induced owing to instability of the flow having
one more symmetries (basic flow) and lose one of them after transition, we numerically obtain the
basic flow and examine the stability by solving the linear disturbance equation (10) at each Reynolds
number necessary up to the second transition. The basic flow has the DPS for the first instability
and the RS for the second, both of which are calculated with the SOR method or by numerical
simulation imposing the corresponding symmetry, while the linear disturbance equation is solved
with the numerical simulation method but using the normalization technique explained in Sec. II B.

Since the numerical simulation revealed that the first bifurcation occurs at ReI
c = 62.81 and that

the flow with the DPS loses both plane symmetries with respect to the x = 0 and y = 0 planes, only
keeping the RS as seen in Figs. 3(c) and 3(d), we calculate the basic flow (ū,p̄) and examine its
stability in 50 � Re � 100 across the critical value for the first instability.

The basic flow (ū,p̄) is qualitatively independent of Re in 50 � Re � 100 being similar to
Figs. 3(a) and 3(b) for Re = 60, so that we omit displaying the flow field to save space. Similarly,
the basic flows around ReII

c and around ReIII
c are qualitatively close enough to those at Re = 65
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FIG. 7. Linear growth rate Re[λI] of the most unstable mode of disturbance for double-plane symmetric
flow.

[Figs. 3(c) and 3(d)] and at Re = 260 [Figs. 3(e) and 3(f)], respectively. The linear stability analysis
determines the linear growth rate, the oscillation frequency and the flow pattern of the most unstable
mode of disturbance. The linear growth rate, Re[λI], of the antisymmetric disturbance added to the
double-plane symmetric flow is evaluated and shown in Fig. 7, where the eigen value is determined to
be real (Im[λI] = 0). The linear growth rate Re[λI] changes its sign at Re = 63.04, showing that the
double-plane symmetric flow is stable for Re < 63.04 and unstable for Re > 63.04. This threshold
value is nothing but the critical Reynolds number ReI

c at which the first bifurcation occurred in
the numerical simulation. The coincidence of the values supports the validity of the linear stability
analysis and the numerical simulation, where the critical Reynolds number is 62.81 (see Fig. 2), and
the relative error between the two values is smaller than 0.4%.

Here, we demonstrate how the flow field loses the DPS owing to the growth of antisymmetric
disturbance added to the symmetric basic flow field as a perturbation. Here, the antisymmetry of the
disturbance means the reflection antisymmetry with respect to the planes of x = 0 and y = 0, which
is expressed for the eigen functions, ũI and p̃I, as

ũI(x,y,z) = −ũI(x,−y,z) = ũI(−x,y,z), (15a)

ṽI(x,y,z) = ṽI(x,−y,z) = −ṽI(−x,y,z), (15b)

w̃I(x,y,z) = w̃I(x,−y,z) = w̃I(−x,y,z), (15c)

p̃I(x,y,z) = p̃I(x,−y,z) = p̃I(−x,y,z). (15d)

The z component of vorticity ω̃I
z on the z = 1/2 plane evaluated from the eigen function ũI

corresponding to the most unstable mode is shown in Fig. 8 for Re = 65 as an example of Re
around ReI

c = 63.04. The flow field given by the eigen function has three large-vorticity regions:
one appearing along the z axis is composed of a sole bathtub vortex, and the other two near
(x,y) = (0,±3/4) have the sign opposite to the bathtub vortex. Besides the three vortices, the flow
field includes three intense vorticity regions near each side wall at y = ±3/2. The one near x = 0
has relatively strong vorticity of the same sign as the bathtub vortex, while the sign of vorticity in
the pairs away from x = 0 is opposite to the bathtub vortex. Figure 8 clearly shows the DPS of ω̃I

z,
which comes from the antisymmetry of the velocity field of the eigen function with respect to the
planes of x = 0 and y = 0 shown by Eq. (15). The double plane antisymmetry of the eigen function
is interpreted as the composition of the RS and one of the plane antisymmetries with respect to the
x = 0 and y = 0 planes. Since the velocity field in the bifurcated flow is given as the sum of the
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FIG. 8. Contours of z-component vorticity of the linear eigen function on the z = 1/2 plane. Re = 65. The
vorticity is normalized so that its maximum is unity. The contours are drawn for ω̃I

z = ±2−n, where n = 1, . . . ,5
and ω̃I

z = 0. The solid lines, dashed lines, and dashed-dotted lines, respectively, represent positive ω̃I
z, negative

ω̃I
z, and zero ω̃I

z.

basic flow and the disturbance, and the basic flow has the RS and one of the plane symmetries with
respect to the x = 0 plane and the y = 0 plane, the resultant flow after instability retains only the
RS, being common to the basic flow and the disturbance.

