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and unstably stratified homogeneous turbulence

Olivier Soulard and Benoît-Joseph Gréa
CEA, DAM, DIF, 91297 Arpajon, France

(Received 20 February 2017; published 20 July 2017)

The purpose of this work is to study the anisotropic properties of the inertial range of
Rayleigh-Taylor and unstably stratified homogeneous (USH) turbulence. More precisely,
we aim to understand the role played by the so-called zero-modes, i.e., modes that nullify
the anisotropic part of transfer terms. To this end, we determine several characteristic
properties of zero-modes using an eddy-damped quasinormal Markovianized (EDQNM)
model. Then we perform a high-Reynolds-number EDQNM simulation of a USH flow and
check whether the predicted zero-mode properties are indeed observed in this idealized
setting. Finally, we carry out a large-eddy simulation of a Rayleigh-Taylor flow and verify
if zero-modes can also be identified in this configuration. Among the main findings of this
work, we show that the small-scale anisotropy of the velocity and concentration spectra is
dominated by the nonlocal contribution of zero-modes rather than by the local action of
buoyancy forces. As a result, we predict inertial scaling exponents close to −7/3 (rather than
−3) for the second-order harmonics of the velocity and concentration spectra. By contrast,
the concentration flux spectrum remains controlled by buoyancy forces. Still, we show
that the zero-mode contribution vanishes slowly as the Reynolds number increases. This
translates into a slow convergence of the scaling exponent of the second-order harmonic of
the concentration flux to −7/3.

DOI: 10.1103/PhysRevFluids.2.074603

I. INTRODUCTION

Most theoretical studies dedicated to the small scales of Rayleigh-Taylor turbulence have
focused on determining the isotropic properties of the velocity and concentration spectra in the
inertial range [1–6], leaving aside the question of anisotropy. Yet, as observed in numerical
simulations [7], anisotropy has a strong imprint on inertial scales and requires a description of its
own.

One of the first attempts at explaining Rayleigh-Taylor inertial-range anisotropy was made in
Ref. [8]. In this work, anisotropy was considered to be induced by buoyancy forces in the form of
a small perturbation around the isotropic Kolmogorov-Obukhov spectrum. This perturbation was
then studied with the help of the spectral Langevin model proposed in Ref. [9]. The latter predicts
the existence, in the inertial range, of a local equilibrium between the anisotropic components
of the nonlinear transfer terms and buoyancy production. The outcome of this equilibrium is an
anisotropic perturbation of the velocity and concentration spectrum proportional to a second-order
angular harmonic and scaling as N2k−3, with N the stratification frequency and k the wave number.
This result is fully compatible with the dimensional analysis initiated in Ref. [10] and extended to
stratified flows in Ref. [11], and which initially motivated the study developed in Ref. [8]. Note that
the dimensional analysis of [11] finds its roots in the work of Lumley [12,13] and that developments
similar to those in Ref. [8] were made in Ref. [14] in the context of stably stratified turbulence.
Note also that the smallness of buoyancy forces compared to their inertial counterpart was first
emphasized in Ref. [15].

In the meantime, an idealized version of Rayleigh-Taylor turbulence, called unstably stratified
homogeneous (USH) turbulence, was proposed [16–21]. The interesting aspect of USH turbulence is
that it retains all the ingredients of Rayleigh-Taylor turbulence except for inhomogeneity. Therefore,
with the assumption that Rayleigh-Taylor small scales are quasihomogeneous, it is expected that
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Rayleigh-Taylor and USH inertial ranges display similar features. In fact, this expectation was
already implicitly used in Ref. [8] to predict the properties of Rayleigh-Taylor small scales: The
spectral Langevin model used in Ref. [8] strictly applies to USH turbulence, but its range of
validity was implicitly extended to Rayleigh-Taylor small scales under the condition that they are
quasihomogeneous. Indeed, the similarity between USH and Rayleigh-Taylor inertial ranges was
verified in several direct numerical simulations (DNSs) of USH and Rayleigh-Taylor turbulence
[8,16]. In particular, most of the scalings and angular dependences predicted in Ref. [8] appeared to
be verified in both types of configuration.

However, the Rayleigh-Taylor and USH verification of the predictions made in Ref. [8] could
only be performed at moderate Reynolds numbers, i.e., up to a Taylor Reynolds number on the
order of 100. To overcome this limitation, an eddy-damped quasinormal Markovianized (EDQNM)
model was proposed for USH turbulence and thoroughly validated against DNS [19,21]. Then this
model was used to explore higher Reynolds numbers [20,21]. What was observed in Refs. [20,21]
was a systematic departure from the predictions made in Ref. [8]. In particular, at the largest wave
numbers, the anisotropy of the velocity spectrum was found to scale closer to k−7/3 than to k−3.
Therefore, the question arises as to the origin of this discrepancy.

