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Optically tunable Quincke rotation of a nanometer-thin oblate spheroid
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Ever since the discovery of Quincke rotation (spontaneous rotation of a particle in fluid
under a dc electric field) more than 100 years ago [G. Quincke, Ann. Phys. (Leipzig) 295,
417 (1896)], the strength of the dc field has been the only external parameter to actively tune
the rotation speed. In this paper we theoretically propose an optically tunable Quincke rotor
exploiting the photoconductivity of a semiconducting nanometer-thin oblate spheroid. A
full analysis of the instability of the Quincke rotation reveals that, unlike a prolate spheroid,
no bistability is possible in such a dynamical system. In addition, the required material
property and the strength of the dc electric field needed to realize the rotation are also
elucidated. It is also predicted that light can be used to tune the spinning speed or simply
turn on and off the Quincke rotation very effectively.
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I. INTRODUCTION

Quincke rotation, the spontaneous rotation of a sphere suspended in fluid under a dc electric
field, was first discovered by Quincke [1]. In most cases, a particle suspended in fluid gets polarized
under a dc field and keeps its orientation after reaching a steady state. Quincke rotation only occurs
when the steady nonspinning state becomes unstable so that tiny perturbation will be amplified
and the particle eventually settles to a continuous spinning state. As been summarized by Jones
[2,3], to realize Quincke rotation of a sphere, two conditions must be met: (i) The charge relaxation
time τp of the sphere (τp = εp/σp, where εp is the permittivity and σp the conductivity) has to be
greater than that of the surrounding fluid τf = εf /σf (τp > τf ) and (ii) the electric field E0 must
surpass a certain threshold value Ec. Such spinning of particles can induce an apparent decrease of
viscosity of a colloidal suspension [4,5] or an increase of its electric conductivity [6,7]. This effect
was also actively involved in other interesting applications such as droplet shape manipulation [8],
transport of particles in liquid crystals [9], and hydrodynamic-interaction-induced self-organization
of particles [10,11].

In Quincke rotation, the rotation speed � of a sphere is proportional to [(E0/Ec)2–1]1/2 [2],
where Ec is the critical field determined by the fluid viscosity as well as the electrical conductivity
and permittivity of both the fluid and particle. Therefore, in a typical experiment, the external
electric field E0 becomes the only parameter to control the rotation speed given the fact that Ec does
not change once the particle geometry and material’s properties are defined. To provide additional
tuning parameters, one must be able to somehow vary the electric property of either the particle or
fluid actively. It is natural to think about semiconductors whose electric conductivity can be varied
by several orders of magnitude with ultraviolet (UV), visible, or infrared (IR) light [12]. Typical
materials include ZnO, GaN, diamond, etc., for UV light; Si, CdS, CsPbX3 (where X denotes Cl,
Br, or I) perovskite, etc., for visible light; and Ge, InGaAs, PbS, etc., for IR light. Following this
idea, one can design an optically tunable semiconducting Quincke rotor as schematically shown in
Figs. 1(a) and 1(b). A micron-sized and nanometer-thin disklike particle is ideal for such applications
as it allows uniform light absorption throughout the particle when its thickness is much smaller than
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FIG. 1. (a) and (b) Turning off the Quincke rotation with light. When light is on, the conductivity of the
disklike particle increases, so the condition τf < τp is not satisfied anymore and the Quincke rotation becomes
impossible. (c) Schematic showing the total polarization P , the high-frequency polarization P ∞, the retardation
polarization P r , and the equilibrium polarization P 0. (d) Definitions of angles and axes.

the light wavelength. For a microsphere or microsized prolate spheroid, Mie scattering results
in nonuniform light intensity inside the particle causing diffusive current of the photogenerated
charge carriers, which would significantly complicate the problem and make the rotation less
controllable. However, to experimentally realize the optically tunable Quincke rotation for a thin
oblate spheroid, one has to have a full understanding of the instability of the rotation regarding the
material property and the external electric field. Surprisingly, although Quincke rotations of sphere
and prolate spheroids have been well studied both theoretically and experimentally [2,3,13–15],
there has been a very limited amount of work about disklike particles [16,17]. A detailed analysis
on the instability of Quincke rotation of disklike particles is still missing even though the theoretical
framework has already been set up in the work of Cēbers et al. [14].

In this paper we provide a theoretical analysis focusing on the instability and the optical tunability
of Quincke rotation for thin nanoplates based on the dynamic model proposed by Cēbers et al. [14].
We present a detailed phase diagram illustrating the material selection as well as the electric field
required for realizing Quincke rotation for a nanometer-thin oblate spheroid. The result indicates
that the disk surface is always parallel to the electric field in both spinning and nonspinning states
and no bistability will be observed. Meanwhile, it is predicted that light can be used to tune the
spinning speed or simply turn on and off the Quincke rotation very effectively.

II. THEORETICAL MODEL

Taking the particle as the frame of the reference, Jones [2,3] treated the dc field as a rotating
field with respect to the particle and introduced the complex permittivity εi–iσi/ω to explain the
spontaneous rotation of a sphere. Briefly, the imaginary part results in a constant phase lag between
the effective dipole moment of the particle and the rotating field that produces a constant torque
sustaining the continuous rotation. From this perspective, this phase-locked rotation is similar to
a magnetic particle rotating synchronously with a rotating magnetic field [18–21]. The complex
permittivity model does not take into account the transient process prior to the steady state being
achieved and falls short of a full analysis of the stability of the rotation. On the other hand, Cēbers [22]
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presented a fully dynamic model considering a time-dependent effective dipole and later extended
it to a prolate spheroid [14,23]. This model illustrated that to maintain a steady Quincke rotation,
the convection current caused by the particle rotation is compensated by the conductive current so
that the charge distribution on the particle surface (corresponding to the effective dipole) does not
change with time and a constant torque can be maintained. The model was successfully applied to
a prolate spheroid and the suggested bistability (Quincke rotation and steady orientation) has also
been experimentally proved [13,14].