Since the DPS flow has no total angular momentum in the z direction Lz, the most unstable mode
of disturbance produces Lz to yield the bathtub vortex. The physical mechanism to induce Lz comes
from the flow structure of the mode of disturbance. In the linear stability analysis, the growth rate
of Lz is also Re[λI] and the growth Re[λI]Lz is expressed by the sum of torques due to pressure and
viscous friction on the walls or the bottom of the container together with the angular momentum
supply from the outside. The torques due to pressure on the side walls perpendicular to the x and
y axes are, respectively, denoted by Npx and Npy , where the first suffix p attached to N stands for
pressure and the second suffix x or y indicates the normal axis of the solid boundaries on which the
torque is exerted on water in the container. It is added that the torque due to pressure on the bottom
Npz makes no contribution on Lz. The viscous force always acts to reduce Lz, and the torques due to
the viscous force on the walls and the bottom are expressed as Nvx , Nvy , and Nvz, respectively. The
angular momentum supply Qin flowing in from the inlet sections vanishes by the inflow condition,
and the outflow of the angular momentum through the outlet Qout contributes to reduce Lz.

Because the DPS of the basic flow does not make the torques due to the pressure and the viscous
friction as well as Lz, the angular momentum budget due to the most unstable mode of disturbance is
evaluated here. Each torque is calculated by integrals over the walls. For instance, Ñ I

py is expressed
as

Ñ I
py = −

∫∫
Sy+

xp̃I(x,y,z)dxdz +
∫∫

Sy−
xp̃I(x,y,z)dxdz = −2

∫∫
Sy+

xp̃I(x,y,z)dxdz, (16)

where Sy+ (Sy−) indicates the areas of the side walls at y = 3/2 for z > 0 and y = 1/2 for z < 0
(y = −3/2 for z > 0 and y = −1/2 for z < 0). We used the relation of the π -rotational symmetry
of the flow field; p̃I(x,y,z) on Sy+ equals to p̃I(−x,y,z) on Sy−. Similarly, the torque due to the
viscous stress on the bottom is defined as

Ñ I
vz = 1

Re

∫∫
Sz

(
−x

∂ṽI

∂z
+ y

∂p̃I

∂z

)
dxdy, (17)

in which Sz denotes the area of the bottom at z = 0 outside the drain hole. The conservation law of
the angular momentum leads the following equation:

Re[λI]L̃I
z = Q̃I

in + (−Q̃I
out

) + Ñ I
px + Ñ I

py + Ñ I
vx + Ñ I

vy + Ñ I
vz, (18)

where Re[λI]L̃I
z corresponds to the temporal derivative of L̃I

z. The outflow Q̃I
out is positive having

the same sign with the induced angular momentum L̃I
z, and hence the contribution of (−Q̃I

out) to the
growth of L̃I

z is negative.
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TABLE III. Angular momentum budget due to eigen function ũI and p̃I at Re = 65.

L̃I
z −Q̃I

out Ñ I
px Ñ I

py Ñ I
vx Ñ I

vy Ñ I
vz Re[λI]L̃I

z

7.952 −5.825×10−8 −0.1887 1.3038 −0.2636 −0.2543 −0.5564 4.080×10−2

The angular momentum L̃I
z, all the torques Ñ I

px , Ñ I
py , Ñ I

vx , Ñ I
vy , Ñ I

vz and the outflow Q̃I
out of L̃I

z

are evaluated from the eigen function (ũI, p̃I) and tabulated in Table III for Re = 65, where the eigen
function is normalized to be ṽI

1 = 1 to uniquely define the magnitude and the phase, and Simpson’s
formula is used for numerical integrations. The normalization of ṽI