To answer this question, we note a fundamental difference between the spectral Langevin model
used in Ref. [8] and the EDQNM model used in Ref. [20]. The former model uses an extremely
simplified description of the anisotropic components of nonlinear transfer terms. This simplification
allows for only one possible local anisotropic equilibrium between nonlinear transfer terms and
buoyancy forces. This in turn leads to a unique characterization of the anisotropic perturbation around
the isotropic Kolmogorov-Obukhov spectrum, with a fixed k−3 scaling. By contrast, the EDQNM
model, which retains more physics in its description of the anisotropy of nonlinear transfer terms,
allows for a whole family of equilibrium solutions. This family consists in the sum of a particular
solution ensuring the balance between transfer and buoyancy forces and a set of homogeneous
solutions that have a zero contribution to anisotropic nonlinear transfer terms. This general structure
was put forth in Ref. [22], albeit in the context of shear flows and for a Lagrangian renormalization
approximation. The homogeneous contributions are called zero-modes and their study is referred to
as zero-mode analysis.

Zero-mode analysis has allowed to make tremendous progress in the characterization of the
inertial range anisotropy of a wide variety of configurations [23], including shear flows [24], passive
scalar advection [25], or magnetic-field advection [26]. It has also been applied to very diverse models
[23,27]. In particular, it has been used to analyze the anisotropic properties of a direct-interaction
approximation model for the velocity field [24]. In the inertial range, the formulation of this model
is almost identical to an EDQNM model, so the results obtained in Ref. [24] are directly relevant to
our situation. One of the main result obtained in Ref. [24] is that the second-order harmonic of the
velocity field’s zero-modes scales approximately as k−7/3.

This suggests that the presence of zero-modes can possibly explain the difference between the
observations made in Ref. [20] and the predictions made in Ref. [8]. However, one may in principle
imagine other mechanisms leading to a k−7/3 anisotropy. Therefore, a further characterization of
zero-modes is required to ensure that they are indeed responsible for what is seen in Ref. [20].
Besides, even if small, differences in the closures used in Refs. [19,24] exist. The effects of these
differences should be looked at. Finally, if zero-modes are present, they should modify not only
the velocity spectrum but also the concentration spectrum and the concentration flux spectrum.
The presence of zero-modes for these spectra should also be investigated. In particular, the local
equilibrium described in Ref. [8] predicts a k−7/3 scaling for the concentration flux spectrum. This
scaling appears to be reached in the simulations of [20], but with a very slow convergence in terms of
Reynolds number. Such a slow convergence was also observed in a different context in Refs. [28,29].
The potential role played by zero-modes in this slow convergence should be probed.

Thus, the purpose of this work is to examine, with the help of an EDQNM model, the influence of
zero-modes on the inertial-range anisotropy of Rayleigh-Taylor and unstably stratified homogeneous
turbulence. To this end, we start with the previously mentioned idea that the inertial range
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FIG. 1. Sketch of the idea followed in Ref. [8] to analyze the inertial-range anisotropy of Rayleigh-Taylor
and USH turbulence.

properties of Rayleigh-Taylor and USH turbulence are similar. This idea stems from the expected
quasihomogeneity of Rayleigh-Taylor small scales and from the verification already performed
in Ref. [16]. Given the ability of the EDQNM model proposed in Ref. [19] to reproduce DNS
simulations of USH turbulence, we assume that this model provides a sufficiently accurate description
of USH small scales and by extension of Rayleigh-Taylor small scales. Equipped with this model, we
apply the methodology developed in Ref. [24] to find zero-modes and study some of their properties.
Then we sum the found zero-modes with the equilibrium spectra already derived in Ref. [8] and
examine how the two contributions interact. Finally, we perform a validation in two steps. First,
we carry out an EDQNM simulation of USH turbulence at a Reynolds number of 107. Second, we
complete a large-eddy simulation (LES) of a Rayleigh-Taylor flow. In both cases, we attempt to
determine whether zero-modes can be identified or not and if their properties are consistent with the
zero-mode analysis.

II. FURTHER CONSIDERATION OF ZERO-MODES AND EQUILIBRIUM SPECTRA

Before entering the core of the subject, we would like to rephrase some of the statements already
made in the Introduction in order to clarify further the key physical ideas that form the backbone
of this study. First of all, we would like to recall the description of inertial range anisotropy
initially proposed in Ref. [8] for Rayleigh-Taylor turbulence and emphasize its shortcomings. This
description is schematized in Fig. 1. As already explained in the Introduction, it consists in assuming
that, in the inertial range, buoyancy forces induce a small anisotropic perturbation around the
isotropic Kolmogorov spectrum. By contrast, nonlinear effects are considered to restore isotropy
and to counteract the action of buoyancy forces. The balance of the two processes leads to the
emergence of an anisotropic equilibrium spectrum. in Ref. [8], this balance was studied with the
help of the spectral Langevin model proposed in Ref. [9], but the overall idea stands independently
of this particular choice. The main predictions made in Ref. [8] are the following: The equilibrium
contribution exhibits a second-order-harmonic angular dependence and scales as k−3 for the velocity
and concentration spectra and as k−7/3 for the concentration flux spectrum. These scalings are
compatible with dimensional arguments, such as those proposed in Refs. [11,13].

The issue with these results comes from the physical idea followed in Ref. [8] and schematized in
Fig. 1. This idea oversimplifies the role played by nonlinear interactions: Nonlinear interactions may
not only restore isotropy, also promote anisotropy. For instance, they can transfer information from
large anisotropic scales to small more isotropic ones or exchange anisotropy between the different
components of the spectra, some of which may be more anisotropic than others. Because of these
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FIG. 2. Sketch of the idea followed in this work to analyze the inertial-range anisotropy of Rayleigh-Taylor
and USH turbulence.

antagonizing effects, an additional balance, involving only nonlinear interactions, can take place.
When this happens, zero-mode spectra emerge [22–27]. The latter denomination comes from the
fact that zero-modes cancel out the nonlinear transfer terms of the turbulent spectra or at least their
anisotropic part. This physical description of inertial-range anisotropy is schematized in Fig. 2.