The dynamic model of Cēbers et al. is described as follows. Consider an ellipsoidal particle
polarized under a dc electric field in a certain fluid. An effective dipole moment p = V P (where
V is the particle volume and P the effective polarization) is typically introduced to describe
the force or torque exerted on the particle. Such an effective dipole comes from the so-called
interfacial polarization that accounts for the formation of bounded charges at the interface due
to the mismatch of permittivity between the particle and the fluid as well as the free-charge
accumulation arising from their conductivity. The bounded charges are built almost instantaneously
while the free charge is accumulated on the interface via the conduction current: the free-charge
relaxation process. Therefore, one can divide the effective polarization P into a time-independent
instantaneous polarization P∞ accounting for the permittivity mismatch and a time-dependent
retardation polarization P r describing the charge relaxation process (P = P∞ + P r ) as illustrated
in Fig. 1(c). The system reaches an equilibrium when the normal component of the conduction
current is continuous at the particle surface. If one introduces the equilibrium polarization P0, i.e.,
polarization as time tends to infinity, and ignores any anisotropy for the moment, the relaxation of
the polarization can be simply described as ∂ P/∂t = –(P–P0)/τ or ∂ P r/∂t = –(P r + P∞–P0)/τ
in terms of the retardation polarization (τ is the charge relaxation time). However, due to the shape
anisotropy of a thin disk, one has to introduce a system of coordinates shown in Fig. 1(d) and
decompose the polarization P along the three axes as P1, P2, and P3. The system of coordinates is
introduced in the following manner. Axis 3 is the axis of symmetry of the disklike particle forming
an angle θ with the electric field E0 and axis 1 is perpendicular to the plane formed by the electric
field E0 and axis 3. Axis 1 is also known as the line of nodes for defining Euler angles to represent
the orientation of a mobile frame of reference. Finally, axis 2 is introduced as the normal of the
plane formed by axes 1 and 3. Throughout the article, we treat the thin disklike particle as an oblate
spheroid with very small aspect ratio m = l/d (where l is the length of axis 3 and d the length of
axis 1 or 2). All the physical parameters are defined according to an oblate spheroid rather than a
very thin cylindrical disk.

To relate the instantaneous polarization P∞ and the equilibrium polarization P0 to the external
field E0, the corresponding high frequency and static polarizabilities (χ∞

i and χ0
i ) are introduced, i.e.,

P ∞
i = χ∞

i Ei and P 0
i = χ0

i Ei . The electric fields along the three directions are E1 = 0, E2 =E0 sin θ ,
and E3 = E0 cos θ , respectively. The polarizabilities are defined as

χ∞
i = εf

εp − εf

εf + Li(εp − εf )
, χ0

i = εf

σp − σf

σf + Li(σp − σf )
,

where ε and σ denote the permittivity and conductivity, respectively, the subscript p and f stand
for the particle and the surrounding fluid, respectively, and Li is the depolarization factor along a
certain axis i of the ellipsoid (i = 1,2,3). The Maxwell-Wagner relaxation time τi characterizing
the free-charge relaxation is defined as

τi = εf + Li(εp − εf )

σf + Li(σp − σf )
.

It is worth noting that for an oblate spheroid with very small aspect ratio (m � 1) the
depolarization factor satisfies L1 = L2 � 1 and L3 ≈ 1. For simplicity’s sake, one can neglect
the depolarization effect in the plane of the disk by setting L1 = L2 = 0 and L3 = 1. In this limit,
the aspect ratio m is eliminated from the analysis of the interfacial polarization dynamics.
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Due to the symmetry of the particle, one can define directions parallel and perpendicular to
the axis of symmetry (axis 3) as illustrated in Fig. 1(d) and use the subscripts ‖ and ⊥ instead of
1, 2, and 3 to denote depolarization factors, polarizabilities, and relaxation times along different
directions. All the physical parameters needed to define the dynamics of the polarization relaxation
are summarized as follows:

L1,2,⊥ = 0, L3,‖ = 1, (1)

χ∞
1,2,⊥ = εf

(
εp

εf

− 1

)
, χ∞

3,‖ = εf

(
1 − εf

εp

)
, (2)

χ0
1,2,⊥ = εf

(
σp

σf

− 1

)
, χ0

3,‖ = εf

(
1 − σf

σp

)
, (3)

τ1,2,⊥ = εf

σf

, τ3,‖ = εp

σp

. (4)

With all the above definitions, the dynamic equations for the retardation polarization can be
written as [14]

∂

∂t
P r

1 = − 1

τ⊥
P r

1 − �P r
2 , (5)

∂

∂t
P r

2 = − 1

τ⊥

[
P r

2 + (
χ∞

⊥ − χ0
⊥
)
E0 sin θ

] + �P r
1 , (6)

∂

∂t
P r

3 = − 1

τ‖

[
P r

3 + (
χ∞

‖ − χ0
‖
)
E0 cos θ

]
. (7)

