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The coalescence of bubbles and drops plays a central role in nature and industry. During
coalescence, two bubbles or drops touch and merge into one as the neck connecting them
grows from microscopic to macroscopic scales. The hydrodynamic singularity that arises
when two bubbles or drops have just touched and the flows that ensue have been studied
thoroughly when two drops coalesce in a dynamically passive outer fluid. In this paper,
the coalescence of two identical and initially spherical bubbles, which are idealized as
voids that are surrounded by an incompressible Newtonian liquid, is analyzed by numerical
simulation. This problem has recently been studied (a) experimentally using high-speed
imaging and (b) by asymptotic analysis in which the dynamics is analyzed by determining
the growth of a hole in the thin liquid sheet separating the two bubbles. In the latter,
advantage is taken of the fact that the flow in the thin sheet of nonconstant thickness is
governed by a set of one-dimensional, radial extensional flow equations. While these studies
agree on the power law scaling of the variation of the minimum neck radius with time, they
disagree with respect to the numerical value of the prefactors in the scaling laws. In order
to reconcile these differences and also provide insights into the dynamics that are difficult
to probe by either of the aforementioned approaches, simulations are used to access both
earlier times than has been possible in the experiments and also later times when asymptotic
analysis is no longer applicable. Early times and extremely small length scales are attained
in the new simulations through the use of a truncated domain approach. Furthermore, it
is shown by direct numerical simulations in which the flow within the bubbles is also
determined along with the flow exterior to them that idealizing the bubbles as passive voids
has virtually no effect on the scaling laws relating minimum neck radius and time.
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I. INTRODUCTION

The phenomenon of collision and coalescence of bubbles plays a central role in a number of
natural settings and industrial applications. Bubble collision and coalescence can alter the size
distribution of bubbles, which can have important ramifications for the underlying phenomena. A
well-known example is provided from nature where bubbles, produced from breaking ocean waves,
inject salt nuclei into the atmosphere, a process that can affect subsequent raindrop production [1].
In the industrial process of microflotation, which is a technique that is widely used in wastewater
treatment, small bubbles are introduced into a liquid to filter out algae, bacteria, and other waste
products into a foam [2]. Recently, a variant of this technique has also been sought as an economic
way to harvest and concentrate algae grown in bioreactors for use in the production of biodiesel
[3]. Bubble size distributions, which are affected by both breakup and coalescence, also play a
major role in the transport and fate of gas and/or oil released during deep-water gas and/or oil
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spills [4]. Therefore, developing a better understanding of the coalescence of a pair of initially
spherical bubbles, which is the subject of this paper, is desirable both in studies of natural phenomena
and for improving and/or developing technological applications.

When two bubbles or drops are gently brought together and touch, a microscopic fluid bridge
forms between them. At the instant of contact, the surface tension or capillary pressure is singular
because of the infinite curvature of the fluid interface at the point of contact. The dynamics as the
bridge grows and the two bubbles or drops merge into one are driven by this initial singularity
in capillary pressure. The coalescence singularity has been studied exhaustively when two drops
coalesce in a dynamically passive outer fluid, e.g., air or vacuum [5–18]. Paulsen et al. [15] have
presented a phase diagram of coalescence in such situations in the parameter space comprised of a
dimensionless ratio of the governing forces (viscous force divided by the square root of the product
of inertial and surface tension forces) and the instantaneous radius of the bridge connecting the
two drops divided by the initial drop radius that (a) divides the parameter space into three regimes
consisting of an initial asymptotic regime where all three forces are important and two final regimes
where either viscous and surface tension forces or inertial and surface tension forces are important,
and (b) identifies the values of the dimensionless bridge radius for which the dynamics will transition
from the initial asymptotic regime to one or the other of the two final regimes. Also noteworthy is
the paper by Duchemin et al. [9] in which the coalescence of two inviscid (zero viscosity) drops
in a passive outer fluid (air) has been analyzed by means of boundary integral simulations. These
authors have shown that the surfaces of the thin retracting sheet of air between the drops reconnect
in finite time to form a toroidal enclosure. In studying drop coalescence experimentally, it is possible
to explore extremely small length and time scales in the immediate aftermath of the singularity.
Although such measurements cannot be performed by imaging, which is the most commonly used
method for studying both coalescence and breakup, they are readily accomplished by means of
electrical conductivity measurements as were first carried out by Case and Nagel [12] and show how
the minimum radius of the fluid bridge varies with time.

While virtually all of the studies cited in the previous paragraph were carried out when the
fluid outside the drops could be treated as dynamically passive, considerably fewer studies have
considered the effect of a dynamically active outer fluid [19–25]. Recently, Paulsen et al. [25]
experimentally investigated the effect of the external fluid on both drop and bubble coalescence. Of
particular interest to the present paper is their study of the limiting case of two bubbles coalescing in
a dynamically active outer fluid. However, as the bubbles in their experiments were nonconducting,
Paulsen et al. were only able to study bubble coalescence via imaging and hence were unable to
probe the dynamics at extremely early times and/or for small length scales. Nevertheless, Paulsen
et al. showed that there are two distinct regimes of bubble coalescence depending on the viscosity
of the exterior liquid. For low-viscosity outer liquids, the dynamics fell in an inertial regime. For
high-viscosity outer liquids, the dynamics lay in a viscous regime. In both regimes, however, the
minimum neck radius varied as the square root of time. More recently, Munro et al. [26] used
asymptotic analysis in which they determined the growth of a hole in the thin liquid sheet separating
the two bubbles. In their analysis, these authors constructed similarity solutions to a third-order
system of radial extensional flow equations for the thickness of the sheet and the velocity within
it. These authors thereby showed that the minimum neck radius increased as time raised to the one
half power, in accord with experiments. While the power law behavior of bridge radius with time
is the same from both theory and experiment, several differences emerge from a careful scrutiny of
the results. First, the prefactors in the expressions relating minimum neck radius and time obtained
from theory differ from those obtained from experiments. These differences may be attributable to
the inability of the imaging method to probe the period in the immediate aftermath of the instant at
which the two bubbles have just touched. Moreover, whereas Paulsen et al. had surmised that the
appropriate length scale in the radial direction in both regimes was the radius of the bridge, Munro
et al.’s theory revealed that the radial length scale is much smaller than the radius of the bridge
for outer fluids of low viscosity. Furthermore, although the theory is extremely valuable in probing
the early time dynamics, it becomes less reliable as the two bubbles continue to coalesce and the
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retracting fluid sheet loses its slenderness. Munro et al. also carried out a limited set of computations
to directly simulate the coalescence of two bubbles and thereby put on firmer foundation some of
the assumptions that are inherent to the theoretical approach.

The goal of this paper is to use detailed numerical simulations to study the coalescence of two
bubbles in a viscous outer fluid and thereby accurately capture the dynamics at both early and late
times to overcome the aforementioned limitations of experiments and theory. The paper is organized
as follows. Section II provides the mathematical formulation of the problem solved and summarizes
the numerical method used to carry out the simulations. Since the fluid bridge connecting the two
bubbles at the beginning of the simulations is of small but finite size, Sec. III presents the results of
tests that have been carried out to demonstrate the insensitivity of the computed scaling predictions on
the initial conditions. Section IV presents the results of extensive numerical simulations and scaling
laws that are deduced from the computations. Also in this section, a novel truncated domain approach
is presented that permits computational investigation of the coalescence dynamics at extremely early
times compared to those possible in experiments and allows closer comparison of simulation results
with theory. By the same token, it is further shown in this section that the agreement between
simulations and experiments can also be improved by focusing instead on the computational results
at later times, i.e., times that experiments have been able to probe. The article concludes in Sec. V
by summarizing the results obtained in this paper and pointing out some some future avenues for
extending this work.

II. MATHEMATICAL FORMULATION AND NUMERICAL METHOD

A. Mathematical formulation

The system consists of two dynamically passive bubbles, both of which are initially spheres of
radius R̃ that are connected by a small bridge or a neck, that are immersed in an exterior or outer
liquid that is an incompressible Newtonian fluid of constant density ρ and constant viscosity μ,
as shown in Fig. 1. The air-liquid interface separating the bubbles from the surrounding liquid has
constant surface tension γ . Initially, the bubbles are stationary and the liquid surrounding them is
quiescent so that the fluid velocity in the region exterior to the bubbles equals zero, viz., ṽ = 0 at

FIG. 1. The onset of the coalescence of two equal-sized bubbles in a liquid: definition sketch and initial
conditions. At the initial instant, two spherical bubbles of radius R̃ are connected by a microscopic gas bridge
of radius R̃0 and height 2Z̃0, an enlargement of which is also shown.
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time t̃ = 0. As in earlier computational studies, the microscopic bridge that connects the two bubbles
initially is of radius R̃0 and height 2Z̃0 [9,15] (see Fig. 1 and below). As shown in the next section,
the dimensions of this connecting bridge are chosen to be small enough such that the replacement of
the actual initial condition of two spherical bubbles touching at a single point by two bubbles being
connected by a small but finite-size bridge has a negligible effect on the dynamics that ensues in
the aftermath of the space-time singularity that occurs at the initial instant and initiates the merging
of the two bubbles into one. In what follows, it proves convenient to adopt a cylindrical coordinate
system (r̃ , θ , z̃) with its origin at the location where the two initially spherical bubbles just touch.
Thus, the z̃ axis runs through the centers of the two initially spherical bubbles. The dynamics is taken
to be axially symmetric about the z̃ axis and, because the two bubbles are identical, the dynamics is
also symmetric with respect to the z̃ = 0 plane. Thus, the problem domain is just one quadrant of the
r̃ z̃ plane, r̃ � 0 and z̃ � 0, as shown in Fig. 1. In the coordinate system that has just been introduced,
the surface of the initial bridge connecting the two bubbles is given by [r̃2 − (R̃0 + Z̃0)]2 + z̃2 = Z̃2

