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Parametric subharmonic instability (PSI) of internal wave beams in a uniformly stratified
fluid is discussed, for the case where the beam frequency is nearly twice the inertial
frequency due to background rotation. Compared with generic PSI, beams of finite width
are expected on physical grounds to be more vulnerable to subharmonic perturbations of
near-inertial frequency, as these disturbances have small group velocity and stay in contact
with the underlying beam longer, thus extracting more energy. A weakly nonlinear theory
for such near-inertial PSI is developed in the “distinguished limit” where the effects of
triad nonlinear interactions, dispersion, and viscous dissipation are equally important. This
model is used to examine the linear stability of a uniform beam to infinitesimal perturbations
under a “pump-wave” approximation, as well as the nonlinear development of PSI that takes
into account the effect of the growing perturbations on the beam evolution. Near-inertial
PSI is possible for beams of general locally confined profile, in sharp contrast to generic PSI
which can arise only for quasimonochromatic beams whose profile comprises a sinusoidal
carrier modulated by a locally confined envelope. The theoretical predictions are consistent
with earlier numerical simulations of semidiurnal internal tide beams generated over the
continental shelf break at latitudes above and below the critical value 28.8◦N, at which the
subharmonic semidiurnal frequency matches the local inertial frequency.

DOI: 10.1103/PhysRevFluids.2.074801

I. INTRODUCTION

The problem of parametric subharmonic instability (PSI) of a sinusoidal internal wave in a
uniformly stratified fluid has received intensive study in the last 40 years. In this idealized setting,
PSI is understood as a resonant triad wave interaction of the primary wave train with subharmonic
perturbations that satisfy certain resonance conditions [1–3]. In the inviscid limit, in particular,
the most unstable perturbations have frequency one half of the primary wave frequency and short
wavelength; PSI thus provides a possible mechanism for transferring energy to smaller scales in a
high Reynolds number environment and is believed to contribute to mixing in oceans (see Staquet
and Sommeria [4] and references given therein).

By contrast, little attention has been paid to understanding PSI of internal waves under more
realistic flow conditions [5]. In an attempt to fill this gap, recent theoretical [6,7], experimental [7–9],
and numerical [9] work has focused on PSI of internal wave beams: time-harmonic plane waves with
locally confined spatial profile. Such disturbances are characteristic manifestations of the anisotropy
of internal wave motion [10] and can be readily generated by mechanical forcing in the laboratory
[11,12]; furthermore, they arise naturally in oceans from the interaction of barotropic tidal flow with
topography [13–15], as well as in the atmosphere due to thunderstorms [16]. Interestingly, unlike
sinusoidal plane waves which invariably suffer PSI, wave beams do not always do so, and the beam
profile turns out to be a major factor. Specifically, a systematic theoretical study (Karimi and Akylas
[6]) of the weakly nonlinear interaction of a finite-width beam with subharmonic perturbations has
pointed out that PSI is possible only if the beam profile is (i) quasimonochromatic so as to enable
subharmonic perturbations to form finely tuned triads with the beam, and (ii) sufficiently wide (i.e., it

*trakylas@mit.edu

2469-990X/2017/2(7)/074801(18) 074801-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevFluids.2.074801


HUSSAIN H. KARIMI AND T. R. AKYLAS

comprises a large enough number of carrier wavelengths, depending on the beam amplitude and the
flow Reynolds number) for subharmonic perturbations, which propagate with their group velocities,
to stay in contact with the beam long enough. The theoretical criteria for PSI of finite-width beams
obtained in Ref. [6] are in keeping with numerical simulations [9] and laboratory experiments
[7–9], even though the numerical and experimental flow conditions only marginally satisfied the
assumptions of the weakly nonlinear theory [6,17].

This paper is a sequel to the asymptotic theory for PSI of internal wave beams developed in
Karimi and Akylas [6]. An essential difference from our earlier work is that here we include Coriolis
effects which become relevant in geophysical settings due to the Earth’s rotation. Our primary goal,
however, is to understand PSI in the particular, but all-important, case that the beam frequency
is nearly twice the inertial frequency due to background rotation. Under this condition, beams of
finite width are expected on physical grounds to be especially vulnerable to PSI, as subharmonic
perturbations of near-inertial frequency have small group velocity and stay in contact with the
underlying beam longer, thus extracting more energy, than subharmonic perturbations of general
frequency. The prominent role of such near-inertial PSI is also brought out by numerical simulations
[18] of semidiurnal tide beams generated over the continental shelf break. These beams feature
profiles with no distinct carrier and thus would not experience PSI according to the theoretical
criteria obtained in Ref. [6]. Yet, strong PSI is found at the particular latitude of 27.5◦N, slightly
below the critical value of 28.8◦N where the semidiurnal frequency equals twice the local inertial
frequency, whereas relatively minor or no instability is seen at 0◦N and 45◦N. In addition, there is
numerical [19–21] as well as observational [22] evidence of significant energy transfer to near-inertial
motions, via PSI, when internal tides cross this critical latitude.

The ensuing analysis provides theoretical confirmation of the decisive role of subharmonic
perturbations with near-inertial frequency in causing PSI. Specifically, as suggested by the
simulations of Gerkema et al. [18], it is shown that the small group velocity of such perturbations
enables more robust resonant triad interactions with the underlying beam, enhancing instability in a
dramatic way. Thus, beams with general locally confined profile are susceptible to near-inertial PSI,
in sharp contrast to generic PSI which can arise only for beams with quasimonochromatic profile
that comprise a large enough number of carrier wavelengths. However, this crucial distinction
between near-inertial and generic PSI is no longer relevant if, instead of a finite-width beam, one
considers a uniform sinusoidal wave train; resonant triad interactions in both types of PSI then
involve monochromatic subharmonic perturbations so group velocity is not a factor.

Similar to the approach taken in Karimi and Akylas [6], we first derive a system of coupled
evolution equations for the interaction of a small-amplitude wave beam with near-inertial
subharmonic wave packets, in the “distinguished limit” where the effects of triad nonlinear
interactions, dispersion, and viscous dissipation are equally important. This equation system is then
used to examine the linear stability of a uniform beam, assuming its profile is “frozen,” by solving
an appropriate eigenvalue problem. Such a “pump-wave” approximation was also used by Young
et al. [23] in discussing the near-inertial PSI of an internal tide, but their inviscid formulation
did not provide a preferred wavelength of instability. By contrast, here we focus on a single
beam including viscous dissipation, and our stability eigenvalue analysis yields a most unstable
perturbation wavelength and associated growth rate; moreover, the coupled interaction equations
derived here make it possible to trace the nonlinear development of PSI that takes into account the
effect of the growing perturbations on the beam evolution. The theoretical predictions regarding
the most unstable disturbance are in good qualitative, and reasonable quantitative, agreement with
the PSI seen in the simulations of Gerkema et al. [18] at the near-critical latitude 27.5◦N.