1 gives positive value of L̃I
z as

listed in Table III. The torques Ñ I
vx , Ñ I

vy , and Ñ I
vz due to the viscous stresses on the side walls and

the bottom have negative values, because the viscous stresses act to resist the vortical motion. The
only acceleration of L̃I

z is brought by the pressure on the side walls normal to the y axis, Ñ I
py , and

the pressure on the side walls normal to the x axis, Ñ I
px , works against the vortical motion. Thus,

the eigen function indicates that the pressure torque on the side walls normal to the y direction
causes the bathtub vortex. The origin of the torque is consistent with the numerical simulations in
Ref. [18]. The outflow Q̃I

out evaluated in the linear stability analysis is much smaller than that in
the numerical simulations even after taking the normalization into consideration, because such an
intensified outflow Q̃I

out is caused by the nonlinearity.
As clarified in Ref. [18], the torque due to pressure on the side walls is the only driving mechanism

that accelerates the bathtub vortex at Re > ReI
c. The torque density on the side walls due to the

pressure disturbance around Re = ReI
c is defined as ñI

py(x,±3/2,z) = ∓xp̃I(x,±3/2,z), which is
drawn in Fig. 9 for Re = 65, though this figure is almost the same as that given in Ref. [18]. The
torque density at such Re is identical on both side walls normal to the y axis, since the pressure
disturbance has the reflection antisymmetry [Eq. (15d)]. It is clarified that the strongest torque is
brought by the existence of the two intense small vortices close to the side walls, when Fig. 9 is
compared with Fig. 8. The non-negativity in the torque distribution over the entire areas of the side
walls confirms the fact that the torque due to pressure certainly drives the bathtub vortex.

The flow bifurcated owing to instability of the basic flow, possessing the RS, will also experience
instability, which becomes the basic flow for the next stability analysis in turn. The RS flow is
obtained by the numerical simulation of Eq. (1) under the π -rotation symmetry condition or with
the SOR method similarly to the basic flow having the DPS. The flow patterns of the RS flow are
similar to that at Re = 65 depicted in Figs. 3(c) and 3(d) qualitatively independent of Re, so that

x
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FIG. 9. Torque density due to the pressure disturbance on the side walls ñI
py on y = 3/2 (top) and y = −3/2

(bottom) at Re = 65. The torque density is normalized so that its maximum is unity. Contours are drawn for
every 0.2.

083903-16



SEQUENTIAL TRANSITIONS OF BATHTUB VORTEX FLOW

Re

ReII
c = 251.96

(Δh = 0.03125)

(Δh = 0.05)
ReII

c = 245.58

Re[λII] 0
0.01
0.02
0.03
0.04
0.05
0.06

−0.01
−0.02
−0.03
−0.04
−0.05
−0.06

250230 240 260220

FIG. 10. Linear growth rate Re[λII] of the most unstable mode of disturbance for the π -rotational symmetric
(RS) flow.

we omit them to save space. The linear growth rate, Re[λII], of disturbance added to the RS flow is
shown in Fig. 10. Here, the eigen value has a real value again. The linear growth rate changes its sign
from negative to positive across Re = 251.96. The threshold value is close to the critical Reynolds
number at the second bifurcation identified in the numerical simulations, ReII

c = 251.01. Thus, this
supports the instability and bifurcation of the RS flow at Re > ReII

c .
The eigen function is displayed by using ω̃II

z on the plane of z = 1/2 for Re = 260 (≈ReII
c )

in Fig. 11. The vorticity distribution ω̃II
z is clearly different from ω̃I

z, both positive and negative
signs appearing near the z axis, and a pair of relatively large-vorticity regions having opposite
sign extend from the side walls over the edge of the drain hole. It is noticeable that the ω̃II

z

distribution has the π -rotational antisymmetry around the z axis, which is caused by the π -rotational
antisymmetric distribution of velocity in the eigen function. The velocity distribution is invariant
under the composition of the π -rotation operation around the z axis Rzπ and the sign inversion for
the horizontal components of velocity:

ũII(x,y,z) = ũII(−x,−y,z), ṽII(x,y,z) = ṽII(−x,−y,z),

w̃II(x,y,z) = w̃II(−x,−y,z), p̃II(x,y,z) = p̃II(−x,−y,z). (19)

Since the π -rotational antisymmetric disturbance is added to the basic flow with the RS, the resultant
flow has no spatial symmetry at all.