Zero-modes do not replace equilibrium spectra but are superimposed with them [22]. One of
the question we would like to address in this work is how the inclusion of zero-modes modifies
the predictions originally made in Ref. [8]. In particular, we would like to determine whether the
zero-mode contributions decay faster or slower than their equilibrium counterparts, i.e., to determine
which of these contributions becomes predominant when the wave number k becomes large.

This question, asked in terms of scalings, has deep physical implications. Its answer determines
which mechanism sustains anisotropy for small inertial scales: Is small-scale anisotropy generated
locally by the direct action of buoyancy forces or is it maintained by the nonlocal action of nonlinear
interactions?

III. THE EDQNM MODEL FOR USH TURBULENCE

As explained in the Introduction, the expected quasihomogeneity of Rayleigh-Taylor small scales
and the verification already performed in Ref. [16] suggests a close similarity between the inertial
range properties of Rayleigh-Taylor and USH turbulence. Hence, we will hereafter focus on the
latter simpler configuration and apply the results derived for it to Rayleigh-Taylor turbulence. In
this section, we start by recalling the governing equations of USH turbulence, along with the main
assumptions underlying the definition of this idealized flow. Then we recall the evolution equations
of the EDQNM model proposed in Ref. [19] for USH turbulence.

A. Governing equations of USH turbulence

We consider a turbulent flow submitted to a gravitational field. We denote by n̂ the direction of
gravity and we introduce a Cartesian frame (e1,e2,e3) such that e1 and e2 are transverse to n̂ while
e3 is equal to it: e3 = n̂. We assume that two incompressible fluids with densities ρh and ρl < ρh

are being mixed and that their Atwood number At = (ρh − ρl)/(ρl + ρh) is small compared to one.
The Boussinesq approximation can then be applied to the Navier-Stokes equations. In addition, as
in stably stratified turbulence [11,30–35], we assume that turbulence is homogeneous and that mean
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gradients are uniform in space. With these hypotheses, we obtain the following evolutions for the
velocity and concentration fluctuations in USH turbulence:

∂t�c
� + u�

j ∂
�
j c

� = u�
3

L
+ ν�∂�

jj c
�, (1a)

∂t�u
�
i + u�

j ∂
�
j u

�
i = −∂�

i p
� + 2At gc�δi3 + ν�∂�

jju
�
i , (1b)

∂�
j u

�
j = 0, (1c)

with t� the time and u�
i , c�, and p� the respective fluctuations of the velocity field, of the concentration

of one of the fluids, and of the reduced pressure. We also denote by g the intensity of the gravity
field, constant in time and uniform, and by L the opposite of the inverse of the mean concentration
gradient (which has been assumed to be uniform). For the sake of simplicity, the Schmidt number
is taken equal to one so that the same molecular diffusion coefficient ν� appears in the velocity
and concentration equations. The Einstein convention on the summation of indices is used and the
notation ∂�

j refers to the partial derivative with respect to x�
j , the spatial coordinate in the direction

ej .
Because of the quasihomogeneity assumption, the evolution of the mean flow only appears in the

system of equations (1) through the definition of L. In this work, we consider one of the simplest
choice for setting L. As in Refs. [19–21], we assume that L is constant in time: ∂t�L = 0. Other
choices are possible in order to mimic more closely the evolution of a Rayleigh-Taylor mixing zone
[16,17], but they have little incidence on the anisotropic properties of inertial scales compared to
their simpler counterpart.

In order to simplify the analysis, we now introduce variables nondimensionalized by L and At g.
These two quantities can be combined to define a buoyancy or Brunt-Väissällä frequency N as well
as a stratification velocity VN :

N =
√

2At g

L
, VN =

√
2At gL.

Using these mean flow characteristics, we nondimensionalize time t�, space coordinates x�, and
molecular diffusion ν�, as well as the velocity field u�, the reduced pressure p�, and the concentration
c� as follows:

dt = Ndt�, xi = x�
i

L
, ui = u�

i

VN

, p = p�

V 2
N

, c = c�, ν = ν�

V 2
N/N

. (2)

With these assumptions and notation, the dimensionless fluctuating field of a USH turbulent flow
with constant g and L evolves as

∂tc + uj∂j c = u3 + ν∂2
jj c, (3a)

∂tui + uj∂jui = −∂ip + cδi3 + ν∂2
jj ui, (3b)

∂juj = 0. (3c)

B. The EDQNM model equations

We introduce uF(k) and cF(k), the Fourier transforms with respect to x of the velocity and
concentration fields, taken at a given wave vector k. We then define the velocity spectrum R, the
concentration spectrum B, and the concentration flux spectrum F as follows:

Rab(k)δ(k + k′) = 1
2

[
uF

a(k)uF
b(k′) + uF

a(k′)uF
b(k)

]
,

B(k)δ(k + k′) = cF(k)cF(k′),

Fa(k)δ(k + k′) = 1
2

[
uF

a(k)cF(k′) + uF
a(k′)cF(k)

]
,
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where Q refers to the average of a given quantity Q. The evolution equations for these spectra can
be derived from the system of equations (3). They take the form

(∂t + 2νk2)Rab(k) = T R
ab(k) + Pa3(k̂)Fb(k) + Pb3(k̂)Fa(k), (4a)

(∂t + 2νk2)B(k) = T B(k) + 2F3(k), (4b)

(∂t + 2νk2)Fa(k) = T F
a (k) + Pa3(k̂)B(k) + Ra3(k), (4c)

where Pab is the projector on incompressible fields

Pab(k̂) = δab − k̂a k̂b.