Here � is the angular velocity, which is a vector parallel to axis 3 as illustrated in Fig. 1, and is
related to the retardation polarization and angle θ as [14]

� = E0P
r
1 V


 sin θ
= E0P

r
1

γ sin θ
, (8)

where 
 = 4ηd3/3 is the rotational drag coefficient of a thin oblate spheroid, η is the viscosity of
the fluid, d is the length of the axis perpendicular to the axis of the symmetry, l is the length of
the axis of symmetry, and V = πd2l/6 is the particle volume. For simplicity, one can introduce
γ = 
/V = 8η/πm as the rotational drag coefficient per unit volume, where m is the aspect ratio of
the oblate spheroid as introduced above. Typically, one needs to introduce rotational drag coefficients
with respect to the axis perpendicular and parallel to the symmetry axis 3 respectively for a disk.
However, we are only interested in a nanometer-thin disk whose aspect ratio satisfies m � 1. The
two drag coefficients are approximately equal in that limit. (See Appendix A for details.)

If � = 0, the dynamics of the retardation polarization P r is governed by the Maxwell-Wagner
relaxation time [see Eqs. (5)–(7)], i.e., ∂P r

i /∂t = −(P r
i + P ∞

i − P 0
i )/τi , as discussed above. The

charge relaxation solely relies on the conduction current (current driven by electric field). When
the particle starts to spin, the spinning motion induces convection current and an additional term
�×P r must be added as shown on the right-hand side of Eqs. (5) and (6). Finally, in the limits of
low Reynolds number, the angle θ defining the orientation of the disk with respect to the field E0

satisfies the following dynamic equation [14]:

γ θ̇ = [(P r + P∞) × E]1 = 1
2

(
χ∞

⊥ − χ∞
‖

)
E2

0 sin 2θ + P r
2 E0 cos θ − P r

3 E0 sin θ. (9)

By substituting Eq. (8) into Eqs. (5) and (6), one can have a closed set of equations (5)–(7) and
(9) describing the dynamics of the Quincke rotation.
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TABLE I. Conditions for stable steady states of oblate spheroids.

States Cases Stability

C1 < 0 always stable
Nonspinning C1 > 0, C2 < 0 only stable if E2

0 < C1

C2 > 0 only stable if E2
0 < min(C1,C2)

C1 > 0 only stable if E2
0 > max(C1,C3)Spinning

C1 < 0 no stable spinning state possible

III. STABILITY AND CRITICAL FIELD

A. Steady states and their stabilities

The full analysis of the dynamic system defined by Eqs. (5)–(7) and (9) requires solving the
differential equations numerically with a defined initial condition. In this paper we only focus on
analyzing the possible steady states (including steady orientation and rotation) and their stabilities
so that one can find a window of parameters to practically control the orientation or rotation of
the particle. To achieve a steady state, all the time derivatives must be set to zero, i.e., ∂P r

i /∂t and
θ̇ = 0 in Eqs. (5)–(7) and (9). Given the symmetry of the system, there are two possible scenarios
regarding the particle orientation at the stationary state with respect to the field, i.e., (i) θ = 0 and
(ii) θ = π/2.

As for scenario (i) θ = 0, at stationary state, one can immediately find that P r
2 = 0 from Eq. (9)

and then P r
1 = 0 from Eq. (5) and P r

3 = (χ0
‖ − χ∞

‖ )E0 from Eq. (7). By checking the eigenvalues of
the Jacobian matrix, this stationary point is confirmed to be always unstable (Appendix B). Therefore,
in a stable equilibrium, the axis of symmetry of a disk cannot be parallel to the electric field. This
is understandable from a thermodynamics perspective since this particular configuration results in a
greater depolarization field and higher electrostatic energy as compared to the case θ = π/2 when
the axis of symmetry is perpendicular to the electric field.

As for scenario (ii) θ = π/2, Eq. (7) yields P r
3 = 0. The two remaining variables can be solved

from Eqs. (5) and (6):

P r
2 = − (χ∞

⊥ − χ0
⊥)E0

τ 2
⊥�2 + 1

, P r
1 = −�τ⊥P r

2 . (10)

If � = 0, then P r
1 = 0 and P r

2 = (χ0
⊥ − χ∞

⊥ )E0. This corresponds to a nonspinning orientation
state with the axis of symmetry perpendicular to the electric field. There will be two critical values
to define the stability of this state (Appendix B),

C1 = γ(
χ∞

⊥ − χ0
⊥
)
τ⊥

= C0

εp/εf − σp/σf

, (11)

C2 = γ

(χ∞
‖ − χ0

⊥)τ‖
= εf

εp

σp

σf

C0

2 − σp/σf − εf /εp

, (12)

where the parameter C0 is defined as

C0 = γ

τ⊥εf

= 8ησf

πε2
f

d

l
. (13)

The conditions for a stable nonspinning orientation state is summarized in Table I. The critical
values and the related conditions for stable orientation are found by calculating the eigenvalues of
the Jacobian matrix (Appendix B).
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FIG. 2. Phase diagram characterizing the stabilities of both the nonspinning orientation and spinning states.
In region I, the disk surface is always parallel to the external electric field. In regions II and III, depending
on the strength of the electric field, the disk may be in a stable orientation state (E0 < C0.5

1 ) or a spinning
state (E0 > C0.5

1 ). In region IV, if E0 < C0.5
2 , the orientation state is stable. If E0 > C0.5

3 , the spinning state
is stable. The dynamical system might end up with a limit cycle or just chaos if the electric field satisfies
C0.5

3 > E0 > C0.5
2 . The parameters C1, C2, and C3 can be found in Eqs. (11), (12), and (15).