0 .
In this paper, the problem variables are nondimensionalized by choosing the undisturbed radii

of the bubbles as characteristic length, lc = R̃, the inertial-capillary time as characteristic time,
tc =

√
ρR̃3/γ , the ratio of the latter two scales as characteristic velocity, vc = lc/tc, and the

capillary pressure γ /R̃ as characteristic pressure/stress, pc = γ /R̃. Upon the introduction of these
characteristic scales, it is found that the dynamics is governed by a single dimensionless group,
the Ohnesorge number, Oh = μ/

√
ρR̃γ , which is the ratio of viscous force to the square root

of the product of inertial and surface tension forces. The dynamics appears to also depend on
two dimensionless parameters that result from the way the initial conditions are imposed. These
are the initial values of the dimensionless bridge radius and bridge height, viz., R0 = R̃0/R̃ and
2Z0 = 2Z̃0/R̃. Below, it is further shown that a third dimensionless parameter enters the problem
during simulations. However, all three of these dimensionless parameters can be shown to have a
negligible effect on the dynamics if they are judiciously chosen and once all initial transients have
died down. In what follows, variables without tildes over them denote the dimensionless counterparts
of those with tildes.

The dynamics in the region �(t) occupied by the liquid surrounding the two bubbles are governed
by the Navier-Stokes and continuity equations, which in dimensionless form are given by

∂v

∂t
+ v · ∇v = ∇ · T , (1a)

∇ · v = 0, (1b)

where v ≡ ṽ/vc is the dimensionless fluid velocity and T ≡ T̃/pc = −p I + Oh[∇v + (∇v)T ] is
the dimensionless stress tensor, where p ≡ p̃/pc denotes the dimensionless pressure, t ≡ t̃/tc is
dimensionless time, and ∇ ≡ R̃∇̃ is the dimensionless gradient operator. The pressure within the
bubbles is taken to be uniform in space and constant in time, and set to be the pressure datum.

The domain �(t) over which the governing Eqs. (1a) and (1b) are solved consists of the region
exterior to the air-liquid interface or the free surface of the coalescing bubbles, S(t), which is
unknown a priori, and is bounded by the symmetry axis r ≡ r̃/R̃ = 0 and the symmetry plane
z ≡ z̃/R̃ = 0, where r and z denote the dimensionless radial and axial coordinates in cylindrical
coordinates. Because of the aforementioned axial symmetry and symmetry conditions, symmetry
boundary conditions are imposed along the symmetry axis r = 0 and the plane z = 0. At radial
distances indefinitely far from the center of mass of the two bubble system, the liquid must become
quiescent. Along the free surface S(t), the kinematic and traction boundary conditions are imposed
to determine the unknown shape of the free surface and account for the discontinuity or jump in
stress due to surface tension:

n · (v − vs) = 0, (2a)

n · T = −2Hn. (2b)
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Here, vs ≡ ṽs/vc is the dimensionless velocity of points on the free surface S(t), n is the outward-
pointing unit normal to the free surface, and 2H ≡ 2H̃R̃ is twice the dimensionless local mean
curvature of the interface.

B. Numerical method

The aforementioned transient system of governing equations is solved numerically using a fully
implicit, arbitrary Lagrangian-Eulerian (ALE), method of lines algorithm in which the Galerkin/finite
element method (G/FEM) is employed for spatial discretization [27] and an adaptive, implicit finite
difference method is deployed for time integration [28]. In order to capture the large deformations
that the surfaces of the bubbles and hence the domain exterior to them undergo, the elliptic mesh
generation method developed by Christoloudou and Scriven [29] for studying thin-film coating flows
and which was later extended to simulate free surface flows of Newtonian and complex fluids with
breakup and coalescence [15,30–33] was used to discretize the spatial domain �(t) and determine the
radial and axial coordinates of each grid point in the moving, adaptive mesh simultaneously with the
velocity and pressure unknowns in the exterior liquid and the free surface profile. The velocity and
pressure unknowns were solved in the mixed interpolation sense using biquadratic basis functions
to represent the velocity unknowns and bilinear basis functions to represent the pressure unknowns
[34]. The locations of the mesh coordinates were also represented using biquadratic basis functions.
The numerical scheme reduces the problem to a system of nonlinear algebraic equations that can
be solved iteratively via the multidimensional Newton’s method. The resulting system of linear
equations is then solved with a multifrontal algorithm which takes advantage of the sparsity of the
Jacobian matrix that arises in Newton’s method. This multifrontal algorithm was inspired by the
frontal method introduced by Hood [35]. For a more complete description of the numerical method
that has been employed, the reader is referred to Notz and Basaran [30].

In the simulations, it is impracticable for the domain exterior to the bubbles �(t) to extend out
to infinity. Therefore, the computational domain is cut off by a spherical surface of large but finite
radius R∞ so that the domain consists of the region between S(t) and the spherical surface located
at r = R∞. In the simulations, it is on this sphere of large but finite radius R∞ rather than as r → ∞
that the boundary condition that the fluid be quiescent, v = 0, is imposed. The optimal value of R∞
is then determined by systematically varying R∞ until further increases to it result in insignificant
changes to the computed solutions.

III. EFFECT OF BRIDGE SIZE AND INITIAL CONDITIONS ON SCALING PREDICTIONS

As the actual initial condition of two spherical bubbles touching at a point is replaced in the
simulations by two bubbles being connected by a small but finite-size bridge, in this section the
effects of the initial values of the bridge radius R0 and one half of the bridge height Z0 on the
computed predictions are examined. In particular, values of R0 and Z0 are varied to determine their
effect on the computed variation in time of the radial and axial scales of the neck connecting the
two bubbles. The time variation of the radial scale is determined by monitoring the minimum neck
radius Rmin(t), which is the instantaneous radius of the neck connecting the two bubbles at the axial
location z = 0. The axial scale Zb(t), or equivalently the instantaneous value of one half of the
bridge height, which is hereafter referred to as the bridge half-height, is determined by monitoring
the variation in time of the axial location along the neck where the local value of the bridge radius
equals 1.05Rmin. Thus, it is expected that after the decay of initial transients, these quantities should
exhibit power law responses given by Rmin ∼ tαr and Zb ∼ tαz , where αr and αz are the radial and
axial scaling exponents.

Figure 2(a) shows the variation of the minimum neck radius Rmin with time in a set of simulations
where the initial bridge radius R0 ≡ Rmin(0) is held fixed at 10−3 but the initial bridge half-height
Z0 ≡ Zb(0) is varied. First, this figure makes plain that the curves depicting the variation of Rmin

with t for different values of Z0 all fall on top of one another once sufficient time has elapsed.
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FIG. 2. The effect of the initial bridge half-height Z0 on the scaling behavior of the instantaneous values of
the minimum radius Rmin and the half-height, or the axial scale, Zb of the neck: the variation of (a) Rmin with
time t and (b) Zb with Rmin. In all simulations, the initial bridge radius R0 = 10−3 and Oh = 0.1.

Second, the overlap between the various simulations starts earlier as the initial bridge half-height Z0

decreases. Figure 2(a) also shows that for large values of Z0, the simulations appear to indicate the
possibility of two scaling regimes and a transition between them, which is a point that is returned
to in the paragraph after the next one. However, the initial regime disappears as the value of Z0

is systematically decreased, thereby revealing that it is a computational artifact owing to using too
large a value of Z0. It is worth noting that the scaling results for the two smallest values of Z0 shown
in Fig. 2(a) virtually lie on top of one another during the entire duration of coalescence. Therefore,
for simulation results to be insensitive to the value of the initial bridge height, Z0 ≈ R2

0. Moreover,
when the simulation results are independent of the size of the initial bridge, it is found that once
initial transients have decayed, Rmin ∼ t1/2, in accordance with experiments [25] and theory [26].