Note that, for a given vector v, we use the denotations v and v̂ to refer, respectively, to its modulus
and to its direction. For instance, k is the modulus of k and k̂ is its direction

k =
√

kiki, k̂ = k
k
.

The nonlinear transfer terms of the velocity, concentration, and concentration flux spectra are
respectively denoted by TR , T B , and TF . Their exact definitions can be deduced from Eq. (3) and
can be found, for instance, in Ref. [19]. In this work, we will only use their modeled expressions
obtained with the EDQNM closure detailed in Ref. [19] and based on standard EDQNM procedures
that are explained, for instance, in Refs. [36,37].

The closed EDQNM expressions of T R
ab, T B , and T F

a proposed in Ref. [19] are the following:

T R
ab(k) = k

2
Palm(k̂)

∫
k+k′+k′′=0

dk′�kk′k′′[kPbij (k̂)Ril(k′)Rjm(k′′)

+ k′Plij (k̂
′
)Rib(k)Rjm(k′′) + k′′Pmij (k̂

′′
)Rib(k)Rjl(k′)] + Sym. a ↔ b, (5a)

T B(k) = 2ki

∫
k+k′+k′′=0

dk′�kk′k′′ {kj [Fi(k′′)Fj (k′) + Rij (k′′)B(k′)]

+ k′
j [Fi(k′′)Fj (k) + Rij (k′′)B(k)] + k′′Pijm(k̂

′′
)Fm(k′)Fj (k)}, (5b)

T F
a (k) = k

2
Palm(k̂)

∫
k+k′+k′′=0

dk′�kk′k′′ {kj [Rlj (k′)Fm(k′′) + Rmj (k′′)Fl(k′)]

+ k′Pljn(k′)Rmn(k′′)Fj (k) + k′′Pmjn(k′′)Rln(k′)Fj (k)}

+ kj

∫
k+k′+k′′=0

dk′�kk′k′′ {k′
n[Rnj (k′′)Fa(k) + Fj (k′′)Rna(k)]

+ kPanm(k̂)Rmj (k′′)Fn(k′) + k′′Pjnm(k̂
′′
)Rma(k)Fn(p)}, (5c)

where

Pajm(k̂) = k̂jPam(k̂) + k̂mPaj (k̂), �kk′k′′ = 1

ν(k2 + k′2 + k′′2) + η(k) + η(k′) + η(k′′)
.

The time scale �kk′k′′ models the effects of eddy damping as well as the time history of the triple
correlations. Its expression is given here for large times. As for the eddy-damping inverse time scale
η(k), it is defined as

η(k) = a0

(∫ k

0
p2E(p)dp

)1/2

+ a1N,

with a0 = 0.36, a1 = 0.33, and E(k) = k2

2

∫
Rjj (k)d k̂. Compared to the standard formulation of the

EDQNM model, a contribution linked to buoyancy effects a1N has been added. This contribution
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was found to be necessary to ensure good agreement between DNS and EDQNM simulations in
Ref. [19].

IV. LINEARIZATION OF THE EDQNM MODEL

Central to this work is the assumption that inertial-range anisotropy is weak. The purpose of this
section is to summarize this assumption and to examine its consequences on the expression of the
nonlinear transfer terms modeled by the EDQNM closure given by Eqs. (5).

A. Weak anisotropy hypothesis

We consider a USH turbulent flow with a very large Reynolds number and look at the properties
of the turbulent spectra within the corresponding inertial range. As in Refs. [8,10,11,24], we assume
that, in this inertial range, the anisotropic components of the turbulent spectra exist in the form of a
small perturbation around the isotropic Kolmogorov-Obukhov spectrum. Thus, we decompose the
velocity and concentration spectra as

R(k) = RKO(k) + r(k), B(k) = BKO(k) + b(k), F(k) = FKO(k) + f (k), (6)

where RKO, BKO, and FKO denote the Kolmogorov-Obukhov spectrum

RKO
ab (k) = EKO(k)

4πk2
Pab(k̂), BKO(k) = EKO

B (k)

4πk2
, F KO

a (k) = 0, (7a)

with

EKO(k) = cKε2/3k−5/3, EKO
B (k) = cOεBε−1/3k−5/3, (7b)

with ε = ν∂jui∂jui and εB = 2ν∂j c∂j c the respective dissipations of the kinetic energy and of the
scalar variance, with cK the Kolmogorov constant and cO the Obukhov constant. The perturbation
around the Kolmogorov-Obukhov spectrum is denoted by r , b, and f and is assumed to verify

‖r(k)‖ � ‖RKO(k)‖, |b(k)| � BKO(k), | f (k)| =
√

fa(k)fa(k) �
√

RKO
jj (k)BKO(k). (8)