II. INTERACTION EQUATIONS

The present analysis assumes the same flow conditions as in Karimi and Akylas [6], namely, two-
dimensional disturbances in an incompressible continuously stratified Boussinesq fluid of constant
buoyancy frequency N0, but with the addition of Coriolis effects due to the Earth’s rotation. Also,
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as before, we shall work with dimensionless variables, in terms of the time scale 1/N0 and a
characteristic length scale L∗ of the underlying wave beam. With x being the horizontal and y the
vertical coordinate pointing upwards, the stream function ψ(x,y,t) for the in-plane velocity field
(ψy,−ψx), the transverse velocity w(x,y,t), and the reduced density ρ(x,y,t) are then governed by

ρt + ψx + J(ρ,ψ) = 0, (1a)

wt − f ψy + J(w,ψ) − ν∇2w = 0, (1b)

∇2ψt − ρx + f wy + J(∇2ψ,ψ) − ν∇4ψ = 0, (1c)

where J(a,b) = axby − aybx is the Jacobian. The parameters

ν = ν∗
N0L2∗

(2)

and

f = 2
�

N0
sin β (3)

are, respectively, the inverse Reynolds number and nondimensional inertial frequency, where ν∗
denotes the kinematic viscosity, � the rotation rate of the Earth, and β the local latitude.

According to Eqs. (1), in the inviscid limit (ν = 0), linear sinusoidal plane waves obey the
dispersion relation

ω2 = f 2 + (1 − f 2) sin2 θ. (4)

It should be noted that the wave frequency ω depends on the inclination θ to the vertical, but not
the magnitude, of the wave vector. Thus, similar to the case of no background rotation (f = 0),
it is possible to construct wave beams (i.e., time-harmonic plane waves with general profile) by
superposing sinusoidal plane waves whose wave vectors have different magnitudes but all point in
the same direction. The dispersion relation (4) then links the beam frequency f < ω < 1 to the
angle θ that the beam direction makes to the horizontal (see Fig. 1). Moreover, such infinitely long,
uniform beams are exact nonlinear states of Eqs. (1) for ν = 0, irrespective of the beam profile
[10,24].

Focusing now on the stability of a uniform beam of frequency ω, PSI involves perturbations of
short wavelength (λ∗/L∗ � 1) and frequency close to ω/2. According to Eq. (4), such perturbations
have crests inclined to the horizontal by φ, where

sin φ =
√

ω2/4 − f 2

1 − f 2
, (5)

and the corresponding group velocity

cg± = ±2
1 − f 2

ωk
sin φ cos φ(cos φ êx − sin φ êy) (6)

is aligned with the wave crests, where k is the perturbation wave number modulus (see Fig. 1). We
recall that, in the absence of background rotation, Karimi and Akylas [6] came to the conclusion
that beams with locally confined profile do not experience PSI in general because subharmonic
perturbations travel with their respective group velocity and triad interactions do not have enough
time to act; PSI may arise only for sufficiently wide quasimonochromatic beams that comprise a
large enough number of carrier wavelengths, depending on the beam amplitude and the Reynolds
number 1/ν. In the present setting, by contrast, it is seen from Eqs. (5) and (6) that cg± → 0 as
ω/2 → f , suggesting that subharmonic perturbations with near-inertial frequency (ω/2 ≈ f ) could
extract energy more efficiently from a beam of finite width [18]. The ensuing analysis supports this
claim, and near-inertial PSI is shown to be possible for beams with general localized profile.
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FIG. 1. Geometry of PSI. The underlying wave beam with general locally confined profile of characteristic
width L∗ has dimensionless frequency ω and propagates at angle θ to the horizontal in keeping with the
dispersion relation (4). Subharmonic perturbations are short-crested (λ∗/L∗ � 1) nearly monochromatic wave
packets with dimensionless frequency close to ω/2 that propagate at the angle φ to the horizontal determined
by Eq. (5).

In preparation for the PSI analysis, we now derive evolution equations for the interaction of a
wave beam with subharmonic perturbations of near-inertial frequency. As in Karimi and Akylas [6],
we consider the “distinguished limit” where the effects of triad nonlinear interactions, dispersion,
and viscous dissipation are assumed to be weak but equally important. The appropriate scalings turn
out to be the same as those found in the absence of background rotation [6], save for the vanishing
group velocity of near-inertial perturbations noted above.

Briefly, introducing the steepness parameter

ε = U∗
N0L∗

� 1, (7)

where U∗ is a (dimensional) characteristic beam velocity, we first require weakly nonlinear effects
due to triad interactions to be comparable to the effects of dispersion due to the modulation of the
short-scale perturbations by the underlying beam. From our earlier work [6], this balance is realized
when the perturbation wave number k = O(1/ε1/2) so we write

k = κ

ε1/2
, (8)

where κ = O(1) is a scaled wave number parameter; dispersive and nonlinear effects thus come
into play on the same O(1/ε) time scale. Now, in order for triad interactions to have a chance to
cause instability, this time scale must be also commensurate with the travel time of the perturbations,
which propagate with the group velocity in Eq. (6), across the O(1) beam width. Therefore, it is
necessary that cg± = O(ε) and, according to Eqs. (5) and (8), this condition can be met only if the
perturbations have near-inertial frequency (ω/2 ≈ f ) so sin φ = O(ε1/2). Hence, we introduce the
scaling

sin φ = σε1/2, (9)
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where σ = O(1) is a parameter that according to Eq. (5) controls proximity of ω/2 to the inertial
frequency

ω

2
= f + σ 2(1 − f 2)

2f
ε + · · · . (10)

Finally, in regard to viscous dissipation, the decay rate of internal waves is known to be proportional
to νk2 [25]. Thus, in view of Eq. (8), the scaling

ν = αε2, (11)

where α = O(1), brings viscous damping, which affects predominantly the short-scale perturbations,
on par with nonlinearity and dispersion. Moreover,

T = εt (12)

is the appropriate “slow” time variable for the evolution of the perturbations in the presence of these
effects.

Taking into account the above scalings, we next expand the flow variables ψ , ρ, and w as follows:

ψ = ε{Q(η,T )e−iωt + c.c.} + ε3/2

κ

{[
A(η,T )eiκζ/ε1/2 + B(η,T )e−iκζ/ε1/2]

e−iωt/2 + c.c.
} + · · · ,

(13a)

ρ = ε{R(η,T )e−iωt + c.c.} + ε
{[

F (η,T )eiκζ/ε1/2 + G(η,T )e−iκζ/ε1/2]
e−iωt/2 + c.c.

} + · · · ,

(13b)

w = ε{W (η,T )e−iωt + c.c.} + ε
{[

M(η,T )eiκζ/ε1/2 + N (η,T )e−iκζ/ε1/2]
e−iωt/2 + c.c.

} + · · · .