Figure 2(b) shows the variation of the axial scale Zb with the minimum neck radius Rmin for
the same set of simulations as in Fig. 2(a) where the initial bridge radius R0 is held fixed at 10−3

but the initial bridge half-height Z0 is varied. This figure makes plain that the curves depicting the
variation of Zb with Rmin for different values of Z0 all fall on top of one another once sufficient
time has elapsed and that the overlap between the various simulations starts earlier as the bridge
half-height Z0 decreases. Once again, the scaling results for the two smallest values of Z0 shown
in Fig. 2(b) virtually lie on top of one another during the entire duration of coalescence. Once the
initial transients have decayed, the results depicted in Fig. 2(b) show that Zb ∼ R2

min, a finding that
also agrees with experiments [25] and theory [26] and is a consequence of the idealized picture of
coalescence where a neck of radius Rmin and height R2

min grows on two touching spheres of unit
radius (see Hopper [5,6], Eggers et al. [7], Duchemin et al. [9], and Paulsen et al. [14]). Figures 2(a)
and 2(b) show that the duration of the initial transients can be minimized by using an initial bridge
of sufficiently small height and that the onset of the attainment of the physically correct scaling
that the axial scale varies as the square of the radial scale can occur virtually from the beginning of
the simulations by selecting the initial value of the bridge half-height Z0 to be given by Z0 ≈ R2

0.
Henceforward, all simulation results to be reported are obtained using Z0 = R2

0.
We now return to the occurrence of the two scaling regimes in Fig. 2(a), the first of which has

already been shown to be a computational artifact due to the use of a value of the initial bridge
height that was too large. Indeed, the two scaling regimes and the transition between them can be
understood by realizing that the first is an initial Taylor-Culick [36–38] regime with r ∼ t on a sheet
of constant thickness Z0 that gives way to the second regime with r ∼ t1/2 on a sheet of thickness
z ∼ r2.
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FIG. 3. The effect of the initial bridge radius R0 on the scaling behavior of the minimum neck radius. In all
three cases, the initial bridge half-height is related to the initial bridge radius as Z0 = R2

0 and Oh = 3 × 10−3.

Next, the effect of the initial value of the bridge radius R0 on the computed variation of Rmin with
t is examined. Although Fig. 3 shows that systematic halving of the value of R0 pushes the period of
the existence of initial transients to earlier times and decreases their duration, all three simulations
can be seen to lie on top of one another and Rmin ∼ t1/2 once all the transients have died down.
Therefore, all simulation results that are hereafter reported have been obtained using R0 = 10−3

unless otherwise indicated.

IV. RESULTS AND DISCUSSION

A. Interface shapes, flow fields, and radial and axial scalings

Simulations readily enable visualization of a number of features of the dynamics such as flow
fields within the liquid exterior to the coalescing bubbles, and in particular within the retracting sheet
(film), that would be challenging to observe in the laboratory and therefore have not been examined
experimentally [25]. Similarly, while the theoretical analysis carried out by Munro et al. [26] provides
a wealth of information about flow fields, simulations can also reveal when and how the actual flow
fields can deviate from those based on the slenderness of the retracting sheet when that assumption
no longer holds at large times. Figure 4 shows the interface shapes and the instantaneous streamlines
and pressure contours near the tips of receding films of two different Ohnesorge numbers: In one
case (on the left), the coalescence is taking place in a highly viscous liquid of Oh = 8 while in the
other (on the right), the coalescence is occurring in a slightly viscous or nearly inviscid liquid of
Oh = 3.97 × 10−3. Stark differences between the two cases become immediately apparent even at
early times. In the highly viscous case, the sheet recedes while retaining a profile that remains similar
from one instant to the next and the pressure within it decays monotonically in the radial direction
measured away from its tip. In the nearly inviscid case, however, a bulge rapidly develops at the edge
of the retracting sheet and the flow field undergoes a change from uniform decay away from the tip
to the development of recirculations in the radial direction along the film corresponding to waves on
the interface. Interestingly, the dynamics in the nearly inviscid case is qualitatively similar to that
observed during the contraction, or recoil, of nearly inviscid filaments where similar capillary waves
arise (see Schulkes [39] and Notz and Basaran [30]). However, whereas the out-of-plane curvature
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FIG. 4. Transient profiles of retracting sheets and instantaneous streamlines and pressure contours within
them. In the figure, the radial coordinate has been shifted by the instantaneous value of the minimum radius
so that all profiles begin at zero. Here, interface profiles and flow fields in the left column, panels (a)–(d),
correspond to a highly viscous sheet and the ones in the right column, panels (e)–(h), correspond to a nearly
inviscid sheet. The value of the minimum neck radius for each snapshot in time is shown on the figure. The
values of the pressure contours for each instant in time are shown next to the corresponding figure. The Rmin and
the down arrow at the top right indicate the direction of increasing Rmin and hence time. In both simulations,
the initial bridge radius and half height are given by R0 = 10−3 and Zb = R2

min.

eventually drives the filaments to undergo pinch-off by the end-pinching mechanism in retracting
filaments, the absence of the out-of-plane curvature precludes the possibility of film rupture by the
same mechanism in the present case.

Next, scaling laws that govern the variation with time of the radial and axial scales, viz. the
minimum radius Rmin and half-height Zb of the growing bridge connecting the two bubbles, are
determined from simulations carried out at three different values of the Ohnesorge number, as
shown in Figs. 5(a) and 5(b). First, regardless of whether the liquid is nearly inviscid, moderately
viscous, or highly viscous, Fig. 5(a) shows that once initial transients have decayed, Rmin ∼ t1/2 in
all three cases. While the radial scaling exponent is the same in each case, the prefactor relating
Rmin and t are different. This is a point that is returned to below. Similarly, Fig. 5(b) shows that once
initial transients have died down, Zb ∼ R2

min in all three cases. As an independent way of determining
the axial scaling that differs from that presented in the previous section, the variation with time of
the planar curvature evaluated at z = 0, Hin = ∂2r

∂z2 , is also evaluated from the simulations. For all
three values of the Ohnesorge number, Fig. 5(c) shows that the computed value of Hin ∼ R−3

min
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FIG. 5. Scaling behavior of three quantities obtained from simulations: the variation of (a) the minimum
neck radius Rmin with time t , (b) the neck and/or bridge half-height or the axial scale Zb with Rmin, and (c) the
in-plane curvature Hin with Rmin. In all three parts, simulation results are shown for three different values of Oh.
In parts (a)–(c), lines of slopes of 1/2, 2, and −3 are also shown to demonstrate the scaling that is followed by
the results once the initial transients have died out. In all simulations, initial conditions are such that R0 = 10−3

and Z0 = R2
0 .

or that Hin ∼ t−3/2. This prediction accords with the scaling results given in Figs. 5(a) and 5(b)
because based on those results, the in-plane curvature evaluated at z = 0 is expected to scale as
Hin ∼ r/z2 ∼ Rmin/(R2

min)2 ∼ R−3
min.

The experimental measurements of Paulsen et al. [25], the asymptotic analysis of Munro et al.
[26], and the simulation results of this paper all show that the evolution of the minimum neck radius
follows a power law relationship of the form Rmin = Bt1/2, where B is a prefactor. Moreover, all
three techniques reveal the existence of two distinct dynamical regimes, one that can be categorized
as an inertial regime which arises when Oh � 1 and the other a viscous regime which occurs when
Oh � 1. While the power law exponents in both regimes are the same, the prefactors are quite
different, as made evident by Fig. 5(a). In previous studies, it has proven convenient to determine
and present these prefactors by using two different nondimensionalizations, each of which is more
appropriate in one or the other of the two regimes. Thus, for low-Ohnesorge-number fluids, it proves
convenient to make time dimensionless using the inertial-capillary time, tI =

√
ρR̃3/γ , as in Sec. II

of this paper, but for high-Ohnesorge-number fluids, it is advantageous to use the viscocapillary
time, tV = μR̃/γ , as the characteristic time scale in the nondimensionalization. This approach is
also adopted here and results in the following two forms of the scaling law governing the variation
of the dimensionless minimum neck radius with dimensionless time:

Rmin = BI

(
t̃

tI

)1/2

, (3a)

Rmin = BV

(
t̃

tV

)1/2

. (3b)

Here, Eq. (3a) is the form of the scaling relation that is appropriate in the inertial regime,
with BI ≡ BI (Oh) being the prefactor that results when tI is used to make time dimensionless.
Equation (3b), on the other hand, is the form of the scaling relation that is appropriate in the
viscous regime, with BV ≡ BV (Oh) being the prefactor that results when tV is used to make time
dimensionless. The two prefactors BI and BV , which are hereafter referred to as the inviscid and
the viscous prefactors, are simply related as BV = Oh1/2BI . Most interesting are the limiting values
of the prefactors as Oh approaches zero or infinity, which are denoted by BI (0) and BV (∞). Fits
to data from experimental measurements [25] give values of 1.4 and 1.2 for BI (0) and BV (∞)
while asymptotic analysis [26] predicts values of 1.81 and 0.89 for the limiting values of the two
prefactors.
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FIG. 6. Variation with Oh of the inviscid prefactor BI and the viscous prefactor BV obtained from
simulations. When plotted together, the results make plain the transition that occurs from the inertial to the
viscous regime as Ohnesorge number is varied from small to large values and as the appropriate characteristic
time scale switches from the inertial-capillary time to the viscocapillary time.

Simulations were carried out for a range of values of Oh and the results on the variation of the
minimum radius Rmin with time t were fitted to extract the values of the prefactors from simulation
data. The resulting prefactors as a function of Oh are presented in Fig. 6 and clearly show that there
are indeed two regimes where either BI or BV remains constant. The results of Fig. 6 also reveal that
the value of the Ohnesorge number where the crossover between the two regimes occurs is around
Oh ≈ 1, a value that is in good agreement with the value of Oh ≈ 0.7 obtained by Paulsen et al.
[25] in their experiments. The simulations also show that BI approaches 1.71 as Oh → 0 and that
BV approaches 0.87 as Oh → ∞.