In order to characterize further the anisotropy of the perturbation spectra, we decompose them into
spherical harmonics. Before doing so, we first recall that the velocity spectrum r can be split into an
isotropic, a polarization, and a directional contribution (see [38,39]) and the scalar spectrum b into
an isotropic and a directional one:

rab(k) = r iso
ab (k) + rdir

ab (k) + r
pol
ab (k), b(k) = biso(k) + bdir(k), (9)

with

r iso
ab (k) = r0(k)

4πκ2
Pab(k̂), biso(k) = b0(k)

4πκ2
, r0(k) = k2

2

∫
rjj (k)d k̂, b0(k) = k2

∫
b(k)d k̂,

rdir
ab (k) =

(
1

2
rjj (k) − r0(k)

4πκ2

)
Pab(k̂), bdir(k) = b(k) − biso(k),

r
pol
ab (k) = rab(k) − 1

2
rjj (k)Pab(k̂),

where
∫ · · · d k̂ refers to the integration over the surface of the unit sphere of normal k̂. The

directional anisotropy of r (b) measures the differences in energy (scalar variance) carried along
each wave-vector direction k̂ at a given |k|. As for the polarization anisotropy of r , it measures
the differences between the intensities of the components of the Fourier transform of the velocity
uF

a at a given wave number k. More details can be found in Ref. [38]. Note that the flux f was
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also decomposed into an isotropic and a directional component in Ref. [8], but this notion is rather
ambiguous and is dropped in favor of a more general harmonic decomposition.

We also recall that the flow is symmetric around the axis n̂ = e3, so we only need to consider
circular harmonics depending on cos θ , the cosine of the angle between the direction of the wave
vector k̂ and n̂:

cos θ = k̂ · n̂.

With these specifications, we can now expand r , b, and f using spherical harmonics as follows:

4πk2rdir
ab (k) = Pab(k̂)

∑

�2

rdir

 (k)Y
(cos θ ), 4πk2r

pol
ab (k) = Dab(k̂,n̂)

∑

�2

r
pol

 (k)Ÿ
(cos θ ), (10a)

4πk2fa(k) = Pa3(k̂)
∑

�2

f
(k)Ẏ
−1(cos θ ), 4πk2bdir(k) =
∑

�2

b
(k)Y
(cos θ ), (10b)

with

rdir

 (k) = 2
 + 1

2
k2

∫
rab(k)Pab(k̂)Y
(cos θ )d k̂, (10c)

r
pol

 (k) = 2(2
 + 1)

(
 − 1)
(
 + 1)(
 + 2)
k2

∫
rab(k)Dab(k̂,n̂)Ÿ
(cos θ )d k̂, (10d)

f
(k) = 2
 − 1

(
 − 1)

k2

∫
fa(k)Pa3(k̂)Ẏ
−1(cos θ )d k̂, (10e)

b
(k) = (2
 + 1)k2
∫

b(k)Y
(cos θ )d k̂, (10f)

where Y
(x) is the standard Legendre polynomial of order 
, Ẏ
 its derivative, and Ÿ
 its second-order
derivative (the notation Y
 is used instead of the more common one P
 in order to avoid confusion
with the projector Pab). The tensor Dab is defined as

Dab(k̂,n̂) = Dabcd (k̂)ncnd, (11)

with

Dabcd (k̂) = Pab(k̂)Pcd (k̂)

2
− Pac(k̂)Pbd (k̂).

The decomposition of bdir corresponds to the standard circular harmonic one. The decomposition of f
uses the vector spherical harmonic expansion detailed, for instance, in Ref. [40]. This decomposition
relies on the expansion of each of the components of f in the spherical basis based on k̂. The latter is
also referred to as the poloidal-toroidal basis in spectral space [36]. Because of the axisymmetry of
the flow and of the incompressibility condition, only the poloidal component of f is nonzero, which
explains why only one circular harmonic is sufficient to describe f . As for rdir and rpol, we applied
the same formalism as in Ref. [24], with a slight modification to obtain an orthogonal basis. in
Ref. [24], r was expanded along the basis Bab

1,
(k̂) = PabY
(cos θ ) and Bab
2,
(k̂) = k−
[k2∂a∂b − (
 −

1)(kb∂a + ka∂b) + 
(
 − 1)δab][k
Y
(cos θ )]. In Eq. (10) we retained Bab
1,
(k̂) but instead of Bab

2,
(k̂)

we used Bab
3,
(k̂) = 
(
 − 1)Bab

1,
(k̂)/2 − Bab
2,
(k̂) = Dab(k̂,n̂)Ÿ
(cos θ ). An advantage of this choice

is that B1,
 and B3,
 are orthogonal, due to the relation PijDij = 0. Another advantage of this
choice is that the resulting decomposition of r gives direct access to the polarization and directional
contributions of r . Note that an almost identical variant of the decomposition proposed in Ref. [24]
has already been described in Ref. [39].

Also, we would like to stress that given the parities of r , f , and b, only even values of 
 need to
be taken into account in the sums present in Eqs. (10) and that the spectra r0 and b0 introduced in
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Eqs. (9) correspond to the order 0 of the harmonic decomposition of rdir and b. In addition, we note
that the weak anisotropy condition (8) implies that, for 
 � 2,
∣∣rdir


 (k)
∣∣ � EKO(k),

∣∣rpol

 (k)

∣∣ � EKO(k), |b
(k)| � EKO
B (k), |f
(k)| �

√
EKO(k)EKO

B (k).