(13c)

In the above expansions, the first curly brackets represent an O(ε) wave beam of frequency ω and
propagation direction inclined at angle θ to the horizontal in keeping with the dispersion relation (4);
the beam has general spatial profile described by the complex amplitudes Q, R, and W which vary
in the across-beam direction η = x sin θ + y cos θ (see Fig. 1). The second curly brackets stand for
the subharmonic perturbation; it comprises two fine-scale wave packets with carrier wave vectors
of the same magnitude κ/ε1/2 but opposite directions along ζ = x sin φ + y cos φ, in keeping with
Eqs. (5) and (8). These wave packets are modulated owing to their interaction with the underlying
beam, so the envelopes A, B, F , G, M , and N are functions of η and the slow time T . Moreover, as
a result of this long–short wave interaction, the perturbation may grow to be comparable to the O(ε)
beam and affect the beam profile; to allow for such feedback, Q, R, and W are taken to be functions
of T as well.

Upon substituting expansions (13) into the governing equations (1), we collect terms proportional
to exp(−iωt) and exp(±iκζ/ε1/2) exp(−iωt/2). The resulting nine coupled equations are then
reduced, by consistent elimination of the rest of the unknowns, to three evolution equations for
the beam profile amplitude Q and the wave packet envelopes A and B of the stream function in
Eq. (13a). This rather heavy algebraic manipulation is simplified to some extent by making use of
Eqs. (9) and (10) which hold for near-inertial subharmonic frequency (see the Appendix for details).
Here, we quote the three evolution equations in final form:

QT + 2γAB = 0, (14)

AT + σc

κ
Aη − i

2

c′

κ2
Aηη + ακ2A − iδκ2A|Qη|2 + γQηηB

∗ = 0, (15a)

BT − σc

κ
Bη − i

2

c′

κ2
Bηη + ακ2B − iδκ2B|Qη|2 + γQηηA

∗ = 0, (15b)
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where the coefficients

c =
√

3(1 − f 2), c′ = 3f, δ = 3f

2(1 − f 2)
, γ = 3f

√
3(1 − 4f 2)

4(1 − f 2)
(16)

depend only on the inertial frequency f and ∗ denotes the complex conjugate. It should be noted
that this system pertains to near-inertial PSI only (ω/2 ≈ f ), and it is not possible from Eqs. (14)
and (15) to recover the interaction equations obtained for f = 0 in Ref. [6].

The first two terms in Eqs. (15) represent the propagation of the subharmonic wave packet
envelopes A and B across the beam with speed ±εσc/κ = cg± · êη, the projection of the respective
group velocity [viz., Eq. (6)] on the across-beam direction η. The third and fourth terms account
for the envelope dispersion and viscous dissipation, respectively. In addition, A and B are coupled
to the beam amplitude Q via the nonlinear terms in Eqs. (14) and (15); these terms derive from
triad interactions and allow energy exchange between the beam and subharhmonic perturbations.
Owing to the scalings chosen earlier, all the above effects become equally important at T = O(1).
This balance is sensitive to the parameter σ , which controls the wave packet propagation speed.
For subharmonic frequencies far from f , corresponding to σ 	 1 according to Eq. (10), this speed
becomes relatively large so perturbations have little time to interact with a locally confined beam,
thus precluding PSI as concluded in Ref. [6].

The evolution equations (14) and (15) describe the full nonlinear coupling of a weakly nonlinear
wave beam with fine-scale subharmonic wave packets of comparable amplitude. For the purposes of
PSI analysis, however, subharmonic disturbances are taken to be relatively small, |A|,|B| � |Q|, and
the nonlinear term in Eq. (14) can be neglected. Hence, in this so-called pump-wave approximation,
the beam profile does not evolve with time, Q(η,T ) = Q(η), and A,B are governed by

AT + σc

κ
Aη − i

2

c′

κ2
Aηη + ακ2A − iδκ2A|Qη|2 + γQηηB

∗ = 0, (17a)

BT − σc

κ
Bη − i

2

c′

κ2
Bηη + ακ2B − iδκ2B|Qη|2 + γQηηA

∗ = 0. (17b)

This linear system forms the basis of our analysis of near-inertial PSI below. We shall return to
the full interaction equations (14) and (15) in Sec. IV C for discussing the long-time evolution of
unstable disturbances.

III. SINUSOIDAL PLANE WAVE

We first examine the PSI of a uniform sinusoidal wave train

Q = 1
2eiη. (18)

Here, the wavelength is set to 2π (the characteristic length L∗ = dimensional wavelength/2π ), and
Q is normalized so that the peak amplitude of the beam stream function in Eq. (13a) is equal to ε.

Putting expression (18) into Eqs. (17), the linear stability problem centers on separable normal
modes in the form

A = A0e
λT eiρη, B = B0e

λ∗T ei(1−ρ)η, (19)

where the mode wave number ρ is real and λ = λr + iλi is in general complex so instability arises if
the growth rate λr > 0. In view of Eqs. (19), the subharmonic perturbations in Eq. (13a) have wave
vectors

k+ = κ

ε1/2
êζ + ρ êη, k− = − κ

ε1/2
êζ + (1 − ρ)êη, (20a)

and corresponding frequencies

ω+ = ω

2
− λiε, ω− = ω

2
+ λiε; (20b)
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hence,

k+ + k− = êη, ω+ + ω− = ω, (21)

so the modes defined by Eqs. (19) form (perfectly tuned) resonant triads with the underlying wave
train of wave vector êη and frequency ω.

Upon substituting expressions (19) into Eqs. (17), the characteristic equation which determines
the eigenvalue λ can be written in the form{

(λ + ακ2) + i

2

[
σc

κ
− c′

2κ2
(1 − 2ρ)

]}2

= 1

4
γ 2 − 1

2

{
2σc

κ
(2ρ − 1) + c′

κ2
(2ρ2 − 2ρ + 1) − δκ2

}2

. (22)

Now, varying ρ, the maximum growth rate λr = γ /2 − ακ2 is obtained when the curly brackets on
the right-hand side of Eq. (22) vanish, and this is possible for real ρ if

δ

2c′ κ
4 + σ 2c2

c′2 κ2 � 1

4
; (23)

moreover, condition (23) can be met if the perturbation wave number κ exceeds a certain lower
cutoff value:

κ � κmin = σc√
δc′

{√
1 + δc′3

2σ 4c4
− 1

}1/2

. (24)

Thus, the overall maximum of λr is realized for κ = κmin:

λr |max = 1
2γ − ακ2

min. (25)

Out of all κ allowed by condition (24), the wave number κ = κmin is selected here as it is the least
affected by viscous dissipation. Furthermore, for κ = κmin, it follows from Eq. (22) that λi = 0, so
according to Eqs. (20b) the most unstable perturbations have equal frequencies, ω+ = ω− = ω/2.