Clearly, the limiting values of the prefactors obtained from the simulations are in much closer
agreement with the theoretical values obtained by Munro et al. [26] than the experimental values
obtained by Paulsen et al. [25]. The very good agreement between computational and theoretical
predictions, and the substantial deviation of the computationally and theoretically obtained prefactors
from the experimentally measured ones, indicate that the discrepancies are most likely due to the
inability of the experiments to be able to probe the dynamics at early times when the neck radii are
too small to be measured with the optical method available in the laboratory. This hypothesis can
easily be tested by limiting the range of values of the minimum neck radius from simulations to be
fitted to that which is accessible in experiments, viz. limiting the range of Rmin to 0.2 � Rmin � 0.6.
By so limiting the fits to simulation results, it is found that in the limit as Oh → 0, the computed
value of BI approaches 1.45, whereas in the limit as Oh → ∞, the computed value of BV approaches
0.85. Thus, in the inviscid limit (Oh → 0), simulations accord well with theory for sufficiently small
values of Rmin and when the dynamics is in the vicinity of the space-time coalescence singularity,
whereas at later times, the dynamics begins to depart from the scaling behavior predicted from theory
and the scaling that is predicted from simulations falls in line with what is observed in experiments.
By contrast, in the viscous limit (Oh → ∞), the prefactor obtained from simulations for Rmin � 1
and the prefactor that is obtained from simulations using larger values of Rmin are virtually identical
and agree with the prefactor obtained from theory. The deviation of BI (0) obtained from simulations
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for larger values values of Rmin from its asymptotic value as Rmin → 0 is most likely due to the loss of
slenderness in the receding film, an expectation the validity of which will be tested in later sections.
However, the aforementioned reason cannot explain why the limiting value of the viscous prefactor
as Oh → ∞ obtained from simulations even using larger values of Rmin differs substantially from
the value obtained from experiments. Part of the discrepancy between the value predicted from
simulations (0.85) and that measured in the experiments (1.2) may be attributable in this case to the
larger uncertainty involved in the calculation of the relevant timescales of coalescence for large Oh
cases presented in Paulsen et al. [25], which are subsequently used in determining the values of the
prefactors in the scaling relations.

While the agreement between simulations and theory is quite good, the discrepancy of 6% in the
limiting value of the inviscid prefactor BI (0) between them is nontrivial. Two possible reasons for
this discrepancy are either that the simulations, despite accessing earlier times than experiments,
are also unable to probe the very early times in the aftermath of the singularity or that some of
the assumptions of the theoretical analysis become less valid more quickly than expected as time
increases. To gain insight into the aforementioned discrepancy between simulation and theory, a
new computational approach is presented in the next subsection in which the liquid domain �(t)
is truncated so that most of the computational power can be focused on the important thin film
region between two coalescing bubbles. The truncated domain approach to be presented will allow
probing of the dynamics by simulation for neck radii much smaller than what has been possible in
the computational results presented up to this point in the paper.

B. Truncated domain

The difficulty in simulating bubble coalescence is caused by the multiscale nature of the problem
in that in a given simulation one must resolve phenomena occurring over length scales ranging from
the smallest scale, which is of the order of the bridge height or O(R2

0), to the largest scale, which is
of the order of the bubble radii or O(1). A way to circumvent this difficulty can be gleaned from an
examination of the variation with time, or equivalently with Rmin(t), of the radial distance δr that is
required for the radial velocity evaluated at z = 0 in the retracting sheet to fall to 10% of the value
Umax it has at the sheet’s tip, viz δr = r(u = 0.1Umax). As shown in Fig. 7, this distance is at most of
O(Rmin) and remains proportional to Rmin until the neck reaches macroscopic dimensions. Thus, it
should be possible to model accurately the growth of the bridge connecting the two bubbles without
having to simulate the flow in the entire liquid region �(t) exterior to the bubbles. Therefore, the
domain exterior to the neck is truncated at some radial distance r = RT = R̃T /R̃. The value of RT

is picked such that the end of the domain is sufficiently far from the tip of the receding film so that
its location will not affect the retraction dynamics but not so large that the end of the domain is well
within the film region in the two-bubble coalescence problem, viz. R0 � RT � 1. Figure 8 shows
the new truncated domain where the only new parameter that is introduced into the analysis is the
truncation radius RT , which merely gives the radial location where the film is truncated. The vastly
reduced size of the new truncated domain compared to the original domain �(t) makes it possible
to start the simulations from much smaller values of the initial neck radius Rmin(0) = R0 and also to
concentrate the elements where they are needed most in the computations.

With the truncated domain, boundary conditions on the flow field are required at r = RT . Two
options were considered. In the first one, a stress-free boundary condition was imposed at r = RT .
In the second one, a zero-velocity boundary condition was imposed at r = RT . No discernible
differences in the simulation results were observed when computational data obtained with the
two different boundary conditions were compared against one another. Therefore, the zero-velocity
boundary condition was used in all cases because of the ease of implementation. Since even in the
purely viscous limit where the relevant radial length scale δr in the film is largest, δr is still only of
the order of Rmin. Thus, a truncation radius equal to 100Rmin(0) = 100R0 has been found through
computational experiments to be sufficiently large as to not impact the dynamics of the receding film.
In computations involving the truncated domain, simulations were stopped before the motion of the
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FIG. 7. Variation with Rmin of the dominant length scale δr in the radial direction. δr is the length measured
from the receding tip for which the radial velocity in the sheet falls to 10% of its value at the tip. Regardless of
the value of Oh, δr is linearly proportional to Rmin.

receding film begins to be influenced by the location of the artificial boundary located at r = RT .
Therefore, while the truncated domain approach enables probing the dynamics at very early times,
it does not allow following the dynamics into late times when the two bubbles have nearly merged.

In order to verify the accuracy of the proposed truncated domain approach, computational
predictions made with it were compared against ones using the entire liquid domain. The results
of such comparisons will be highlighted with a specific example that involves bubble coalescence
at the relatively small value of the Ohnesorge number of Oh = 3 × 10−3 as our primary interest
in using the new truncated domain approach is to better investigate the inviscid limit. In this test,
R0 = 10−3 and Z0 = R2

0. A comparison of the scaling results obtained with the two approaches is
presented in Fig. 9 and shows excellent agreement between them, thereby providing confidence for
the use of truncated domain approach for carrying out parametric studies. In the simulation results
to be reported hereafter, a domain length of RT = 100R0 was used to give at least a full decade of
scaling data for fitting once the initial transients have died out and before the film has receded far
enough such that the artificially located boundary begins to affect the dynamics.

FIG. 8. Truncated domain: definition sketch. The thin sheet between the coalescing bubbles is cut off at a
radial distance R̃T and the region exterior to this domain is excluded from the simulations.
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FIG. 9. Variation of Rmin with t : comparison of results on radial scaling obtained from simulations using the
entire domain �(t) (open square symbols) and the truncated domain (solid line). Here, R0 = 10−3, Z0 = R2

0 ,
and Oh = 3 × 10−3.

To demonstrate the power of the truncated domain approach, sets of simulations were carried
out by fixing Oh and starting each simulation at a successively lower value of the minimum neck
radius. Figure 10 shows the typical outcome albeit for the situation when Oh = 3 × 10−3. Thus, a
simulation was started with R0 = 10−3 and continued until Rmin increased by more than an order of
magnitude but less than two orders. The process was repeated by starting simulations with a value of
R0 one tenth this value, followed by another simulation where the value was one hundredth of this
value, and so on until terminating with a simulation where the initial value of the minimum neck
radius was 10−7. As shown in Fig. 10, despite the fact the simulations were started from different
values of R0, once initial transients decayed, the data overlapped and fell on top of a line of slope
1/2 on a log-log plot of Rmin versus t . With the truncated domain approach and stitching together
data from different simulations as shown in Fig. 10, one could go to arbitrarily smaller values of the
initial neck radius and produce Rmin versus t data spanning as many orders of magnitude as desired.

Next, the effect of lowering R0 from 10−3 to 10−7 on the inviscid prefactor in the zero-Oh or
inviscid limit was investigated. The results of such simulations are shown in the inset to Fig. 11 for
Oh = 3 × 10−3. At this value of Oh, lowering the value of R0 below 10−5 produced no discernible
changes in the value of BI . With these calculations, the value of BI determined from simulations
in the zero-Ohnesorge-number limit increased to 1.79, which is within 1% of the value predicted
from Munro et al.’s theory [26]. With the initial bridge size no longer an issue, next the value of Oh
was systematically reduced, as shown in the main part of Fig. 11. Although this figure does show
the inviscid prefactor in the zero-Oh limit being approached by the simulation data for sufficiently
small Oh, with one additional simulation carried out for values of Oh and R0 both smaller than those
shown in this figure; viz., when Oh = 5 × 10−4 and R0 = 10−7, the computed value of the inviscid
prefactor in the zero-Oh limit increased ever so slightly to 1.80. This value, which we take to be the
value of BI (0) predicted from simulations, is within about 0.5% of the value predicted from theory.