To conclude the description of the anisotropic perturbation spectra, we hereafter assume that, in the
inertial range, rdir


 , r
pol

 , f
, and b
 obey a power law

rdir

 (k) = cdir


 k−ξ
 , r
pol

 (k) = c

pol

 k−ξ
 , f
(k) = cF


 k−ξF

 , b
(k) = cB


 k−ξB

 , (12)

where cdir

 , c

pol

 , cF


 , and cB

 are parameters independent of k and ξ
, ξF


 , and ξB

 are the inertial range

exponents of the harmonics of order 
 of the different spectra.

B. Linearization of the EDQNM transfer terms

We now inject the weak anisotropy decomposition (6) with the condition (8) into the EDQNM
transfer terms defined by Eq. (5). Considering that the inertial range has an infinite extent, the
contribution of the isotropic Kolmogorov-Obukhov spectrum to the transfer terms is equal to 0:
Replacing Rab, B, and Fa by, respectively, RKO

ab , BKO, and F KO
a in Eqs. (5) leads to

T
R,KO
ab (k) = 0, T B,KO(k) = 0, T F,KO

a (k) = 0.

Therefore, the main contribution to T R
ab, T B , and T F

a in the inertial range comes from terms that
are linear in rab, b, and fa . Keeping only those terms, we obtain linearized EDQNM transfer terms,
whose full derivation is presented in Appendix A. The expressions of these linearized EDQNM
transfer terms can be simplified by projecting them onto spherical harmonics and using the procedure
developed in Ref. [24] and recalled in Appendix B. The transfer term harmonics are defined in a
way similar to rdir


 , r
pol

 , b
, and f
:

T dir

 (k) = 2
 + 1

2
k2

∫
T R

ab(k)Pab(k̂)Y
(cos θ )d k̂, (13a)

T
pol

 (k) = 2(2
 + 1)

(
 − 1)
(
 + 1)(
 + 2)
k2

∫
T R

ab(k)Dab(k̂,n̂)Ÿ
(cos θ )d k̂, (13b)

T F

 (k) = 2
 − 1

(
 − 1)

k2

∫
T F

a (k)Pa3(k̂)Ẏ
−1(cos θ )d k̂, (13c)

T B

 (k) = (2
 + 1)k2

∫
T B(k)Y
(cos θ )d k̂. (13d)

Inserting the linearized expression of T R
ab, T B , and T F

a into the definitions of these harmonics and
using the method developed in Ref. [24], we obtain that

T dir

 (k) = cT ε1/3k2/3−ξ


1

4

[
L11


 (ξ
)cdir

 + L12


 (ξ
)cpol



]
, (14a)

T
pol

 (k) = cT ε1/3k2/3−ξ


1

(
 − 1)
(
 + 1)(
 + 2)

[
L21


 (ξ
)cdir

 + L22


 (ξ
)cpol



]
, (14b)

T F

 (k) = cT ε1/3k2/3−ξF



1

2(
 − 1)

LF




(
ξF



)
cF

 , (14c)

T B

 (k) = cT ε1/3k2/3−ξB




(
LB




(
ξB



)
cB

 + cOεB

cKε
kξB


 −ξ

[
LB1


 (ξ
)cdir

 + LB2


 (ξ
)cpol



])
, (14d)

where cT = 2
√

cK/
√

3a0 is a constant and the expressions for L
ij


 , LF

 , LB


 , LB1

 , and LB2


 are given
in Appendix B. We recall that cdir


 , c
pol

 , cF


 , and cB

 are the prefactors of the power laws assumed in
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Eq. (12) and ξ
, ξF

 , and ξB


 the exponents of these laws. All the quantities L∗

(ξ ) depend only on 


and on the value of the exponent ξ .
It is worth noting that the velocity transfer terms T dir


 and T
pol

 only depend on the 
th harmonic

of the velocity perturbation spectrum r , through the exponent ξ
 and the prefactors cdir

 and c

pol

 .

Similarly, the transfer term T F

 of the concentration flux spectrum only depends on the 
th harmonic

of f , through ξF

 and cF


 . It is entirely independent of the anisotropy of the velocity and concentration
spectra. By contrast, the concentration transfer term T B


 depends not only on the 
th harmonic of
the concentration perturbation spectrum b, through ξB


 and cB

 , but also on the 
th harmonic of the

velocity spectrum, through ξ
, cdir

 , and c

pol

 . Thus, T B


 has an explicit dependence on the anisotropy
of the velocity spectrum.