According to Eq. (25), PSI arises if γ > 2ακ2
min. The first term in the instability growth rate in

Eq. (25) represents the destabilizing effect of resonant triad interactions while the second accounts
for viscous dissipation, which is stabilizing. A similar result was obtained for the PSI of a sinusoidal
plane wave in the absence of rotation [see Eq. (4.7) in Ref. [6]]; this is to be expected, as the
vanishing group velocity of near-inertial subharmonic perturbations should not be a factor in the
case of a periodic wave train where such perturbations are monochromatic [viz., Eqs. (19)].

In the inviscid limit (α = 0), it follows from Eq. (25) that PSI is universal, and the maximum
growth rate is γ /2 irrespective of the perturbation wavelength. This conclusion is in complete
agreement with Young et al. [23]. More specifically, after converting to the present nondimensional
variables, their expression (4.19) for the maximum PSI growth rate becomes (3/8)ε sin θ cos θ ;
this is consistent with Eq. (25) in the inviscid limit (α = 0), taking into account the slow time
T = εt and noting that, in view of Eqs. (4), (5), and (9), γ in Eq. (16) can be also expressed as
γ = (3/4) sin θ cos θ .

IV. LOCALLY CONFINED BEAM

A. Eigenvalue problem

Next, we examine the stability of a beam with general locally confined profile Q(η) of O(1)
width (here the length scale L∗ is chosen to be a measure of the beam width). For this purpose, we
look for solutions of Eqs. (17) in the form of normal modes

A(η,T ) = Â(η)eλT , B(η,T ) = B̂(η)eλ∗T (26)
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that decay far from the beam

Â,B̂ → 0 (η → ±∞), (27)

where λ = λr + iλi is to be found. Upon inserting expressions (26) into Eqs. (17), Â and B̂ then
satisfy

(λ + ακ2)Â + σc

κ
Âη − i

2

c′

κ2
Âηη − iδκ2|Qη|2Â + γQηηB̂

∗ = 0, (28a)

(λ∗ + ακ2)B̂ − σc

κ
B̂η − i

2

c′

κ2
B̂ηη − iδκ2|Qη|2B̂ + γQηηÂ

∗ = 0. (28b)

These equations along with the boundary conditions (27) define an eigenvalue problem with λ̃ =
λ + ακ2 as the eigenvalue parameter; thus, in terms of λ̃ = λ̃r + iλ̃i , the instability criterion λr > 0
translates into λ̃r > ακ2.

From the above eigenvalue problem it follows that PSI of a locally confined beam with profile
Q(η) hinges on computing λ̃ = λ̃(f,σ,κ) and checking whether λ̃r > ακ2. A comprehensive stability
analysis thus involves varying three independent parameters: the background inertial frequency f ,
the detuning parameter σ which controls via Eq. (10) the proximity of the subharmonic frequency
ω/2 to f , and the perturbation wave number parameter κ . This rather formidable task becomes more
manageable if 1 − f 2 ≈ 1, an approximation that is justified in ocean applications where f � 0.1.
Under this assumption, f can be scaled out and, taking into account Eq. (16), Eqs. (28) simplify to

λ̂Â +
√

3
σ̂

κ
Âη − i

3

2κ2
Âηη − i

3κ2

2
|Qη|2Â + 3

√
3

4
QηηB̂

∗ = 0, (29a)

λ̂∗B̂ −
√

3
σ̂

κ
B̂η − i

3

2κ2
B̂ηη − i

3κ2

2
|Qη|2B̂ + 3

√
3

4
QηηÂ

∗ = 0, (29b)

where

λ̂ = λ + ακ2

f
, σ̂ = σ

f
. (30)

Accordingly, the eigenvalue spectrum λ̂ = λ̂(σ̂ ,κ) now depends on two parameters, and in terms of
λ̂ = λ̂r + iλ̂i the instability criterion λr > 0 takes the form

λ̂r (σ̂ ,κ) > Cκ2, (31)

with

C = α

f
. (32)

It should be noted that Eqs. (29) admit a continuous spectrum of purely imaginary λ̂, corresponding
to radiating solutions far from the beam that are damped by viscosity. By contrast, solutions that
are localized in the vicinity of the beam in keeping with the boundary conditions (27), and may
give rise to instability, are associated with a discrete spectrum of isolated complex eigenvalues. The
eigenvalue problem consisting of Eqs. (29) subject to conditions (27) has to be solved numerically
in general.

The instability criterion (31) allows one to examine in a systematic way the PSI of a given
beam profile Q(η), as follows: (i) solve Eqs. (29) subject to conditions (27) to compute the discrete
eigenvalue spectrum, focusing entirely on modes with λ̂r > 0; (ii) plot λ̂r as a function of wave
number κ > 0, for various values of detuning σ̂ � 0; (iii) check whether these λ̂r curves intersect
with the quadratic Cκ2 as we vary the parameter C defined in Eq. (32), which brings into the picture
viscous dissipation [viz., Eq. (11)] and f . These intersections determine possible ranges of wave
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FIG. 2. Plots of the real part of stability eigenvalues λ̂ = λ̂r + iλ̂i as function of the wave number parameter
κ , for certain values of detuning σ̂ : solid line (σ̂ = 0); dashed line (σ̂ = 2); dashed-dotted line (σ̂ = 3); dotted
line (σ̂ = 4). These eigenvalues were computed by solving Eqs. (29) subject to conditions (27) for the beam
profile in Eq. (33).

numbers where the criterion (31) is satisfied; out of these unstable wave numbers, the most unstable
perturbation corresponds to the wave number with the largest growth rate λr = f λ̂r − ακ2.

B. Gaussian beam profile

Here, we carry out the program outlined above using as an example the beam profile

Q(η) = 1√
8π

∫ ∞

0
e−l2/8eilη dl. (33)

This Q involves plane waves with wave numbers of the same sign (l > 0) and, as explained in
Tabaei et al. [26], represents a unidirectional (progressive) beam that transports energy in the
direction x cos θ − y sin θ > 0 along the beam. Furthermore, the beam stream function in Eq. (13a),
at t = 0, is a Gaussian

ψ = εe−2η2
(t = 0), (34)

with peak amplitude normalized to ε and standard deviation to 1
2 (the characteristic length L∗

is equal to twice the dimensional standard deviation). For the profile in Eq. (33), which satisfies
Q(−η) = Q

∗
(η), it is also straightforward to verify that if {λ̂,Â(η),B̂(η)} is a solution to Eqs. (29)

subject to the boundary conditions (27), so is {−λ̂∗,−Â∗(−η),B̂∗(−η)}; thus, discrete eigenvalues
appear in pairs, and we select the mode with λ̂r > 0, as only it can be associated with instability.