With the truncated domain approach and using a set of simulations, each of which is started with a
different value of R0, results can be stitched together to investigate why a shift from the theory is seen
in the simulations at later times by first looking at the overall evolution of the film profile near the
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FIG. 10. Variation of Rmin with t obtained from different simulations using the truncated domain approach.
The different simulations start from initial conditions using different values of the initial bridge radius R0 but
with Z0 = R2

0 . After the decay of initial transients, each simulation falls on a line of slope 1/2. As explained
in the text, the different simulations can then be stitched together to allow simulating drop coalescence from
extremely early times when the neck radii are orders of magnitude smaller than the bubble radii. In all
simulations, Oh = 3 × 10−3.

FIG. 11. Variation of the inviscid prefactor BI with the Ohnesorge number Oh for simulations carried out
with two different initial conditions of R0 = 10−3 and R0 = 10−6 but where Z0 = R2

0 in both cases. The arrow
indicates how BI would change if the value of R0 is lowered by three orders of magnitude. This change is
detailed in the inset which shows the variation of BI with R0 for Z0 = R2

0 when the Ohnesorge number is held
constant at Oh = 3 × 10−3.
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FIG. 12. Computed evolution in time of the profiles of the receding film when Oh = 3 × 10−3. For each
profile shown, both the axial and the radial coordinates have been normalized by the minimum radius at that
instant in time. The inset shows enlarged views of the tips of the film and makes plain that the profiles at the
two earliest times, i.e., for the smallest two values of Rmin, are still slender. Both the main figure and the inset
highlight the transition that occurs at later times from profiles that are slender to ones where the retracting
tips have become bulged. All shapes have been obtained from different simulations where R0 is one order of
magnitude smaller than the value of Rmin for which a given profile is shown. Also, Z0 = R2

0 in each simulation.

tip of the receding film. The results of such simulations are shown in Fig. 12 when Oh = 3 × 10−3.
These results show clearly that there is a transition from initial profiles that are slender to ones which
exhibit rather large bulges. This loss of slenderness is likely the culprit behind the deviations from
theory: Indeed, the loss of slenderness for Rmin ≈ 10−4 seen in Fig. 12 coincides with the departure
of the prefactor from its limiting value obtained in the limit of R0 → 0 seen in the inset to Fig. 11.

It is noteworthy, however, that the aforementioned departure of the prefactor at finite Rmin from its
asymptotic value in the vicinity of the singularity is relatively modest despite the loss of slenderness
in the receding film. Indeed, it was surmised by Munro et al. that the fluid contained within the entire
growing bulge virtually moves as a plug at the same velocity as the retracting tip. This hypothesis can
now be rigorously tested by evaluating the variation of the radial velocity in the volume contained
within the bulge near the tip. Here, this volume Vb is taken to be the region of fluid from the tip
to the radial position at which the bulge is widest. The variation in the radial velocity in the bulge
is then calculated as Uv = (1/Vb)

∫
Vb

|U − Ucom| dV , where Ucom is the velocity of the center of
mass of the fluid within Vb. This variation in the radial velocity with time as Rmin increased between
one and two orders of magnitude was evaluated for the two cases of R0 of 10−3 and 10−6 with
an Oh of 3 × 10−3. As expected, for the case with the lower value of R0 and where the interface
profile is slender, the average deviation from Ucom is of the order 0.01% which, for all practical
purposes, is negligible. For the case with the higher value of the initial neck radius, the deviation
was substantially larger than that in the first case but still remained below 2%. A fairly large number
of simulations revealed that the assumption of a blob moving essentially at a constant velocity was
fairly reasonable even for neck radii as large as Rmin ≈ 10−2.

Munro et al. [26] determined the similarity profiles of receding sheets directly in their analysis.
Here, the self-similar profiles will be determined by suitably collapsing the transient profiles obtained
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FIG. 13. Variation of appropriately scaled profiles of receding films at the instant in time when Rmin = 0.03
for Oh = 0.004, 0.02, 0.05, 0.1, 0.3, 0.5, 0.9, 8.09, 15.0, and 45.0 showing the interface profiles in the main part
of the figure and enlarged views of the tips of the profiles in the inset. For small values of Oh, the profiles are
shown at this particular value of Rmin so as to highlight the formation of bulged tips. For moderate to large values
of Oh, the profiles depicted in both the main figure and the inset show that the scaled profiles are slender. Also,
for these moderate to large values of Oh, the scaled or collapsed profiles are virtually identical to scaled profiles
obtained at earlier times or, equivalently, for smaller values of Rmin. Thus, these collapsed profiles represent the
similarity profiles for these values of Oh. Also, when Oh � 1, the scaled profiles vary only slightly with Oh
and in fact collapse onto a single universal profile as Oh → ∞. In all simulations, R0 = 10−3 and Z0 = R2

0 .

from the solution of the Navier-Stokes and continuity equations. Therefore, the collapse of the
transient profiles will be accomplished by rescaling the radial and axial length scales by Rmin and
R2

min, respectively. First, to emphasize the main differences between coalescence at small and large
Ohnesorge numbers, we plot in Fig. 13 the collapsed interface profiles for a range of Ohnesorge
numbers at the same value of Rmin = 3 × 10−2. This figure shows that for large Oh the scaled
solutions for different values of Oh appear to collapse onto a single profile, a point that is returned
to below. The scaled profiles for large Oh and in particular in the limit as Oh → ∞ are slender as
expected. The scaled profiles at small Oh, however, are quite different from their counterparts at
large Oh and all exhibit a bulge at the leading edge of the sheet that is the trademark of the dynamics
of sheet retraction for low-viscosity fluids.

To demonstrate the collapse of transient solutions onto a similarity profile, we plot transient
solutions as t or Rmin → 0 at a single value of Oh after rescaling the radial and axial coordinates as
just described. Figure 14 shows a number of scaled profiles when Oh = 0.9 and clearly demonstrates
the collapse of the rescaled transient profiles onto a single similarity profile as Rmin → 0. It is
noteworthy that the scaled profiles for the two smallest values of Rmin virtually fall on top of another
and are indistinguishable in the figure.

As with the interface shape, the radial velocity, when suitably rescaled, is also expected to exhibit
self-similarity as t or Rmin → 0. Here, we rescale the radial velocity along the plane of symmetry
z = 0 by its maximum value Umax, which is always found to occur at the location where the neck
radius is a minimum. Figure 15 shows the collapsed radial velocity profiles as a function of the
scaled radial coordinate for several values of the Ohnesorge number at two different values of Rmin,
one before (a) and the other after (b) a bulge has formed in the small-Oh cases. Two distinct features
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FIG. 14. Variation of appropriately scaled profiles of receding films with decreasing time. The scaled
profiles are seen to collapse nicely onto a single similarity profile as Rmin → 0. Here, Oh = 0.9, R0 = 10−3,
and Z0 = R2

0 .

characterize the solutions at large and small Oh. As expected based on the discussion on scaled
interface shapes, for both values of Rmin, the scaled radial velocity profiles for large Oh tend to a
single similarity profile as Oh → ∞. It is also worth noting that the length scale over which the
velocity varies at large Oh is of the order of Rmin, in accordance with Munro et al. [26]. However,
as also pointed out by Munro et al., a boundary layer is present at small Oh where most of the
velocity variation occurs over a length scale much smaller than Rmin, as made clear by Fig. 15(a).
The numerically collapsed profiles for both large and small Oh also show good agreement with the
results of Munro et al., albeit only at early times [Fig. 15(a)]. At later times, once the bulge forms
at small Oh, the flow patterns become more complex as already seen in Fig. 4 as recirculations
arise along the length of the film. Thus, Fig. 15(b) too exhibits the departure of the scaled velocity
profile obtained from the simulations at the smallest value of Oh shown in the figure from both
the corresponding similarity profile reported by Munro et al. at the same value of Oh and the
scaled velocity profile obtained from the simulations at that Oh, albeit at an earlier time [shown in
Fig. 15(a)].

V. CONCLUDING REMARKS

With the detailed exploration through simulations of the parameter space governing the
coalescence of two bubbles presented in this paper, the dynamics that ensues in the immediate
aftermath of the instant when two bubbles have just touched has now been completely analyzed
by means of experiment [25], theory [26], and simulation. All three methods have shown that the
minimum radius of the neck connecting the two bubbles grows in time as Rmin = Bt1/2 where the
prefactor, however, varies with the Ohnesorge number. All three studies have also revealed that two
distinct regimes exist in the limit of small and large Ohnesorge numbers herein referred to as the
inviscid (Oh → 0) and the viscous limits (Oh → ∞), each with its own characteristic value of the
prefactor denoted by BI (0), the inviscid prefactor in the zero-Ohnesorge-number limit, and BV (∞),
the viscous prefactor in the infinite-Ohnesorge-number limit.
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FIG. 15. Variation of the radial velocity along the plane of symmetry z = 0 scaled by its maximum value,
u/Umax, with the scaled radial coordinate r/Rmin: scaled velocity (a) at early times when Rmin = 6.0 × 10−3 and
(b) later when Rmin = 3.0 × 10−2. In both plots, scaled profiles are shown for Oh = 0.002,0.02,0.1,0.3,1.0,3.4,

and 30.0. When Oh � 1, at early times a velocity boundary layer forms (top), in agreement with the theoretical
analysis of Munro et al. [26], while at later times (bottom) in the aftermath of the formation of the bulge at
the tip of the retreating films, there is a distinct signature in the velocity profiles of recirculations in the film
corresponding to waves on the interface. The scaled profiles when Oh � 1 are virtually unchanged between
the two instants shown and in both cases the profiles collapse onto a single similarity profile as Oh → ∞.