Another point worth mentioning is the existence of a “window of locality” for the coefficients
L

ij


 (ξ ), LF

 (ξ ), LB


 (ξ ), LB1

 (ξ ), and LB2


 (ξ ). As explained in Ref. [24], these coefficients involve
integrals over the wave number k that can diverge at small k if the exponent ξ is too high. The limit
exponent ensuring the convergence of these integrals is denoted by ξ�


 . For all the coefficients, it can
be shown that ξ�


 is the same as the one already determined in Ref. [24] for L
ij


 :

ξ�

 = 3 for 
 � 2, ξ �


 = 
 − 1 for 
 > 2. (15)

Finally, we would like to emphasize the scaling of the linearized transfer terms given by Eq. (14),
when the window of locality criterion is met. Unless the factors depending on the quantities L∗


(ξ )
in Eq. (14) are equal to 0, the transfer terms of the velocity spectrum scale as k2/3−ξ
 and the
transfer term of the concentration flux spectrum scales as k2/3−ξF


 . As for the transfer term of the
concentration spectrum, it scales, for large k, as either k2/3−ξB


 or k2/3−ξ
 depending on whether ξB



is larger or smaller than ξ
. This observation can be summed up as follows: For nonzero L∗

 factors

in Eq. (14),

T dir



rdir



,
T

pol



r
pol



,
T F




f


∝ cT ε1/3k2/3,
T B




b


∝
⎧⎨
⎩

cT ε1/3k2/3 for ξB

 � ξ


T
(B)



r
pol



∝ cT ε1/3k2/3 otherwise.
(16)

If these ratios (which correspond to nonlinear frequencies) depart from their k2/3 scalings and all
exponents are smaller than ξ�


 , then the conclusion is that the factors depending on the quantities
L∗


(ξ ) in Eq. (14) are equal to 0. In other words, it indicates that the perturbation spectra involved in
the definitions of these factors behave as zero-modes.

V. ZERO-MODE PROPERTIES

In this section, we derive the scalings of the zero-modes of the velocity and concentration spectra
of a USH flow modeled with the EDQNM closure (5). This derivation is based on the linearized
expression (14) for the transfer term harmonics. In addition, we also put forward the existence of
several proportionality relations between zero-modes. By extension, these results are assumed to also
apply to a Rayleigh-Taylor flow. Note that we only discuss the zero-mode properties of harmonics
of order 
 � 2. For 
 = 0, zero-modes simply exhibit a Kolmogorov-Obukhov scaling.

A. Zero-modes of the velocity spectrum

The zero-modes of the 
th harmonic of the velocity spectrum correspond to a family of spectra
rdir

 and r

pol

 such that the nonlinear transfer terms T dir


 and T
pol

 are null: T dir


 (k) = T
pol

 (k) = 0.

Given the expression (14) of the linearized transfer terms, this condition is achieved provided

L11

 (ξ
)cdir


 + L12

 (ξ
)cpol


 = 0, L21

 (ξ
)cdir


 + L22

 (ξ
)cpol


 = 0.
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FIG. 3. Value of the determinants �
 as a function of the anisotropy exponent ξ for 
 = 2, 4, and 6.

Therefore, a zero-mode of the velocity spectrum exists if

�
(ξ
) = det[L�(ξ
)] = L11

 (ξ
)L22


 (ξ
) − L12

 (ξ
)L21


 (ξ
) = 0.

For a given 
, the solution to this equation determines the value of the power-law exponent ξ
 that a
velocity zero-mode must possess. In order to solve this equation, we apply the numerical methods
proposed in Ref. [24] and recalled in Appendix C. Using this numerical method, we compute the
value �
(ξ
) for 
 = 2, 4, and 6. The result is shown in Fig. 3. Denoting by ξ
0 the value of ξ
 such
that �
(ξ
0) = 0, we can see from Fig. 3 that

ξ20 ≈ 2.286 ≈ 7
3 − 0.047, ξ40 ≈ 2.819 ≈ 3 − 0.18, ξ60 ≈ 4.911 ≈ 5 − 0.09. (17)

Thus, if a second-order-harmonic zero-mode exists, it scales approximately like k−7/3, while a
fourth-order-harmonic zero-mode scales approximately like k−3 and a sixth-order-harmonic one
like k−5. More generally, an 
th-order-harmonic zero-mode is expected to scale like k−(
−1) for

 � 4, as explained in Ref. [24]. The higher the harmonic is, the faster the zero-mode decays at
large k. It must also be stressed that the relative differences between ξ20 and 7

3 and between ξ
0 and

 − 1 for 
 � 4 are so small that they are unlikely to be observable in most simulations. They will
consequently not be commented on further in the remainder of this study.

Similar results were already obtained in Ref. [24], with slightly different exponents. This similarity
was expected: As far as the velocity spectrum is concerned, the only difference between this work
and [24] comes from the closure of the model frequency �kk′k′′ . in Ref. [24], it includes a dependence
on the directional anisotropy of Rab, but not in our case. This minor difference is found to have a
small impact.

Beyond the results already obtained in Ref. [24], another prediction can also be made from the
zero-mode analysis. Because of the relation L

ij


 c
(j )

 = 0, the ratio between cdir


 and c
pol

 is fixed and

so is the ratio between rdir

 (k) and r

pol

 (k). It is given by

rdir

 (k)

r
pol

 (k)

= cdir



c
pol



= −L12

 (ξ
0)

L11

 (ξ
0)

= −L22

 (ξ
0)

L21

 (ξ
0)

.

The last two ratios are equal because �(ξ
0) = 0. Their numerical evaluation yields

rdir
2 (k)

r
pol
2 (k)

= cdir
2

c
pol
2

≈ 7.73,
rdir

4 (k)

r
pol
4 (k)

= cdir
4

c
pol
4

≈ −6.76,
rdir

6 (k)

r
pol
6 (k)

= cdir
6

c
pol
6

≈ −16.8. (18)
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FIG. 4. Value of LF

 as a function of the anisotropy exponent ξ for 
 = 2, 4, and 6.