Figure 2 shows plots of λ̂r as a function of κ > 0 for σ̂ = 0, 2, 3, and 4. These numerical results
were obtained by discretizing Eqs. (29) via second-order centered finite differences and applying
the boundary conditions (27) at the edges of the computational domain, followed by generalized
Schur decomposition of the resulting matrix eigenvalue problem. Specifically, we used the grid size
�η = 0.01 and the computational domain −20 < η < 20. As illustrated in Fig. 2, for each value of
σ̂ , an eigenvalue branch first arises when κ exceeds a certain critical value, with two pairs of discrete
eigenvalues (λ̂,−λ̂∗) splitting off the continuous spectrum on the imaginary axis in the complex λ̂

plane. [The numerical results strongly suggest that the two eigenvalue pairs, in fact, belong to the
quartet (λ̂, −λ̂, λ̂∗, −λ̂∗) so the unstable eigenvalues have the same λ̂r , but we have no rigorous proof
for this claim.] Increasing κ beyond this bifurcation point, λ̂r grows to a maximum and then drops
off to zero at a finite κ , as the two eigenvalue pairs return to the imaginary axis. Before the first
eigenvalue branch disappears, a new branch arises and follows a similar course to the previous one,
and this pattern of successive bifurcations continues as κ is further increased; however, as argued
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FIG. 3. Graphical implementation of the instability criterion (31) for detuning σ̂ = 2. (a) The quadratic Cκ2

intersects with the primary eigenvalue branch λ̂r (κ) in Fig. 2, and instability arises, only ifC < Ccrit = 0.41. The
dashed parabola corresponds to the marginal situation C = Ccrit and the solid parabola to C = 0.05, in which
case there is a range of unstable wave numbers, κl < κ < κu, and the most unstable perturbation corresponds
to κ = κm. (b) Dependence of Ccrit on the detuning parameter σ̂ .

below, the primary branch plays the most important part in PSI analysis. We mention in passing that a
countable infinity of eigenvalue branches was also found in the PSI analysis of quasimonochromatic
beams with locally confined envelope and f = 0 [6].

Returning to the instability criterion (31), we now ask whether the quadratic Cκ2 can intersect
with the eigenvalue branches λ̂r (σ̂ ,κ) computed above. The answer to this question hinges on σ̂ ,
which controls the tuning of near-inertial subharmonic perturbations [viz., Eqs. (10) and (30)], as
well as the parameter C = α/f , where α measures viscous dissipation in comparison to nonlinear
effects according to Eq. (11). As shown in Fig. 2, increasing σ̂ causes the eigenvalue spectrum
λ̂r (σ̂ ,κ) to gradually shrink; thus, in the limit σ̂ 	 1 and C fixed, no intersecting with Cκ2 is
expected. As a result, the beam profile in Eq. (33) may suffer PSI only if the subharmonic frequency
ω/2 is close enough to the inertial frequency f . This is consistent with the lack of PSI in the
absence of background rotation, as concluded in Ref. [6] for beams with general locally confined
profile.

The effect of varying the parameter C on PSI is illustrated in Fig. 3(a) for σ̂ = 2. It is seen that
the quadratic Cκ2 intersects with the primary eigenvalue branch, and hence PSI arises according to
the criterion (31), only if C < Ccrit = 0.41. When this condition is met, there are a range of unstable
wave numbers κl < κ < κu, and the most unstable perturbation corresponds to κ = κm for which
the growth rate λr = f (λ̂r − Cκ2) is maximum. It should be noted that for C < 0.17 the quadratic
Cκ2 also intersects with the second eigenvalue branch so there is an additional instability window.
However, the threshold for PSI is set by Ccrit, and the most unstable perturbation is determined by
the intersection of Cκ2 with the primary eigenvalue branch. These findings are valid in general for
σ̂ � 0, so the primary eigenvalue branch is always responsible for the dominant instability.

The dependence of Ccrit on σ̂ is displayed in Fig. 3(b). Interestingly, the maximum of Ccrit occurs
for σ̂ positive (σ̂ ≈ 2); thus, as C = α/f is varied, PSI sets in when ω/2 is slightly above f . This
is illustrated in Fig. 4 which shows neutral curves α/f = Ccrit(σ/f ) in the (f,σ ) plane for three
specific values of α. Each of these curves defines a stability boundary, to the right of which C < Ccrit

and hence PSI is possible for the corresponding α. It should be noted that, for given α, f has to
exceed a certain minimum f = f0 for instability to be present; moreover, σ > 0 when f = f0,
confirming that the onset of PSI is realized for ω/2 slightly above the inertial frequency. Beyond
this threshold (f > f0), PSI is possible for a finite range of σ , which translates into a window of
near-inertial subharmonic frequencies according to Eq. (10). Furthermore, increasing α, thereby
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FIG. 4. Plots of neutral curves α/f = Ccrit(σ̂ /f ) in the (f,σ ) plane for three specific values of α = ν/ε2:
solid line (α = 0.01); dashed line (α = 0.05); dashed-dotted line (α = 0.1). To the right of each of these curves
(f > f0) PSI is possible for a finite range of σ .

amplifying viscous dissipation relative to nonlinear effects [viz., Eq. (11)], causes f0 to increase as
well.

By combining Eq. (32) with (11), the condition for PSI, C < Ccrit, can also be expressed in terms
of a threshold beam steepness:

ε > εcrit =
√

ν

fCcrit(σ̂ )
. (35)

This form of the instability condition underscores the competition of the destabilizing effect of
resonant triad interactions, controlled by the beam steepness ε, against the viscous dissipation of the
perturbations, measured by ν, and the tuning of near-inertial perturbations (ω/2 ≈ f ), controlled by
σ̂ as discussed above.

C. Long-time evolution of PSI

The pump-wave approximation used in deriving the stability equations (17) eventually breaks
down as unstable perturbations keep extracting energy from the underlying beam. The long-time
development of the instability is governed by the nonlinear equation system (14) and (15) which
accounts for the effect of the growing perturbations on the beam evolution.

To explore the entire instability process, from the early exponential growth of linear perturbations
to the mature stage where subharmonic disturbances have reached comparable magnitude to the
beam, Eqs. (14) and (15) were numerically solved using as initial condition the beam profile Q in
Eq. (33), slightly perturbed by subharmonic disturbances in the form

Q(η,T = 0) = Q(η), A(η,T = 0) = B(η,T = 0) = Q(η)

200
. (36)

The numerical discretization employed second-order centered finite differences on a uniform grid
with �η = 0.03 in the computational domain −100 < η < 100, along with fourth-order Runge-
Kutta time stepping with �T = 0.05. The numerical results presented below were obtained taking
C = 0.05 and σ̂ = 2. For this choice of parameters, it follows from the eigenvalue analysis of
Sec. IV B that linear instability arises for 0.63 < κ < 2.2, as shown in Fig. 3(a); we chose κ = 1.73,
which corresponds to the most unstable perturbation wave number κ = κm in this range. Furthermore,
we took f = 0.1, so σ = 0.2 and α = 5 × 10−3 according to Eqs. (30) and (32).