Prior to this paper, the values of BI (0) and BV (∞) measured in the experiments and obtained
from theory were not in perfect agreement with one another. Reassuringly, the limiting values of
the inviscid and viscous prefactors obtained from the simulations have been found to be within
0.5% and 2.2% of the corresponding values obtained from theory. Given the excellent agreement
between theory and simulations and the difficulty in accessing small neck radii in the experiments,
the discrepancies in the experimentally measured values of the prefactors compared to those obtained
from theory and simulation are primarily attributed to the inability of the optical technique employed
in the experiments to access early times in the coalescence process when the neck radii are of the
order of a micrometer or smaller. However, since the aforementioned excellent agreement between
the values of BI (0) and BV (∞) obtained from simulations and theory result from fitting simulation
data for values of Rmin → 0, a more fair comparison between simulations and experiments can
be carried out if the simulation data were to be fitted to the power law forms given by Eqs. (3a)
and (3b) by excluding data from the simulations for values of the minimum neck radii below what
is realizable in the experiments. When simulation data used in the power law fits were restricted to
values of the minimum radius lying in the range 0.2 � Rmin � 0.6, the computed value of BI (0)
decreased substantially from 1.80 to 1.45, making it accord well with the experimentally measured
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TABLE I. Values of the inviscid prefactor in the limit of zero Ohnesorge number, BI (0), and the viscous
prefactor in the limit of infinite Ohnesorge number, BV (∞), in the radial scaling laws obtained from experiment,
theory, and simulation.

Study BI (0) BV (∞)

Experiment [25] 1.4 1.2
Theory [26] 1.81 0.89
Simulation (Rmin � 10−3) 1.80 0.87
Simulation (0.2 � Rmin � 0.6) 1.45 0.85

value of 1.4. However, similarly restricting the range of values of Rmin for curve fits from simulation
data at large Ohnesorge numbers resulted in a negligible change in the computed value of BV (∞).
The values of BI (0) and BV (∞) obtained with the three techniques are summarized in Table I where
prefactors derived from simulations include those that have been obtained by using only extremely
small values of Rmin in generating curve fits (i.e., the prefactors have been obtained by only looking
at Rmin versus t data for values of Rmin � 10−3) and also ones that have been obtained by using
values of Rmin that lie in a range that is comparable to that attainable in the experiments (i.e., the
prefactors have been obtained by only looking at Rmin versus t data when Rmin varies over the range
0.2 � Rmin � 0.6).

A reassuring finding reported in Sec. III is that the initial values of the bridge radius and half-height
R0 � 1 and Z0 � 1 do not make much difference as to what is observed after the transients. While
the duration of the initial transients can be minimized with a suitable Z0, viz., Z0 ≈ R2

0, regardless
of the values of R0 and Z0, it has been shown that the numerics can be relied on to give good
predictions of the t1/2 scaling behavior for the variation of the minimum neck radius with time.
An equally important message from these results is that whatever the local mechanism, e.g., van
der Waals forces, first ruptures the fluid film to start the coalescence process in a real experiment,
that initial condition does not make much difference to the subsequent evolution of the bubble
coalescence process.

In this paper, a new technique referred to as the truncated domain approach has also been
developed. This approach has made it possible to start the simulations from an initial state when
the radius of the microscopic bridge connecting the two bubbles is at least six orders of magnitude
smaller than the radii of the bubbles. The truncated domain approach not only has enabled probing
the very early stages of the dynamics but it has also allowed vast reductions in computation times
because it does not waste valuable computational resources solving for the flow outside the thin film
region, which has virtually no effect on the flows occurring in the vicinity of the expanding neck.
The truncated domain approach has made it possible, among other things, the accurate evaluation
of the inviscid prefactor in the scaling law relating the minimum radius and time. The truncated
domain approach has also enabled us to capture the transition in the low-viscosity limit from a state
where the retracting film is slender to one where the tip of the film has developed a bulge. Being
able to access early times has also allowed the construction of similarity solutions by appropriately
collapsing transient solutions for the interface shape and fluid velocity within the retracting sheet
obtained from the computations. One drawback of this technique is that an individual simulation can
only capture a portion in time rather than the entire duration of the coalescence process. However,
it has been shown that this drawback is easily remedied by stitching together individual simulations
that are started from initial conditions corresponding to different values of the minimum bridge
radius. Moreover, the method is much more versatile than this particular implementation in that if
a single simulation is desired to span the period from very early to relatively late times, the size
of the truncated domain can be increased dynamically in proportion to the increasing radius of the
growing neck connecting the two bubbles. This approach is summarized and example simulation
results obtained with it are presented in Appendix A.
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Two questions immediately arise based on the results of this paper. One pertains to whether the
dynamics of the fluid within real bubbles, which has been neglected here, can influence the fluid
dynamics of the bubble coalescence singularity. In Appendix B, we present results of preliminary
simulations that show that accounting for the flow of the gas within the bubbles has no effect
whatsoever on the scaling laws of bubble coalescence. These preliminary simulations in turn lead
to the second question as to how the dynamics would change if instead of gas bubbles the dispersed
phase were a liquid of arbitrary density and viscosity. Paulsen et al. [25] have already studied
experimentally the physics of the coalescence singularity when two viscous drops coalesce in a
second viscous fluid. Thus, a goal of future research is to directly simulate the two-drop coalescence
problem by using the extended version of the algorithm that has been employed to perform the
simulation results reported in the Appendixes. Such simulations, however, are considerably more
complex and costly than the ones reported here as the domains both interior and exterior to the drops
have to be discretized and the governing equations have to be solved in both phases to simulate the
dynamics. A report on the results of such studies will form the subject of a future communication.

The two most important hydrodynamic singularities that arise in free surface flows of drops and
bubbles are the pinch-off and the coalescence singularities involving the separation of a fluid into
two pieces and the joining two pieces of fluid (see Ref. [40], p. 925). Aside from being of theoretical
interest, a good understanding of the nature of these singularities and having the capability to
accurately simulate the dynamics in the vicinity of them would allow the accurate prediction of
breakup and coalescence times. Accurate knowledge of breakup and coalescence times in turn can
directly impact the accuracy and usefulness of engineering analyses of breakup and coalescence
phenomena utilized in population balance models [41].
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APPENDIX A: DYNAMICALLY GROWING TRUNCATED DOMAIN

In this Appendix, we describe and report results obtained with a variant of the truncated domain
approach introduced in Sec. IV. In contrast to the approach used in that section where RT is held
fixed at a value equal to some multiple of the initial bridge radius (in the simulation results reported
in that section, RT = 100R0), here the truncation radius is increased or moved dynamically so that
the instantaneous value of RT (t) is some multiple of the instantaneous radius of the growing neck
connecting the two bubbles. Figure 16 shows simulation results comparing predictions made using
the new approach in which the truncation radius is dynamically varied as RT (t) = 100Rmin(t) to
those in which results from different simulations each using a different fixed value of RT have been
stitched together as described in Sec. IV. This figure makes plain that simulation results obtained
with the new and the old truncated domain approaches are in excellent agreement with one another.

APPENDIX B: ACCOUNTING FOR THE FLUID DYNAMICS OF THE GAS BUBBLES

In this short Appendix, we investigate whether it is justified to neglect the dynamics of the flow
within the bubbles and treat the gas within the bubbles as a dynamically passive fluid. To accomplish
this goal, the flow within both the bubbles and surrounding liquid is determined together by extend-
ing the approach outlined earlier to simulate just the flow within the liquid exterior to the bubbles. For
the details of solving the two-phase flow problem, the reader is referred to an earlier paper in which
the finite-element-based method that is described in this paper was applied to analyze the dynamics
of two-fluid compound jets [42]. For additional details, the reader is also referred to Ref. [43].
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FIG. 16. Variation of the minimum radius Rmin with time t : comparison of simulation results obtained in
a single computation with a truncated domain approach in which the truncation radius is varied dynamically
as RT (t) = 100Rmin(t) (data points corresponding to the open symbols and labeled as moving RT ) and those
stitched together from different simulations each of which uses a fixed value of the truncation radius given
by RT = 100R0 (curves, each of which is identified by the value of the initial bridge radius used in a given
simulation). In the simulation in which the truncation radius is varied continuously in time, R0 = 10−6. In all
cases, Z0 = R2

0 and Oh = 3 × 10−3.

When the dynamics of the fluid within the bubbles is accounted for, the problem is governed by
three dimensionless groups: the Ohnesorge number Oh used earlier, which is based on the properties
of the outer liquid, the density ratio D = ρi/ρ, and the viscosity ratio M = μi/μ, where ρi and μi

denote the density and viscosity of the bubble fluid. Since the inner fluid in these simulations is a gas
and the outer fluid is a liquid, both D and M will have values much less than one. For completeness,
we will report results for two cases: In the first case, the liquid is a low-viscosity fluid, and in the
other, the liquid will be a high-viscosity fluid. However, the density ratio is kept fixed in the two
simulations. The values of the dimensional parameters in these simulations are such that they are
similar to those in select experiments performed by Paulsen et al. [25].