If � �= 0, the particle is spinning around its axis of symmetry and the angular velocity � can be
found by combining Eqs. (8) and (10):

�2 = 1

τ 2
⊥

(
E2

0

/
C1 − 1

)
. (14)

Obviously, the right-hand side of Eq. (14) has to be positive to have a real-valued angular velocity
�. This condition can be interpreted as C1 > 0 and E2

0 > C1. Meanwhile, the stationary point can
be found as P r

1 = �γ/E0, P r
2 = − γ /(E0τ⊥), P r

3 = 0, and θ = π/2. The stability of the spinning
states is determined by the following critical values (Appendix B):

C3 = γ

(
1

τ⊥
− 1

τ‖

)
1

χ∞
⊥ − χ∞

‖
=

(
1 − εf

εp

σp

σf

)
C0

εp/εf + εf /εp − 2
. (15)

The condition for a stable spinning state is found to be E2
0 > C3 (Appendix B). Together with the

condition to have a real-valued angular velocity �, the requirements for realizing Quincke rotation
of a thin disk are summarized as E2

0 > max(C1,C3) and C1 > 0 (Table I). It is worth noting that,
results illustrated in Table I are not only limited to thin disks (m � 1) but are also applicable for
any oblate spheroids whose aspect ratio m is less than 1. The related parameters C1, C2, and C3 are
defined by Eqs. (B7), (B9), and (B15) (Appendix B) for an arbitrary oblate spheroid. Conditions
regarding the stability of the steady states for both prolate and oblate spheroids can also be found
in Table II (Appendix B). As can be seen from Eqs. (11), (12), and (15), if one normalizes C1,
C2, and C3 with C0, the relative permittivity εp/εf and the relative conductivity σp/σf completely
determine these three critical values. This allow us to construct a master phase diagram in terms of
the material parameters to better illustrate the stabilities of the nonspinning orientation and spinning
states.

The phase diagram and the corresponding regions characterizing the stabilities are illustrated in
Fig. 2. Based on Table I, the necessary separatrices should include the lines where C1 and C2 flip
their signs (solid lines in Fig. 2) as well as the lines along which C1 = C3 or C1 = C2 (dashed lines
in Fig. 2; C1 = C3 and C1 = C2 share the same line).

In region IV, no stable states can be achieved if the electric field satisfies C3 > E2
0 > C2. In this

special case, the dynamic system would end up with a limit cycle or just chaos [24]. Discussions
about those dynamical behaviors are beyond the scope of this work, therefore only the stable states
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will be analyzed. Except for this particular case, the nanodisk will be either a nonspinning orientation
state or a spinning state. Figure 2 shows that the bistability observed in a prolate spheroid [14] is
impossible for a disklike particle, indicating that no hysteresis will occur when the system undergoes
a transition between the two stable states (orientation and spinning). This allows one to control the
state of the dynamic system without worrying about its history. The absence of bistability can be
explained as follows. For an oblate spheroid, the axis of symmetry is perpendicular to the electric
field in both nonspinning and spinning states. If the nonspinning orientation state is stable, no matter
how significant the in-plane disturbance is, e.g., a large in-plane rotation, the disk will always settle
down to the new orientation state, which is essentially the same as the original one due to the particle
symmetry. Therefore, no in-plane perturbation can induce spontaneous rotation in this case and the
spinning state is only possible if the nonspinning orientation state becomes unstable, while for a
prolate spheroid the axis of symmetry forms different angles with the electric field in nonspinning
(θ = 0) and spinning states (θ = π/2). Therefore, a large perturbation might kick off the particle
from the stable orientation state (θ = 0) to the stable spinning state (θ = π/2) and a bistability is
possible.

Moreover, unlike the prolate spheroid case in which the spinning state loses its stability if the
electric field is greater than a critical value [13,14], there is no such upper limit of the electric field
for disklike particles. Therefore, as indicated by Eq. (14), the nanometer-thin disk can spin at any
speed (within the low-Reynolds-number limit) as long as the external electric field will not break
down the material or the surrounding fluid.

B. Critical field

As discussed above and illustrated in Fig. 2, to achieve a stable spinning state, the electric field
has to be greater than a critical value, i.e., E0 > Ec, where E2

c = max(C1,C3). It is important to keep
Ec reasonably low, otherwise the material might break down before the electric field E0 reaches the
critical value Ec. As shown by Eqs. (11) and (15), Ec scales with (C0)0.5, which depends on the
fluid properties and the aspect ratio of the disk. For a nanometer-thin disk, d/l is typically greater
than 102. If we consider a fluid with viscosity approximately 10–3 Pa s, conductivity 10−9(� m)−1,
and permittivity approximately 10−11 F/m, the estimated critical electric field Ec is on the order
of 106 V/m, which is already approaching the breakdown electric-field strength of most materials.
Therefore, the selection of the fluid is pivotal for realization of Quincke rotation for disklike particles
and Eq. (11) gives a pretty good order of magnitude estimation of the critical field.