Figure 5 summarizes the coupled evolution of the subharmonic disturbances and the underlying
beam, for the initial conditions (36). The initial subharmonic perturbations quickly transform to a
linear combination of the two unstable linear modes with eigenvalues λ̂ and λ̂∗, predicted by the
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FIG. 5. Evolution of wave beam, with initially Gaussian stream function defined in Eq. (34), and
subharmonic perturbations with the most unstable wave number according to linear stability analysis, for
f = 0.1, σ̂ = 2, and C = 0.05. The magnitudes of the beam profile (|Q|) and the perturbation envelopes
(|A|,|B|) are displayed at various times T .

stability analysis of Sec. IV B, and this disturbance then grows exponentially with the appropriate
linear growth rate f λ̂r − ακ2

m, while the beam remains essentially intact in line with the pump-wave
approximation. The solution of the stability eigenvalue problem [viz., Eqs. (29) with the boundary
conditions (27)] suggests that the (complex) eigenfunctions (Â,B̂) of the two unstable modes obey
the symmetries |Â(η; λ̂)| = |B̂(η; λ̂∗)|, |Â(η; λ̂∗)| = |B̂(η; λ̂)|. However, the mode with eigenvalue
λ̂∗, whose eigenfunction oscillates less rapidly than that of the mode with eigenvalue λ̂ and matches
the scale of Q(η) better, dominates the unstable disturbance that emerges from the assumed initial
conditions (36); this explains the asymmetric evolution of |A|,|B| in Fig. 5. The linear evolution
stage lasts until T ≈ 40. Beyond this time, as the perturbations have grown appreciably, the effect
of the energy extracted from the beam becomes evident, with the beam peak amplitude dropping
sharply between T = 50 and 80. As a result, for T � 80, the subharmonic disturbances can no longer
stay locked onto the beam. This signals the end of the nonlinear interaction, as the perturbations
propagate away from the beam and eventually decay by viscous dissipation, leaving behind a beam
with peak amplitude about half of the original. This depleted beam is confirmed to be stable based
on the eigenvalue stability analysis of Sec. IV A.

V. DISCUSSION

We presented an asymptotic theory for PSI of an internal wave beam of frequency ω in the
presence of background rotation, for the case where subharmonic perturbations have near-inertial
frequency (ω/2 ≈ f ). When this condition is met, beams of finite width are expected on physical
grounds to be especially vulnerable to PSI, as near-inertial subharmonic perturbations have small
group velocity and stay in contact with the underlying beam longer, thus extracting more energy, than
subharmonic perturbations of general frequency. As expected for PSI, this energy transfer involves
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perturbations that form resonant triads with the beam. Our analysis has shown that here resonant
triad interactions are more robust than usual because of the small group velocity of near-inertial
perturbations, and this fundamental difference of near-inertial PSI has important implications for
beams of finite width.

Specifically, returning to expansions (13), the resonant triad conditions appropriate to near-inertial
PSI can be expressed as

k+ + k− = O(1), ω+ + ω− = ω + O(ε), (37)

where k± are the wave vectors and ω± the frequencies of perturbations forming a triad with the
underlying beam of O(1) width and carrier frequency ω. These conditions were met in Eqs. (13) by
our choice of carrier wave vectors ±κ/ε1/2 êζ and frequency ω/2, in conjunction with η = O(1) and
T = εt being the appropriate envelope variables, for the perturbations. By contrast, the analogous
resonant triad conditions for generic PSI (ω not close to 2f ) take the form [see Eqs.(3.2) and (3.3)
in Ref. [6]]

k+ + k− = k0 + O(ε1/2), ω+ + ω− = ω + O(ε), (38)

where k0 = êη is the carrier wave vector of the underlying beam, which in this instance is restricted to
having nearly monochromatic profile with envelope of O(1/ε1/2) width. Furthermore, subharmonic
perturbations that partake in resonant triads with such a beam, in keeping with Eqs. (38), have carrier
wave vectors ±κ/ε1/2 êζ + k0/2 and envelopes that depend on ξ = ε1/2η and T = εt .

Upon comparison of Eqs. (37) with Eqs. (38), the frequency resonance condition is the same,
and in both cases PSI involves fine-scale subharmonic wave packets of carrier frequency ω/2 that
evolve on an O(1/ε) time scale. The wave vector resonance condition, though, is far less binding
for near-inertial than generic PSI. As a result, in the former case where Eqs. (37) apply, “thin”
beams with locally confined profile of O(1) width are susceptible to near-inertial PSI; whereas in the
latter case, in accordance with Eqs. (38), PSI can arise only for relatively “wide” beams with nearly
monochromatic profile of O(1/ε1/2) width. It should be noted that this crucial distinction between
near-inertial and generic PSI is blurred if, instead of a finite-width beam, one considers an infinite
sinusoidal wave train. Then, as discussed in Sec. III, the resonance conditions (37) are replaced by
Eqs. (21), which are more akin to Eqs. (38), and the near-inertial PSI growth rate in Eq. (25) is
similar to that found in Ref. [6] for PSI of a sinusoidal plane wave in the case f = 0.

The key role of near-inertial subharmonic perturbations in PSI of finite-width beams is supported
by the numerical simulations of Gerkema et al. [18]. Using the nonlinear nonhydrostatic MIT-GCM,
they explored the effect of latitude on the evolution of semidiurnal (M2) internal tide beams generated
over the continental shelf break. Consistent with field observations of tidal beams originating
from continental shelves [15], the beams seen in the simulations feature narrow profile (typical
width-to-length ratio of 10−2) with no distinct carrier; thus, based on the theory developed here,
such beams would experience PSI to near-inertial subharmonic perturbations only. Indeed, out of the
three latitudes examined in Gerkema et al. [18], strong instability is found only at 27.5◦N, slightly
below the critical latitude 28.8◦N where the subharmonic M2/2 matches the local inertial frequency
f . The salient features of this instability are consistent with those of near-inertial PSI discussed here:
the dominant disturbances are at the M1 = M2/2 frequency and resemble short-scale wave packets
with nearly horizontal crests; moreover, as a result of the instability, the beam loses a significant part
of its energy so when it reaches the bottom it reflects as a linear wave. By contrast, no instability is
found at 45◦N and only traces of PSI are detected at the equator (0◦N); in the latter instance, PSI
drains very little of the beam energy, as evidenced by the generation of superharmonic reflected
beams due to nonlinear effects [26], where the beam hits the ocean floor.