−1

−1/2

1/2

1

0

FIG. 11. Contours of z-component vorticity of the linear eigen function on the z = 1/2 plane. Re = 260.
The vorticity is normalized so that its maximum is unity. The contours are drawn for ω̃II

z = ±2−n, where
n = 1, . . . ,5, and ω̃II

z = 0. The solid lines, dashed lines, and dashed-dotted lines, respectively, represent positive
ω̃II

z , negative ω̃II
z , and zero ω̃II

z .
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FIG. 12. Torque density due to the pressure disturbance on the side walls ñII
py on y = 3/2 (top) and y = −3/2

(bottom) for Re = 260 slightly larger than ReII
c . The torque density is normalized so that its maximum is unity.

Contours are drawn for every 0.2.

The torque density on the side walls due to the pressure disturbance around Re = ReII
c is defined

as ñII
py(x,±3/2,z) = ∓xp̃II(x,±3/2,z), and is depicted in Fig. 12. The torque density distributions

on the side walls at y = ±3/2 also show the π -rotational antisymmetry, resulting from that of the
pressure disturbance. Because of the π -rotational antisymmetry, the integration of the torque density
due to the pressure disturbance over the two side walls at y = ±3/2 vanishes, and hence the torque
ñII

py makes no contribution in driving the bathtub vortex. It is also of interest to point out that the
locations of the large magnitudes of the torque shown in Fig. 12 are close to the root of the fingerlike
structure of the large magnitudes of the vorticity in Fig. 11.

The numerical accuracy of the linear stability analysis is verified by the comparison of the two
critical Reynolds numbers, ReI

c and ReII
c for different grid spacings �h and time steps �t in Table IV,

where the critical Reynolds numbers obtained in the numerical simulations are also included. The
relative error in ReII

c between the analyses with �h = 0.05 and those with �h = 0.03125 is smaller
than 2.6%, so that the grid spacing �h = 0.03125 is verified to give sufficient accuracy in the linear
stability analysis for the second instability.

IV. SUMMARY AND DISCUSSION

We have investigated the transitions of flow induced when water is drained from the vessel
that has the double plane symmetry with respect to the two vertical planes of x = 0 and y = 0
(DPS) by numerical simulations and linear stability analyses. It was found that the flow experiences
three transitions in the range of Re � 300, and the critical Reynolds numbers for the occurrences of
transitions were determined. The transitions were discussed in terms of symmetries that the flow field

TABLE IV. Accuracy assessment of the linear stability analysis. The critical Reynolds numbers of the first
and second bifurcation evaluated in the linear stability analyses together with numerical simulation results. The
relative errors ε are based on the values from the linear stability analysis with �h = 0.03125.

Linear stability analysis Numerical simulation

�h �t ReI
c ReII

c ReI
c ReII

c

0.03125 2×10−3 63.04 251.96 62.81 251.01
ε – – – 0.36% 0.38%
0.05 5×10−3 62.58 245.58 62.24 245.25
ε – 0.73% 2.5% 1.3% 2.7%
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possesses before and after each transition. It was clarified that the flow field becomes more complex
loosing one symmetry in each transition, i.e., in each experience of instability. The spatial symmetry
is broken by the disturbance having an antisymmetry corresponding to each lost symmetry in the two
pitchfork bifurcations. The time-translation symmetry is broken by the time-periodic disturbance in
the Hopf bifurcation.

In the present study, for Re < ReI
c (the value of ReI

c is 62.81 in the numerical simulation and
63.04 in the linear stability analysis), a unique solution exists. The flow that the unique solution
gives has the same DPS as the system’s configuration, and no bathtub vortex emerges. The DPS
is interpreted as the composition of the π -rotational (twofold) symmetry with respect to the z axis
(RS) and one of the plane symmetries with respect to the x = 0 and y = 0 planes.

At Re = ReI
c, two solutions emerge from the unique solution owing to a pitchfork bifurcation. At

the bifurcation, the most unstable mode of disturbance has the reflection antisymmetry with respect
to the x = 0 and y = 0 planes as well as the RS. Therefore, the superposition of the disturbance
on the basic flow gives rise to flows that has the RS, reducing the plane symmetries. The resultant
flow with the RS becomes possessed of a steady bathtub vortex swirling in either direction for
ReI

c < Re (<ReII
c ), and the center axis of the bathtub vortex coincides with that of the drain hole.

At Re = ReII
c (251.01 in the numerical simulation and 251.96 in the linear stability analysis), the

two solutions bifurcate into four solutions owing to another pitchfork bifurcation. At ReII
c , the RS is

broken by the most unstable disturbance having the π -rotational antisymmetry. The resultant flow
loses all the spatial symmetries for Re > ReII

c , and the center axis of the bathtub vortex migrates
away from the center axis of the drain hole.