An accurate calculation of the normalized critical fields Ec/(C0)0.5 is shown in Fig. 3 (color is
in logarithmic scale), which provides guidance on experimental selection of materials for Quincke
rotation. It becomes clear that in order to realize Quincke rotation at a reasonably strong electric
field, one has to stay away from two lines: εp/εf = 1 (C3 tends to infinity) and εp/εf = σp/σf (C1

tends to infinity). Meanwhile, materials with larger permittivity εp are in favor of Quincke rotation as
it results in a lower critical field and provides more freedom to tune the conductivity with light within
the rotation region. In a real experiment, one can consider all the parameters to be fixed except for the
conductivity of the disk. Therefore, the minimum field required for the Quincke rotation to be possible
can be defined for a certain εp/εf . If the external electric field is smaller than this value, the disk will
not spin no matter how one tunes its conductivity with light. This minimum field sits on the dashed
lines in Fig. 3 and is plotted in the inset. It reemphasizes that one should never approach εp/εf = 0
or εp/εf = 1 as the minimum critical field tends to infinity in the vicinity of those two lines.

IV. OPTICAL TUNABILITY

In optoelectronics, the electric conductivity of a photoconductor typically increases linearly with
the incident light intensity I , i.e., σp = σd + αI , where σd is the dark conductivity and α (α > 0) is
the coefficient that relates the light intensity to the photoconductivity. The increase of conductivity is
commonly attributed to the photogenerated free-charge carriers, i.e., the free-charge density is higher
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FIG. 3. Critical electric field to have stable Quincke rotation. The color is in logarithm scale representing
log10[Ec/(C0)0.5]. The solid line separates region I, where Quincke rotation is impossible, from regions II–IV
where the rotation is possible. Dashed lines separate regions II and III, where the critical field is (C1)0.5, from
region IV, where critical field is (C3)0.5. The inset corresponds to the critical field along the dashed line, which
stands for the minimum electric field required at a certain εp/εf if σp/σf can be tuned in the full range. The
curve approaches the two vertical red lines asymptotically.

than that of the dark state. Since the permittivity of a material is determined by the displacement of
bound charged elements rather than free charges, light will not change the permittivity of the disk in
most cases. Therefore, by increasing the light intensity, one gradually moves from the lower part to
the upper part of Fig. 3 along a line perpendicular to the horizontal axis. We assume that σp/σf � 1
when light is off and the permittivity satisfies εp/εf > 1. Since the critical field reaches a minimum
when σp/σf = 1 (see Fig. 3), the effects of light will be twofold. First, it might induce the spinning
of an initially nonspinning sample, i.e., E0 < (C3)1/2, since the critical field (C3)1/2 decreases with
light intensity when σp/σf < 1. Second, for an already spinning disk, the spin will eventually stop
if the light is sufficiently strong that the critical field (C1)1/2 becomes greater than the external field
E0. To further illustrate the optical tunability of Quincke rotation, we calculate the spinning speed
of a Quincke rotor as

� = σf

εf

√
πε2

f E2
0

8ησf

l

d

(
εp

εf

− σp

σf

)
− 1. (16)

It is obtained by substituting Eqs. (4), (11), and (13) into Eq. (14). It appears that the spinning
speed scales with 1/τf = σf /εf (τf is the charge relaxation time of the fluid), which is independent
of the material properties of the particle used in the experiment. The reason lies in the fact that, for
a very thin disk, the depolarization factor L⊥ is zero when the electric field is perpendicular to the
particle’s axis of symmetry (the configuration for the spinning state). Therefore, the electric field
inside the material is the same as the external field and the presence of the particle does not introduce
any disturbance of the field distribution as if the material does not exist. This is unique for a thin disk
as the Maxwell-Wagner relaxation time τ⊥ depends on both fluid and particle properties for either a
sphere or prolate spheroid.

Figures 4(a) and 4(b) are the contours of spinning velocity � as a function of electric field and
relative conductivity (light intensity) for two different relative permittivities (εp/εf = 2 and 25,
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FIG. 4. (a) and (b) Contour of the spinning speed as a function of external electric field and the relative
conductivity (light intensity). The relative conductivity σp/σf is very low when the light is off and gradually
increases as the light intensity increases. The relative permittivities are εp/εf = 2 and 25, respectively. (c) and
(d) Illustration of tuning the rotation speed � with light. The physical parameters used for the calculation are
l = 5 nm, d = 3 μm, εf = 2ε0, σf = 10–9 (� m)–1, η = 10–3 Pa s.

respectively). The zero-spinning-speed region (dark blue) corresponds to the stable orientation state
and the white region is where no stable stationary states exist and the spinning speed is not defined.
It shows that larger εp/εf results in a smaller unstable region as well as higher spinning speed under
the same electric field. To achieve a really high spinning speed, one must try reaching the lower right
corner of the graph to have a small σp/σf and large electric field as indicated by Eq. (16). Meanwhile,
the optical tunability is also illustrated by the dashed arrow lines along which the light intensity
gradually increases. For εp/εf = 2, the disk initially sits in the white area where no stable states
exist [Fig. 4(a)]. As the light intensity increases, the disk may or may not go through the Quincke
rotation region, depending on the strength of the electric field. The electric field must be greater than
Emin = 2.2×106 V/m to ensure that the disk will starts to spin at some point [line 2 in Fig. 4(a)]
rather than directly settle down to a spinless orientation state [line 1 in Fig. 4(a)]. For εp/εf = 25,
the disk is initially spinning and the spinning speed gradually decreases to zero as the light intensity
increases [Fig. 4(b)]. Figures 4(c) and 4(d) illustrate the optical tunability more clearly.