It is interesting to attempt a quantitative comparison of the instability found by Gerkema et al.
[18] at 27.5◦N with the predictions of our near-inertial PSI theory. To this end, we shall take the tidal
beam to have Gaussian profile normalized as in Eq. (34), with L∗ = 500 m so that the beam width
(≈4 standard deviations) is roughly 1 km, as estimated from Fig. 1 of Gerkema et al. [18]. According
to the same figure, the peak beam velocity is about 0.15 m/s; combining this estimate with L∗ and
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the buoyancy frequency N0 = 2 × 10−3 rad/s used in the simulations then gives ε = 0.12 for the
amplitude parameter in Eq. (34). Furthermore, the dimensionless semidiurnal frequency ω = 0.070
and the dimensionless inertial frequency at 27.5◦N f = 0.034 give σ = 0.029 according to Eqs. (5)
and (9), so σ̂ = σ/f = 0.85. Finally, in regard to the parameter α = ν/ε2, Gerkema et al. [18] used
different viscosity in the vertical and horizontal directions ν∗ = 10−4 m2/s and ν∗ = 10−2 m2/s,
respectively; for both these values, the inverse Reynolds number defined in Eq. (2) turns out to
be rather small, ν = 2 × (10−7, 10−5). Thus, viscous effects are relatively weak in comparison
with nonlinear effects, as reflected in the corresponding α = 1.4 × (10−5, 10−3). As a result, the
difference in viscosities does not affect significantly the most unstable perturbation wave number
κ = κm and corresponding maximum growth rate λr |max = f λ̂r − ακ2

m obtained from solving the
stability eigenvalue problem [viz., Eqs. (29) subject to conditions (27)] for the beam profile in
Eq. (33) and σ̂ = 0.85. Specifically, for the two values of α above, we find κm = (2.03, 2.00) and
λr |max = (0.042, 0.033). Taking into account the scaling of the perturbation wave number with ε−1/2

[viz., Eq. (8)] and restoring dimensions, the most unstable perturbation wavelength according to the
theory is (536, 544) m, corresponding to approximately 2 wavelengths within the beam width. This
overpredicts by a factor of about 2 the perturbation wavelength seen in Fig. 1 of Gerkema et al.
[18]; however, in view of our crude assumptions about the beam profile and keeping in mind that
ε1/2 = 0.34 is not all that small, this rough agreement of the theory with the simulations seems
reasonable. In regard to the instability growth rate, according to the simulations, the PSI kinetic
energy grows by an order of magnitude in 2 days, which translates into an exponential growth rate
of 1.15/days. On the other hand, the growth rate found theoretically [accounting for the scaling of
the slow time in Eq. (12) and the fact that the kinetic energy grows at twice the rate of the stream
function perturbation] turns out to be (1.72, 1.36)/days for the two values of α stated above. Again,
this level of agreement of the asymptotic theory with the simulations is deemed satisfactory.

Finally, we wish to comment on the recent laboratory experiments by Maurer et al. [27] which
examined the stability of finite-width beams for a range of background rotations f and beam
frequencies ω. Similar to earlier laboratory experimental work for f = 0 by Bourget et al. [8],
the beam profiles comprised roughly three wavelengths of a sinusoidal wave, and the observed
instabilities are connected with perturbations that form resonant triads with the underlying beam.
However, owing to the increased importance of viscous dissipation in the laboratory, the temporal
and spatial scales of these triads do not adhere to those associated with PSI, and Maurer et al. [27]
refer to the type of instability they observed as triadic resonant instability (TRI). Even though it is
not feasible to make direct comparison of the present nearly inviscid (ν � 1) theory for near-inertial
PSI with the TRI observed in Ref. [27], our stability analysis provides a possible explanation for the
unstable perturbations with subinertial frequency observed in these experiments for ω ≈ 2f . Unlike
sinusoidal plane waves, which in keeping with the dispersion relation (4) cannot propagate with
frequency below f , instability modes of a finite-width beam are evanescent far from the beam and
the associated perturbations may have subinertial frequency. Specifically, according to Eqs. (13),
(26), and (10), the perturbations corresponding to an instability eigenmode of a finite-width beam
have frequencies

ω± = f +
{

σ 2(1 − f 2)

2f
∓ λi

}
ε, (39)

where λ = λr + iλi is an unstable (λr > 0) eigenvalue obtained from Eqs. (28) subject to boundary
conditions (27). This indicates that for σ sufficiently small (i.e., ω → 2f ) one of the two unstable
perturbations can have subinertial frequency.
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APPENDIX: DERIVATION OF INTERACTION EQUATIONS

Here, we provide some intermediate steps in the derivation of the evolution equations (14) and
(15). Upon substituting expansions (13) in the governing equations (1), interactions between the
underlying beam and subharmonic perturbations arise due to the nonlinear terms in Eqs. (1). The
contributions of each of these terms to the beam and perturbation harmonics, organized by phase,
are

J (ρ,ψ) = ε5/2

κ

{
J
(
Feiκζ/ε1/2

,Be−iκζ/ε1/2) + J
(
Ge−iκζ/ε1/2

,Aeiκζ/ε1/2)}
e−iωt

+ ε2

{
J
(
G∗eiκζ/ε1/2

,Q
) + ε1/2

κ
J
(
R,B∗eiκζ/ε1/2)}

e−iωt/2

+ ε2

{
J
(
F ∗e−iκζ/ε1/2

,Q
) + ε1/2

κ
J
(
R,A∗e−iκζ/ε1/2)}

e−iωt/2 + c.c., (A1)

J (w,ψ) = ε5/2

κ

{
J
(
Meiκζ/ε1/2

,Be−iκζ/ε1/2) + J
(
Ne−iκζ/ε1/2

,Aeiκζ/ε1/2)}
e−iωt

+ ε2

{
J
(
N∗eiκζ/ε1/2

,Q
) + ε1/2

κ
J
(
W,B∗eiκζ/ε1/2)}

e−iωt/2

+ ε2

{
J
(
M∗e−iκζ/ε1/2

,Q
) + ε1/2

κ
J
(
W,A∗e−iκζ/ε1/2)}

e−iωt/2 + c.c. (A2)

J (∇2ψ,ψ) = ε3

κ2

{
J
(
Aeiκζ/ε1/2

,Be−iκζ/ε1/2) + J
(
Be−iκζ/ε1/2

,Aeiκζ/ε1/2)}
e−iωt

+ ε5/2

κ

{
J
(
Qηη,B

∗eiκζ/ε1/2) + J
(
B∗eiκζ/ε1/2

,Q
)}

e−iωt/2

+ ε5/2

κ

{
J
(
Qηη,A

∗e−iκζ/ε1/2) + J
(
A∗eiκζ/ε1/2

,Q
)}

e−iωt/2 + c.c., (A3)

where

Aeiκζ/ε1/2 ≡ ∇2Aeiκζ/ε1/2 =
{
−κ2

ε
A + 2

iκ

ε1/2
cos(θ − φ)Aη + Aηη

}
eiκζ/ε1/2

, (A4)

Be−iκζ/ε1/2 ≡ ∇2Be−iκζ/ε1/2 =
{
−κ2

ε
B − 2

iκ

ε1/2
cos(θ − φ)Bη + Bηη

}
e−iκζ/ε1/2

. (A5)