The three kinds of flow in the range of Re < ReIII
c (278.0 in the numerical simulation with the

coarser grid) are steady, having time-translation symmetry. However, the time-translation symmetry
of the flow is broken by instability due to a time-periodic disturbance at Re = ReIII

c via a Hopf
bifurcation. For Re > ReIII

c , the center and the strength of the bathtub vortex periodically oscillate
in the oscillation-induced flow.

Similarly to dynamical systems of much fewer degrees of freedom, it has been shown that
the transitions of flow accompany symmetry-breaking in each: the breaking of one of the two
plane symmetries with respect to the x = 0 and y = 0 planes being followed by the other plane
symmetry, that of the π -rotational symmetry around the center axis of the drain hole, and that of the
time-translation symmetry. The flow will eventually become fully turbulent through further finite or
infinite times of transitions. Thus the model treated in the present paper shows a typical transition
route to turbulence for a wider class of flows which have two plane symmetries. This model flow
also provides one of examples in which large-scale vortical motion is induced by instability like
the Kelvin-Helmholtz instability. The Kelvin-Helmholtz instability occurs in two counter streams
passing each other, while the present model shows that a large vortex appears owing to instability of
two colliding streams.

We adopted one single configuration where the drain hole is located at the center of the bottom,
the length ratio of the horizontal cross section is a/b = 10/3, and the side length of the drain hole
is only one third of the shorter side of the vessel, d = b/3. The critical Reynolds number evaluated
in the present paper is as small as ReI

c ≈ 63, since the ratio of the side length of the drain hole to
the shorter side wall is as large as 1/3. The critical value is anticipated to be much larger for smaller
ratios as the cases of real bathtubs or wash balls. For example, ReI

c = O(103) in Ref. [17], though
the shape of the cross section of the vessel is not exactly rectangular because of the inclusion of a
hexagonal percolator in the central region in the experiment. The length scale ratio of the horizontal
cross section is also crucial to determine the critical value, and the pitchfork bifurcation will never
happen for smaller length ratios according to our preliminary numerical calculations, which will be
published elsewhere.

We have not considered the Earth’s rotation effect. If the experimental apparatus is placed on
a rotational base like on the Earth, the rotation makes the first bifurcation to be imperfect. In the
imperfect pitchfork bifurcation (Fig. 13), one of the solution branches is continuous starting from
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FIG. 13. Imperfect pitchfork bifurcation diagram reduced by a rotation effect. Solid lines: stable, dashed
line: unstable, dotted line: perfect pitchfork bifurcation.

Re = 0, so that the cyclonic solution is chosen even by a slow angular velocity of rotation. Hence
the swirl direction is to be cyclonic as shown in our previous paper [18]. As seen in Fig. 13 the
anticyclonic vortex is possible if some disturbance is added, so that the solution may jump from the
cyclonic solution branch to the anticyclonic one. The Earth’s rotation does not cause the structural
instability at the second bifurcation because the basic flow has the RS and the Coriolis force does
not break the RS. That is, the second bifurcation is still a pitchfork bifurcation even if the Coriolis
force is introduced. Because Hopf bifurcations are structurally stable, the Earth’s rotation change
neither the third bifurcation structure.

One may have a concern with the assumption of the flat surface in the bathtub-vortex flow. It is
apparent that that the linear stability at ReI

c is not affected by the assumption because the magnitude
of the bathtub vortex is too small to affect the water surface. For larger Reynolds numbers than
ReI

c, the dip on the surface �d in terms of dimensional variables, if the surface displacement were
allowed, is estimated roughly by the ratio of ρg�d to ρu2

θ with the gravity acceleration g and the
circumferential velocity of the bathtub vortex uθ . The circumferential velocity can be kept negligibly
small if the Froude number Fr = Q/

√
gd5 is small enough.

As stated in the introduction, we do not limit our interest to the flows in real bathtubs, but are
interested in the model flow having the double-plane symmetry for which we found sequential
transitions up to the third, where the flow is complex and time periodic. However, the effect of the
surface deformation on the bathtub vortex is also an interesting subject of investigation because the
deformation may alter the transitions for larger Froude numbers. It is added that the depth of dip on
the water surface was measured in experiments and predicted analytically [19] and also evaluated
by applying a modified Lundgren model [5].
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