In Fig. 17, the variation of the minimum radius with time from four simulations is shown. In two
of the simulations, Oh = 0.1, and in the other two, Oh = 8.09. For the same value of Oh, in one of
the simulations the bubbles are treated as passive voids and in the other the flow within the bubble
is determined along with the flow in the exterior liquid. The results shown in Fig. 17 make plain
that the variation of Rmin with t in both the low-viscosity and the high-viscosity limits is virtually
identical whether the bubbles are treated as voids or the dynamics within them is accounted for.
Thus, neglecting the flow within the bubbles and treating them as passive voids, as had been the case
throughout this paper, give an excellent approximation that remains true to the physics.

The responses depicted in Fig. 17 are consistent with the experimental findings of Paulsen et al.
[25]. These authors have argued that while all coalescence events begin their lives in the inertially
limited viscous (ILV) regime [17] dominated by the inner fluid, this regime would occur in such
early times during bubble coalescence that it would be virtually impossible to observe in experiments
using optical methods and, similarly, would be beyond the capability of computational methods as
it would only exist for values of the minimum neck radius much smaller than the ones reported in
Fig. 17. Thus, for the situations in Fig. 17 where Oh = 0.1, the transition from the ILV regime to the
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FIG. 17. Variation of the minimum radius Rmin with time t : comparison of the radial scaling predicted by
simulations in which the bubbles are treated as voids (the data points) and those in which the flow within the
bubbles is determined along with the flow exterior to them (the curves). In all cases, R0 = 10−3 and Z0 = R2

0 .
In the two-fluid simulations, D = 1.48 × 10−3.

outer inertial regime shown in the figure would occur when Rmin = O(Oh M) = O(10−4). Similarly,
for the situations where Oh = 8.09, the transition from the ILV regime to the outer viscous regime
shown in the figure would occur when Rmin = O(M) = O(10−5).
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[2] E. A. Cassell, K. M. Kaufman, and E. Matijević, The effects of bubble size on microflotation, Water Res.
9, 1017 (1975).

[3] C. A. Laamanen, G. M. Ross, and J. A. Scott, Flotation harvesting of microalgae, Renew. Sustain. Energy
Rev. 58, 75 (2016).

[4] U. C. Bandara and P. D. Yapa, Bubble sizes, breakup, and coalescence in deepwater gas/oil plumes,
J. Hydraul. Eng. 137, 729 (2011).

[5] R. W. Hopper, Coalescence of two equal cylinders: Exact results for creeping viscous plane flow driven
by capillarity, J. Am. Ceram. Soc. 67, C-262 (1984).

[6] R. W. Hopper, Plane Stokes flow driven by capillarity on a free surface, J. Fluid Mech. 213, 349 (1990).
[7] J. Eggers, J. R. Lister, and H. A. Stone, Coalescence of liquid drops, J. Fluid Mech. 401, 293 (1999).
[8] A. Menchaca-Rocha, A. Martínez-Dávalos, R. Núñez, S. Popinet, and S. Zaleski, Coalescence of liquid

drops by surface tension, Phys. Rev. E 63, 046309 (2001).
[9] L. Duchemin, J. Eggers, and C. Josserand, Inviscid coalescence of drops, J. Fluid Mech. 487, 167 (2003).

[10] M. Wu, T. Cubaud, and C. Ho, Scaling law in liquid drop coalescence driven by surface tension,
Phys. Fluids 16, L51 (2004).

[11] S. T. Thoroddsen, T. G. Etoh, and K. Takehara, The coalescence speed of a pendent and a sessile drop,
J. Fluid Mech. 527, 85 (2005).

083601-22

https://doi.org/10.3402/tellusa.v9i2.9094
https://doi.org/10.3402/tellusa.v9i2.9094
https://doi.org/10.3402/tellusa.v9i2.9094
https://doi.org/10.3402/tellusa.v9i2.9094
https://doi.org/10.1016/0043-1354(75)90095-0
https://doi.org/10.1016/0043-1354(75)90095-0
https://doi.org/10.1016/0043-1354(75)90095-0
https://doi.org/10.1016/0043-1354(75)90095-0
https://doi.org/10.1016/j.rser.2015.12.293
https://doi.org/10.1016/j.rser.2015.12.293
https://doi.org/10.1016/j.rser.2015.12.293
https://doi.org/10.1016/j.rser.2015.12.293
https://doi.org/10.1061/(ASCE)HY.1943-7900.0000380
https://doi.org/10.1061/(ASCE)HY.1943-7900.0000380
https://doi.org/10.1061/(ASCE)HY.1943-7900.0000380
https://doi.org/10.1061/(ASCE)HY.1943-7900.0000380
https://doi.org/10.1111/j.1151-2916.1984.tb19692.x
https://doi.org/10.1111/j.1151-2916.1984.tb19692.x
https://doi.org/10.1111/j.1151-2916.1984.tb19692.x
https://doi.org/10.1111/j.1151-2916.1984.tb19692.x
https://doi.org/10.1017/S002211209000235X
https://doi.org/10.1017/S002211209000235X
https://doi.org/10.1017/S002211209000235X
https://doi.org/10.1017/S002211209000235X
https://doi.org/10.1017/S002211209900662X
https://doi.org/10.1017/S002211209900662X
https://doi.org/10.1017/S002211209900662X
https://doi.org/10.1017/S002211209900662X
https://doi.org/10.1103/PhysRevE.63.046309
https://doi.org/10.1103/PhysRevE.63.046309
https://doi.org/10.1103/PhysRevE.63.046309
https://doi.org/10.1103/PhysRevE.63.046309
https://doi.org/10.1017/S0022112003004646
https://doi.org/10.1017/S0022112003004646
https://doi.org/10.1017/S0022112003004646
https://doi.org/10.1017/S0022112003004646
https://doi.org/10.1063/1.1756928
https://doi.org/10.1063/1.1756928
https://doi.org/10.1063/1.1756928
https://doi.org/10.1063/1.1756928
https://doi.org/10.1017/S0022112004003076
https://doi.org/10.1017/S0022112004003076
https://doi.org/10.1017/S0022112004003076
https://doi.org/10.1017/S0022112004003076


SCALING LAWS AND DYNAMICS OF BUBBLE COALESCENCE

[12] S. C. Case and S. R. Nagel, Coalescence in Low-Viscosity Liquids, Phys. Rev. Lett. 100, 084503 (2008).
[13] K. Fezzaa and Y. Wang, Ultrafast X-Ray Phase-Contrast Imaging of the Initial Coalescence Phase of Two

Water Droplets, Phys. Rev. Lett. 100, 104501 (2008).
[14] J. D. Paulsen, J. C. Burton, and S. R. Nagel, Viscous to Inertial Crossover in Liquid Drop Coalescence,

Phys. Rev. Lett. 106, 114501 (2011).
[15] J. D. Paulsen, J. C. Burton, S. R. Nagel, S. Appathuri, M. T. Harris, and O. A. Basaran, The inexorable

resistance of inertia determines the initial regime of drop coalescence, Proc. Natl. Acad. Sci. 109, 6857
(2012).

[16] J. E. Sprittles and Y. D. Shikhmurzaev, Coalescence of liquid drops: Different models versus experiment,
Phys. Fluids 24, 122105 (2012).

[17] J. D. Paulsen, Approach and coalescence of liquid drops in air, Phys. Rev. E 88, 063010 (2013).
[18] L. Baroudi, M. Kawaji, and T. Lee, Effects of initial conditions on the simulation of inertial coalescence

of two drops, Comput. Math. Appl. 67, 282 (2014).
[19] G. E. Charles and S. G. Mason, The coalescence of liquid drops with flat liquid/liquid interfaces, J. Colloid

Sci. 15, 236 (1960).
[20] D. G. A. L. Aarts and H. N. W. Lekkerkerker, Droplet coalescence: Drainage, film rupture and neck growth

in ultralow interfacial tension systems, J. Fluid Mech. 606, 275 (2008).
[21] W. Yao, H. J. Maris, P. Pennington, and G. M. Seidel, Coalescence of viscous liquid drops, Phys. Rev. E

71, 016309 (2005).
[22] T. Gilet, K. Mulleners, J. P. Lecomte, N. Vandewalle, and S. Dorbolo, Critical parameters for the partial

coalescence of a droplet, Phys. Rev. E 75, 036303 (2007).
[23] H. Aryafar and H. P. Kavehpour, Hydrodynamic instabilities of viscous coalescing droplets, Phys. Rev. E

78, 037302 (2008).
[24] M. Yokota and K. Okumura, Dimensional crossover in the coalescence dynamics of viscous drops confined

in between two plates, Proc. Natl. Acad. Sci. USA 108, 6395 (2011).
[25] J. D. Paulsen, R. Carmigniani, A. Kannan, J. C. Burton, and S. R. Nagel, Coalescence of bubbles and

drops in an outer fluid, Nat. Commun. 5, 3182 (2014).
[26] J. P. Munro, C. R. Anthony, O. A. Basaran, and J. R. Lister, Thin-sheet flow between coalescing bubbles,