Combining Eq. (4) with (5) and invoking the near-inertial scaling sin φ = σε1/2, we also find

sin θ = s0 + εs1 + O(ε2), (A6)

cos θ = c0 − εc1 + O(ε2), (A7)

and

cos(θ − φ) = c0 + ε1/2σs0 − ε

(
c1 + σ 2

2
c0

)
+ O(ε3/2), (A8)

where

s0 =
√

3f 2

1 − f 2
, s1 = 2σ 2

√
1 − f 2

3f 2
, c0 =

√
1 − 4f 2

1 − f 2
, c1 = 2σ 2

√
1 − f 2

1 − 4f 2
. (A9)
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In addition, from Eq. (10), we have
1

ω
= w0 − εw1 + O(ε2), (A10)

where

w0 = 1

2f
, w1 = σ 2 1 − f 2

4f 3
. (A11)

The evolution equation (14) for Q is derived by collecting terms proportional to exp(−iωt) in
the governing equations (1), after substituting expansions (13). Making use of the first set of curly
brackets in Eqs. (A1) and (A2), it follows from Eqs. (1a) and (1b), respectively,

R = −is0w0Qη + ε
{
i(s0w1 − s1w0)Qη − s0w

2
0QηT + s0w0(AG − BF )η

}
, (A12)

W = if c0w0Qη + ε
{−if (c0w1 + w1c0)Qη + s0w0(AN − BM)η + f c0w

2
0QηT

}
. (A13)

Upon substituting Eqs. (A12) and (A13) into Eq. (1c) and using Eq. (A3), one then has

QT + s0

{
− s0w0

2
(AG − BF ) + f c0w0

2
(AN − BM) + c0AB

}
= 0. (A14)

Next, we collect terms proportional to exp(±iκζ/ε1/2 − iωt/2). Specifically, making use of
Eq. (A1), it follows from Eq. (1a) that

F = ε1/2

{
2w0σA− 2iw0s0

κ
Aη

}
+ ε

{
4κw2

0s0σQηB
∗−4iw2

0s
2
0QηB

∗
η −2iw2

0s
2
0QηηB

∗} + O(ε3/2),

(A15)

G= ε1/2

{
−2w0σB− 2iw0s0

κ
Bη

}
+ε

{
4κw2

0s0σQηA
∗+4iw2

0s
2
0QηA

∗
η + 2iw2

0s
2
0QηηA

∗} + O(ε3/2).

(A16)

Similarly, using Eq. (A2) in Eq. (1b) yields

M = −2f w0A + ε1/2

{
i
2f w0c0

κ
Aη − 4f κw2

0s0QηB
∗
}

+ ε

{
−2iακ2w0M + 2f

(
w0σ

2

2
+ w1

)
A

+ 4f κw2
0c0σQηB

∗ + 4if w2
0s0c0QηB

∗
η + 8f κ2w3

0s
2
0 |Qη|2A + 4if w2

0AT

+ 2if w2
0s0c0QηηB

∗
}

+ O(ε3/2), (A17)

N = 2f w0B + ε1/2

{
i
2f w0c0

κ
Bη − 4f κw2

0s0QηA
∗
}

+
{
−2iακ2w0N − 2f

(
w0σ

2

2
+ w1

)
B

+ 4f κw2
0c0σQηA

∗ − 4if w2
0s0c0QηA

∗
η − 8f κ2w3

0s
2
0 |Qη|2B − 4if w2

0BT

− 2if w2
0s0c0QηηA

∗
}

+ O(ε3/2). (A18)

Inserting the leading order balance from the above,

F = O(ε1/2), G = O(ε1/2), M = −2f w0A, N = 2f w0B, (A19)

into Eq. (A14) produces

QT + s0c0
(
2f 2w2

0 + 1
)
AB = 0. (A20)

Substituting Eqs. (A9) and (A11) into (A20), we arrive at Eq. (14).
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Finally, using Eq. (A3), it follows from Eq. (1c) that

A = −2f w0M + ε1/2

{
2w0σF + 2ic0

κ
Aη − 2iw0s0

κ
Fη + 2if w0c0

κ
Mη − 2κw0s0QηB

∗
}

+ ε

{
2is0σ

κ
Aη + 2κw0c0σQηB

∗ + 2f

(
w0σ

2

2
+ w1

)
M + 1

κ2
Aηη − 2iw0AT

+ 4iw0s0c0QηB
∗
η − 2iαw0κ

2A

}
+ O(ε3/2), (A21)

B = 2f w0N + ε1/2

{
− 2w0σG − 2ic0

κ
Bη − 2iw0s0

κ
Gη + 2if w0c0

κ
Nη + 2κw0s0QηA

∗
}

+ ε

{
−2is0σ

κ
Bη − 2κw0c0σQηA

∗ − 2f

(
w0σ

2

2
+ w1

)
N + 1

κ2
Bηη − 2iw0BT

+ 4iw0s0c0QηA
∗
η − 2iαw0κ

2B

}
+ O(ε3/2). (A22)

Using Eqs. (A15) and (A17), we may then eliminate F and M from Eq. (A21) to obtain

−(
4if w2

0 + 2iw0
)
AT + −8iw2

0 + 2i

κ
s0σAη + 1 − 4w2

0

(
s2

0 + f 2c2
0

)
κ2

Aηη

+
[
−4iακ2w0 − 4f

(
w0σ

2

2
+ w1

)
+ 4w2

0σ
2

]
A

(
4 − 4f w0 − 8f 2w2

0

)
iw0s0c0QηB

∗
η

− 8f κ2w3
0s

2
0 |Qη|2A − (2 + 8f w0)if w2

0s0c0QηηB
∗ = 0. (A23)

Note that the O(1) and O(ε1/2) terms in Eq. (A21) cancel out since w0 = (2f )−1 from Eq. (A11).
Thus, after simplifying the coefficients in Eq. (A23) by making use of Eqs. (A9) and (A11), we
arrive at Eq. (15a). Likewise, we use Eqs. (A16) and (A18) to eliminate G and N from Eq. (A22):

−(
4if w2

0 + 2iw0
)
BT + 8iw2

0 − 2i

κ
s0σBη + 1 − 4w2

0

(
s2

0 + f 2c2
0

)
κ2

Bηη

+
[
−4iακ2w0 − 4f

(
w0σ

2

2
+ w1

)
+ 4w2

0σ
2

]
B

× (
4 − 4f w0 − 8f 2w2

0

)
iw0s0c0QηA

∗
η − 8f κ2w3

0s
2
0 |Qη|2B

− (2 + 8f w0)if w2
0s0c0QηηA

∗ = 0, (A24)

and arrive at Eq. (15b) after using Eqs. (A9) and (A11) to simplify the coefficients in Eq. (A24).
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