V. CONCLUSION

We proposed an optically tunable Quincke rotation of disklike particles. The instability analysis of
the dynamical system suggests no bistability and the particle’s dynamic behavior can be controlled
by the relative permittivity, conductivity, and external electric field (Fig. 2). Therefore, one can
use light to switch between the spinning state and nonspinning orientation state by varying the
conductivity of the particle. The effect of light is twofold: It may jumpstart the rotation of an initially
nonspinning disk or slow down the rotation of a spinning disk. Moreover, a large εp/εf results
in a small critical field Ec, which is in favor of realizing Quincke rotation and also allows more
freedom for tuning the rotation with light. We believe this theoretical work clarifies the instability
of the Quincke rotation for disklike particles and will help guide the experimental realization of an
optically tunable Quincke rotor or other types of nanomotors.
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APPENDIX A: DRAG COEFFICIENT OF A THIN DISK

The rotational drag coefficient 
 of a particle determines the angular velocity � in response to
an external torque M , i.e., � = M/
. This value depends on both the particle shape and size. For
a sphere, 
 = 8πηR3 = 6ηV [25], where R is the radius of the sphere, V is the particle volume,
and η is the viscosity of the fluid. For a spheroid, one needs to use the aspect ratio m = l/d to
define the particle shape. Here l is the length of the axis of symmetry and d is the length of the axis
perpendicular to it. The rotational drag coefficient is typically defined through the Perrin factor f ,
which is the multiplicative adjustment to the rotational friction of a rigid spheroid, relative to the
corresponding friction in spheres of the same volume. Therefore, the rotational drag coefficient for
a spheroid can be defined as 6ηf V , which is proportional to the particle volume. To simplify the
notation, one can introduce the rotational drag coefficient per unit volume as 6ηf .

The rotational Perrin factor for an oblate spheroid (m < 1) is defined as [26]

f‖ = 2

3m

(1 − m2)
3/2

arctan(
√

m−2 − 1) − m
√

1 − m2
, (A1)

f⊥ = 2

3m

(1 + m2)(1 − m2)
3/2

(1 − 2m2) arctan(
√

m−2 − 1) + m
√

1 − m2
. (A2)

The subscript ‖ stands for the rotation with respect to the axis of symmetry and ⊥ stands for the
rotation with respect to any axis perpendicular to the axis of symmetry. Therefore, the rotational
drag coefficient of a certain oblate spheroid normalized by the particle volume is defined as

γ‖,⊥ = 6ηf‖,⊥ = 6ηf‖,⊥. (A3)

In the case of a very thin disk (m � 1), the following relation holds true:

arctan(
√

m−2 − 1) = π

2
+ 1

1 + m−2 − 1

1

2
√

m−2 − 1

−2

m3

∣∣∣∣
m=0

m = π

2
− m.

Therefore, the Perrin factor can be expanded as

f‖ ≈ 2

3m

1
π
2 − m − m

= 4

3mπ

1

1 − 4m/π
≈ 4

3mπ
,

f⊥ ≈ 2

3m

1
π
2 − m + m

= 4

3mπ
.

The rotational drag coefficient of a thin disk normalized by its volume satisfies

γ‖ ≈ γ⊥ ≈ 8η

mπ
. (A4)
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APPENDIX B: ANALYSIS OF THE INSTABILITY OF THE DYNAMICAL SYSTEM

To maintain generality, the derivation here does not assume γ‖ = γ⊥, i.e., the result is not limited
to a very thin disk but also is applicable to any oblate spheroid. The dynamical system is still defined
by Eqs. (5)–(9). Equations (8) and (9) are rewritten in a more general case as

γ⊥θ̇ = 1
2

(
χ∞

⊥ − χ∞
‖

)
E2

0 sin 2θ + P r
2 E0 cos θ − P r

3 E0 sin θ, (B1)

� = E0P
r
1

(
sin θ

γ‖
+ cos2θ

γ⊥ sin θ

)
. (B2)

1. Case (i): θ = 0

One can immediately find that the stationary point satisfies P r
2 = 0, P r

1 = 0, and P r
3 = (χ0

‖ −
χ∞

‖ )E0. The stability of the stationary point can be analyzed by introducing a small deviation near
it, i.e.,

∂δP r
1

∂t
= − 1

τ⊥
δP r

1 ,

∂δP r
2

∂t
= − 1

τ⊥
δP r

2 − 1

τ⊥

(
χ∞

⊥ − χ0
⊥
)
E0δθ,

∂δP r
3

∂t
= − 1

τ‖
δP r

3 ,

γ⊥δθ̇ = (
χ∞

⊥ − χ0
‖
)
E2

0δθ + E0δP
r
2 .

It becomes clear that P r
1 and P r

3 would always converge to its stationary value and the stability
is determined by the Jacobian matrix regarding P r

2 and θ :(
−1/τ⊥ −(

χ∞
⊥ − χ0

⊥
)
E0/τ⊥

E0/γ⊥
(
χ∞

⊥ − χ0
‖
)
E2

0/γ⊥

)
.

The eigenvalues can be calculated with the following equation:

τ⊥γ⊥λ2 + [
γ⊥ − τ⊥

(
χ∞

⊥ − χ0
‖
)
E2

0

]
λ + (

χ0
‖ − χ0

⊥
)
E2

0 = 0.