J. Fluid Mech. 773, R3 (2015).
[27] J. Q. Feng and O. A. Basaran, Shear flow over a translationally symmetric cylindrical bubble pinned on a

slot in a plane wall, J. Fluid Mech. 275, 351 (1994).
[28] E. D. Wilkes, S. D. Phillips, and O. A. Basaran, Computational and experimental analysis of dynamics of

drop formation, Phys. Fluids 11, 3577 (1999).
[29] K. N. Christodoulou and L. E. Scriven, Discretization of free surface flows and other moving boundary

problems, J. Comput. Phys. 99, 39 (1992).
[30] P. K. Notz and O. A. Basaran, Dynamics and breakup of a contracting liquid filament, J. Fluid Mech. 512,

223 (2004).
[31] Y. C. Liao, O. A. Basaran, and E. I. Franses, Effects of dynamic surface tension and fluid flow on the

oscillations of a supported bubble, Colloids Surf. A 282-283, 183 (2006).
[32] P. P. Bhat, O. A. Basaran, and M. Pasquali, Dynamics of viscoelastic liquid filaments: Low capillary

number flows, J. Non-Newtonian Fluid Mech. 150, 211 (2008).
[33] R. T. Collins, K. Sambath, M. T. Harris, and O. A. Basaran, Universal scaling laws for the disintegration

of electrified drops, Proc. Natl. Acad. Sci. USA 110, 4905 (2013).
[34] P. M. Gresho and R. L. Sani, Incompressible Flow and the Finite Element Method (John Wiley & Sons,

New York, 2000).
[35] P. Hood, Frontal solution program for unsymmetric matrices, Int. J. Num. Methods Eng. 10, 379 (1976).
[36] G. I. Taylor, The dynamics of thin sheets of fluid, III: Disintegration of fluid sheets, Proc. Roy. Soc.

London, Ser. A 253, 313 (1959).
[37] F. E. C. Culick, Comments on a ruptured soap film, J. Appl. Phys. 31, 1128 (1960).
[38] J. B. Keller, Breaking of liquid films and threads, Phys. Fluids 26, 3451 (1983).
[39] R. M. S. M. Schulkes, The contraction of liquid filaments, J. Fluid Mech. 309, 277 (1996).
[40] J. Eggers, Nonlinear dynamics and breakup of free-surface flows, Rev. Mod. Phys. 69, 865 (1997).

083601-23

https://doi.org/10.1103/PhysRevLett.100.084503
https://doi.org/10.1103/PhysRevLett.100.084503
https://doi.org/10.1103/PhysRevLett.100.084503
https://doi.org/10.1103/PhysRevLett.100.084503
https://doi.org/10.1103/PhysRevLett.100.104501
https://doi.org/10.1103/PhysRevLett.100.104501
https://doi.org/10.1103/PhysRevLett.100.104501
https://doi.org/10.1103/PhysRevLett.100.104501
https://doi.org/10.1103/PhysRevLett.106.114501
https://doi.org/10.1103/PhysRevLett.106.114501
https://doi.org/10.1103/PhysRevLett.106.114501
https://doi.org/10.1103/PhysRevLett.106.114501
https://doi.org/10.1073/pnas.1120775109
https://doi.org/10.1073/pnas.1120775109
https://doi.org/10.1073/pnas.1120775109
https://doi.org/10.1073/pnas.1120775109
https://doi.org/10.1063/1.4773067
https://doi.org/10.1063/1.4773067
https://doi.org/10.1063/1.4773067
https://doi.org/10.1063/1.4773067
https://doi.org/10.1103/PhysRevE.88.063010
https://doi.org/10.1103/PhysRevE.88.063010
https://doi.org/10.1103/PhysRevE.88.063010
https://doi.org/10.1103/PhysRevE.88.063010
https://doi.org/10.1016/j.camwa.2013.05.002
https://doi.org/10.1016/j.camwa.2013.05.002
https://doi.org/10.1016/j.camwa.2013.05.002
https://doi.org/10.1016/j.camwa.2013.05.002
https://doi.org/10.1016/0095-8522(60)90026-X
https://doi.org/10.1016/0095-8522(60)90026-X
https://doi.org/10.1016/0095-8522(60)90026-X
https://doi.org/10.1016/0095-8522(60)90026-X
https://doi.org/10.1017/S0022112008001705
https://doi.org/10.1017/S0022112008001705
https://doi.org/10.1017/S0022112008001705
https://doi.org/10.1017/S0022112008001705
https://doi.org/10.1103/PhysRevE.71.016309
https://doi.org/10.1103/PhysRevE.71.016309
https://doi.org/10.1103/PhysRevE.71.016309
https://doi.org/10.1103/PhysRevE.71.016309
https://doi.org/10.1103/PhysRevE.75.036303
https://doi.org/10.1103/PhysRevE.75.036303
https://doi.org/10.1103/PhysRevE.75.036303
https://doi.org/10.1103/PhysRevE.75.036303
https://doi.org/10.1103/PhysRevE.78.037302
https://doi.org/10.1103/PhysRevE.78.037302
https://doi.org/10.1103/PhysRevE.78.037302
https://doi.org/10.1103/PhysRevE.78.037302
https://doi.org/10.1073/pnas.1017112108
https://doi.org/10.1073/pnas.1017112108
https://doi.org/10.1073/pnas.1017112108
https://doi.org/10.1073/pnas.1017112108
https://doi.org/10.1038/ncomms4182
https://doi.org/10.1038/ncomms4182
https://doi.org/10.1038/ncomms4182
https://doi.org/10.1038/ncomms4182
https://doi.org/10.1017/jfm.2015.253
https://doi.org/10.1017/jfm.2015.253
https://doi.org/10.1017/jfm.2015.253
https://doi.org/10.1017/jfm.2015.253
https://doi.org/10.1017/S0022112094002399
https://doi.org/10.1017/S0022112094002399
https://doi.org/10.1017/S0022112094002399
https://doi.org/10.1017/S0022112094002399
https://doi.org/10.1063/1.870224
https://doi.org/10.1063/1.870224
https://doi.org/10.1063/1.870224
https://doi.org/10.1063/1.870224
https://doi.org/10.1016/0021-9991(92)90273-2
https://doi.org/10.1016/0021-9991(92)90273-2
https://doi.org/10.1016/0021-9991(92)90273-2
https://doi.org/10.1016/0021-9991(92)90273-2
https://doi.org/10.1017/S0022112004009759
https://doi.org/10.1017/S0022112004009759
https://doi.org/10.1017/S0022112004009759
https://doi.org/10.1017/S0022112004009759
https://doi.org/10.1016/j.colsurfa.2005.12.023
https://doi.org/10.1016/j.colsurfa.2005.12.023
https://doi.org/10.1016/j.colsurfa.2005.12.023
https://doi.org/10.1016/j.colsurfa.2005.12.023
https://doi.org/10.1016/j.jnnfm.2007.10.021
https://doi.org/10.1016/j.jnnfm.2007.10.021
https://doi.org/10.1016/j.jnnfm.2007.10.021
https://doi.org/10.1016/j.jnnfm.2007.10.021
https://doi.org/10.1073/pnas.1213708110
https://doi.org/10.1073/pnas.1213708110
https://doi.org/10.1073/pnas.1213708110
https://doi.org/10.1073/pnas.1213708110
https://doi.org/10.1002/nme.1620100209
https://doi.org/10.1002/nme.1620100209
https://doi.org/10.1002/nme.1620100209
https://doi.org/10.1002/nme.1620100209
https://doi.org/10.1098/rspa.1959.0196
https://doi.org/10.1098/rspa.1959.0196
https://doi.org/10.1098/rspa.1959.0196
https://doi.org/10.1098/rspa.1959.0196
https://doi.org/10.1063/1.1735765
https://doi.org/10.1063/1.1735765
https://doi.org/10.1063/1.1735765
https://doi.org/10.1063/1.1735765
https://doi.org/10.1063/1.864126
https://doi.org/10.1063/1.864126
https://doi.org/10.1063/1.864126
https://doi.org/10.1063/1.864126
https://doi.org/10.1017/S0022112096001632
https://doi.org/10.1017/S0022112096001632
https://doi.org/10.1017/S0022112096001632
https://doi.org/10.1017/S0022112096001632
https://doi.org/10.1103/RevModPhys.69.865
https://doi.org/10.1103/RevModPhys.69.865
https://doi.org/10.1103/RevModPhys.69.865
https://doi.org/10.1103/RevModPhys.69.865


CHRISTOPHER R. ANTHONY et al.

[41] T. Tobin, R. Muralidhar, H. Wright, and D. Ramkrishna, Determination of coalescence frequencies in
liquid-liquid dispersions: Effect of drop size dependence, Chem. Eng. Sci. 45, 3491 (1990).

[42] R. Suryo, P. Doshi, and O. A. Basaran, Nonlinear dynamics and breakup of compound jets, Phys. Fluids
18, 082107 (2006).

[43] C. R. Anthony, Dynamics of retracting films and filaments near singularities, Ph.D. thesis, Purdue
University, Purdue, IN, 2017.

083601-24

https://doi.org/10.1016/0009-2509(90)87154-K
https://doi.org/10.1016/0009-2509(90)87154-K
https://doi.org/10.1016/0009-2509(90)87154-K
https://doi.org/10.1016/0009-2509(90)87154-K
https://doi.org/10.1063/1.2245377
https://doi.org/10.1063/1.2245377
https://doi.org/10.1063/1.2245377
https://doi.org/10.1063/1.2245377