To have a stable solution, the following relations must be satisfied [24]:

γ⊥ − τ⊥
(
χ∞

⊥ − χ0
‖
)
E2

0 > 0,
(
χ0

|| − χ0
⊥
)
E2

0 > 0. (B3)

The parameter χ0
‖ − χ0

⊥ can be expanded as

χ0
‖ − χ0

⊥ = εf

(σp − σf )2(L⊥ − L||)
[σf + L‖(σp − σf )][σf + L⊥(σp − σf )]

. (B4)

Therefore, for a prolate spheroid (L⊥ > L‖), this orientation state is stable if one of the two
following conditions is satisfied:

χ∞
⊥ − χ0

‖ < 0 or E2
0 <

γ⊥
τ⊥

1

χ∞
⊥ − χ0

‖
= C01. (B5)

For an oblate spheroid (L⊥ < L‖), the eigenvalues are always real and have opposite signs,
indicating that the system is always unstable at this stationary point.
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2. Case (ii): θ = π/2

Equation (7) yields P r
3 = 0. The two remaining variables can be solved as

P r
2 = −

(
χ∞

⊥ − χ0
⊥
)
E0

τ 2
⊥�2 + 1

, P r
1 = −�τ⊥P r

2 . (B6)

a. Nonspinning state

If � = 0, then P r
1 = 0 and P r

2 = (χ0
⊥ − χ∞

⊥ )E0. This corresponds to a nonspinning orientation
state with the axis of symmetry perpendicular to the electric field. Introducing a small deviation near
the stationary point yields

∂δP r
1

∂t
=

[(
χ∞

⊥ − χ0
⊥
)
E2

0

γ‖
− 1

τ⊥

]
δP r

1 ,

∂δP r
2

∂t
= − 1

τ⊥
δP r

2 ,

∂δP r
3

∂t
= − 1

τ‖

[
δP r

3 − (
χ∞

‖ − χ0
‖
)
E0δθ

]
,

γ⊥δθ̇ = (
χ∞

‖ − χ0
⊥
)
E2

0δθ − E0δP
r
3 .

The solution for P r
2 is always stable. A stable solution for P r

1 requires one of the two following
conditions:

χ∞
⊥ − χ0

⊥ < 0 or E2
0 <

γ‖(
χ∞

⊥ − χ0
⊥
)
τ⊥

= C1. (B7)

The Jacobian matrix regarding P r
3 and θ is written as(
−1/τ||

(
χ∞

|| − χ0
||
)
E0/τ||

−E0/γ⊥
(
χ∞

|| − χ0
⊥
)
E2

0/γ⊥

)
.

The eigenvalues can be calculated with the following equation:

γ⊥τ‖λ2 + [
γ⊥ − (

χ∞
‖ − χ0

⊥
)
τ‖E2

0

]
λ + (

χ0
⊥ − χ0

‖
)
E2

0=0.

To have a stable solution, the following relations must be satisfied:

γ⊥ − (
χ∞

‖ − χ0
⊥
)
τ‖E2

0 > 0,
(
χ0

⊥ − χ0
‖
)
E2

0 > 0. (B8)

Following Eq. (B4), χ0
⊥ − χ0

‖ > 0 is always satisfied for an oblate spheroid and χ0
⊥ − χ0

‖ < 0
always holds true for a prolate spheroid. Therefore, the stable nonspinning state for a prolate spheroid
is impossible for this orientation. For an oblate spheroid, a stable orientation requires

χ∞
|| − χ0

⊥ < 0 or E2
0 <

γ⊥(
χ∞

‖ − χ0
⊥
)
τ‖

= C2. (B9)

Meanwhile, with the help of Eqs. (B7) and (B9), the following relation can be proven for an
oblate spheroid:

γ‖
τ⊥

1

C1
− γ⊥

τ‖

1

C2
= (

χ∞
⊥ − χ0

⊥
) − (

χ∞
‖ − χ0

⊥
) = χ∞

⊥ − χ∞
‖

= εf

(εp − εf )2(L‖ − L⊥)

[εf + L⊥(εp − εf )][εf + L‖(εp − εf )]
> 0. (B10)
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Therefore, if C1 < 0, then C2 < 0 and if C2 > 0 then C1 > 0. The condition for stable orientation
state can be summarized as follows:

C1 < 0 (always stable),
C2 > 0

[
stable if E2

0 < min(C1,C2)
]
,

C1 > 0, C2 < 0
(
stable if E2

0 < C1
)
.

(B11)

For a general spheroid,

γ‖
τ⊥

1

C1
= χ∞

⊥ − χ0
⊥=εf

(εpσf − σpεf )

[εf + L⊥(εp − εf )][σf + L⊥(σp − σf )]
. (B12)

Therefore, the sign of this parameter relies on the material property rather than the particle
geometry. All the spheroids share the same condition for C1 to flip its sign.

b. Spinning case

The nonzero � can be calculated by combining Eqs. (B2) and (B6):

�2 = 1

τ 2
⊥

(
E2

0

/
C1 − 1

)
. (B13)

For this state to exist,

E2
0 > C1 > 0. (B14)

The stationary point satisfies Eq. (B6). Together with θ = π/2, P r
3 = 0 and Eq. (B2), one can

write the stationary point as

P r
1 = γ‖

E0
�, P r

2 = − γ‖
E0

1

τ⊥
, P r

3 = 0, θ = π/2.

Meanwhile, the angular velocity satisfies

δ� = E0

γ‖
δP r

1 .

Introducing a small deviation near the stationary point yields

∂δP r
1

∂t
= −�δP r

2 ,

∂δP r
2

∂t
= − 1

τ⊥
δP r

2 + 2�δP r
1 ,

∂δP r
3

∂t
= − 1

τ‖

[
δP r

3 − (
χ∞

‖ − χ0
‖
)
E0δθ

]
,

γ⊥δθ̇ =
[(

χ∞
‖ − χ∞

⊥
)
E2

0 + γ‖
τ⊥

]
δθ − E0δP

r
3 .

The Jacobian matrix for the dynamical system regarding P r
1 and P r

2 is written as(
0 −�

2� −1/τ⊥

)
.

Its eigenvalue is determined by

λ2 + λ/τ⊥ + 2�2 = 0.

It is obvious that the real part of the two eigenvalues is always negative. Therefore, P r
1 and P r

2
always converge to its stationary value.
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The Jacobian matrix for the dynamical system regarding P r
3 and θ is written as⎛

⎝− 1
τ‖

χ∞
‖ −χ0

‖
τ‖

E0

−E0
γ⊥

χ∞
‖ −χ∞

⊥
γ⊥

E2
0 + γ‖

γ⊥
1
τ⊥

⎞
⎠.

Its eigenvalue is calculated by

λ2 +
(

1

τ‖
− χ∞

‖ − χ∞
⊥

γ⊥
E2

0 − γ‖
γ⊥

1

τ⊥

)
λ + χ∞

⊥ − χ0
‖

τ‖γ⊥
E2

0 − γ‖
γ⊥

1

τ⊥τ‖
= 0.

Therefore, the conditions for the spinning state to be stable are interpreted as

τ⊥τ‖
(
χ∞

⊥ − χ∞
‖

)
E2

0 + γ⊥τ⊥ − γ‖τ‖ > 0,

τ⊥
(
χ∞

⊥ − χ0
‖
)
E2

0 − γ‖ > 0.

From Eq. (B10) one can find that χ∞
⊥ − χ∞

‖ > 0 for an oblate spheroid and χ∞
⊥ − χ∞

‖ < 0 for a
prolate spheroid. Therefore, the first condition for a stable spinning state becomes

E2
0 >

(
γ‖
τ⊥

− γ⊥
τ‖

)
1

χ∞
⊥ − χ∞

‖
= C3 (oblate spheroid),

E2
0 <

(
γ‖
τ⊥

− γ⊥
τ‖

)
1

χ∞
⊥ − χ∞

‖
= C3 (prolate spheroid). (B15)

The other condition would be

χ∞
⊥ − χ0

‖ > 0, E2
0 >

γ||(
χ∞

⊥ − χ0
‖
)
τ⊥

= C4.

Together with Eq. (B7), one can easily prove that

1

C4
− 1

C1
= τ⊥

γ‖

[(
χ∞

⊥ − χ0
‖
) − (

χ∞
⊥ − χ0

⊥
)] = τ⊥

γ‖

(
χ0

⊥ − χ0
‖
)
.

According to Eq. (B4), χ0
⊥ − χ0

‖ is positive for an oblate spheroid and χ0
⊥ − χ0

‖ is negative for
a prolate spheroid. Therefore, one can remove C4 from the discussion for an oblate spheroid as
E2

0 > C4 will be automatically satisfied if E2
0 > C1 > 0 is satisfied, which is required for a spinning

state to exist [Eq. (B13)]. Therefore, together with Eq. (B15) the condition for a stable spinning state
to exist for an oblate spheroid can be summarized as

C1 > 0, E2
0 > max(C1,C3). (B16)

For a prolate spheroid, C1, C3, and C4 must all be positive. Under this condition C4 > C1 is
automatically satisfied. The condition for the stable spinning state can be summarized as

C1 > 0, C3 > C4 > 0, C3 > E2
0 > C4. (B17)

3. Summary of conditions and the thin disk approximation

The stability of the steady states of both prolate and oblate spheroids is summarized in Table II.
The related parameters are defined as

C01 = γ⊥
τ⊥

1

χ∞
⊥ − χ0

‖
, C1= γ‖(

χ∞
⊥ − χ0

⊥
)
τ⊥

, C2= γ⊥(
χ∞

‖ − χ0
⊥
)
τ‖

,

C3 =
(

γ‖
τ⊥

− γ⊥
τ‖

)
1

χ∞
⊥ − χ∞

‖
, C4 = γ‖(

χ∞
⊥ − χ0

‖
)
τ⊥

.
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TABLE II. Summary of the conditions to achieve stable states for spheroids.

Stable states Prolate (bistability) Oblate (no bistablity)

θ = 0 θ = π/2
C01 < 0 C1 < 0

Nonspinning
C01 > 0, E2

0 < C01 C2 > 0, E2
0 < min(C1,C2)

C1 > 0, C2 < 0, E2
0 < C1

θ = π/2 θ = π/2
Spinning

C1 > 0, C3 > C4 > 0, C3>E2
0 > C4 C1 > 0, E2

0 > max(C1,C3)

For a thin disk γ‖ = γ⊥, the parameters C1, C2, and C3 can be simplified using Eqs. (2)–(4),

C1 = γ‖(
χ∞

⊥ − χ0
⊥
)
τ⊥

= C0

εp/εf − σp/σf

, C0 = γ‖
τ⊥εf

, (B18)

C2 = γ⊥(
χ∞

‖ − χ0
⊥
)
τ‖

= εf

εp

σp

σf

C0

2 − σp/σf − εf /εp

, (B19)

C3 =
(

γ‖
τ⊥

− γ⊥
τ‖

)
1

χ∞
⊥ − χ∞

‖
=

(
1 − εf

σf

σp

εp

)
C0

εp/εf + εf /εp − 2
, (B20)

which are equivalent to Eqs. (11), (12), and (15).
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