We note that, in absolute value, rdir

 (k) appears to be always larger than r

pol

 (k). In addition, the

second harmonic stands apart from the other ones because rdir
2 (k) and r

pol
2 (k) share the same sign

while rdir

�4(k) and r

pol

�4(k) have opposite signs.

To conclude the discussion of the zero-modes of the velocity spectrum, we would like to discuss a
limitation of the present results. As already noted, the higher the harmonic is, the faster the zero-mode
decays at large k. This statement should be completed by another one: For 
 � 4, the higher the
harmonic is, the closer its scaling exponent is to the window of locality exponent ξ�


 . We recall
that for ξ � ξ�


 the coefficients L
ij


 (ξ ) diverge at small k. Furthermore, when ξ < ξ�

 gets closer to

ξ�

 , small wave numbers contribute more and more to the value of the coefficients L

ij


 (ξ ). For the
infinite inertial range considered in this theoretical study, this is not an issue. However, for a finite
inertial range, this implies that scales not pertaining to the inertial range will eventually contribute
significantly to L

ij


 (ξ ) as ξ gets closer ξ�

 , thus invalidating the approach. Therefore, the proximity of

the zero-mode exponent ξ
0 to ξ�

 for 
 � 4 prompts the question of which Reynolds number must be

attained to verify the zero-mode features predicted in this part for a given harmonic 
. Equivalently,
for a finite Reynolds number, there should be a harmonic 
max beyond which the analysis proposed
here will cease to be valid. This does not mean that zero-modes should not be observed for 
 � 
max,
but only that their properties will be different from the ones predicted here for an infinite Reynolds
number.

B. Zero-modes of the concentration flux spectrum

The zero-modes of the 
th harmonic of the concentration flux spectrum correspond to a family
of spectra f
(k) such that T F


 = 0. Therefore, from Eq. (14), a zero-mode exists if

LF



(
ξF



) = 0.

We solve this equation using the same numerical techniques as for L
ij


 (see Appendix C). The result,
displayed in Fig. 4, shows that LF


 (ξF

 ) = 0 for ξF


 = ξF

 0, with

ξF
2 0 ≈ 2.46 ≈ 7

3 + 0.13, ξF
4 0 ≈ 2.74 ≈ 3 − 0.26, ξF

6 0 ≈ 4.75 ≈ 5 − 0.25. (19)

The evolution of ξF

 0 closely follows that of ξ
0. In particular, a second-order-harmonic zero-mode

of f scales approximately like k−7/3, while higher-order-harmonic zero-modes scale approximately
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FIG. 5. Value of LB

 as a function of the anisotropy exponent ξ
 for 
 = 2, 4, and 6.

like k−(
−1). Again, the higher the harmonic is, the faster the zero-mode decays at large k. In addition,
the same limitation as for the velocity zero-modes applies to finite-Reynolds-number flows: When 


increases, the proximity of ξF

 0 to ξ�


 should eventually prevent observing the zero-mode predictions
made here for the harmonic 
. A distinction must nonetheless be made between ξF


 0 and ξ
0. The
relative differences between ξF

2 0 and 7
3 and between ξF


 0 and 
 − 1 for 
 � 4 appear to be larger
than those obtained for ξ
0 and are not necessarily negligible. In particular, the difference between
ξF

2 0 and 7
3 plays a significant role that will be detailed further in Sec. VI C.

As already noted, the zero-modes of f and r are independent from one another. The anisotropic
zero-mode of f can appear whenever a mean concentration gradient exists. In particular, it can
appear even when the velocity spectrum is isotropic, i.e., when r = 0. This situation can be found,
for instance, when a mean passive concentration gradient sustains the anisotropy of f but leaves
unchanged an initially isotropic velocity spectrum.

C. Zero-modes of the concentration spectrum

As explained in Sec. IV B, the concentration transfer term T B

 displays an explicit dependence on

the anisotropy of the velocity spectrum. Therefore, the zero-modes of the concentration spectrum
cannot be looked for independently from those of the velocity spectrum. Here we will consider that
the zero-modes of the 
th harmonic of the concentration spectrum correspond to a family of spectra
b
(k) such that T B


 = 0, with the condition that rdir

 and r

pol

 are zero-modes of the velocity spectrum.

Then, from Eq. (14), we deduce that a zero-mode exists simultaneously for the concentration and
velocity spectrum if

LB



(
ξB



)
cB

 + cOεB

cKε
kξB


 −ξ
0
[
LB1


 (ξ
0)cdir

 + LB2


 (ξ
0)cpol



] = 0,

where ξ
0 is the zero-mode exponent of the velocity spectrum, as defined in Sec. V A. Figure 5
shows the evolution of LB


 (ξB

 ) as a function of ξB


 . It can be seen that LB

 is never equal to 0. As a

result, the only possibility for a concentration zero-mode to exist along a velocity zero-mode is to
have

ξB

 = ξ
0, cB


 = −cOεB

cKε

(
LB1


 (ξ
0)

LB(ξ
0)
cdir

 + LB2


 (ξ
0)

LB(ξ
0)
c

pol



)
.
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Consequently, the zero-mode of the scalar field is entirely determined by the anisotropy of the
velocity field. This property can be made more explicit by combining the above expression of cB




with the definitions of b
, rdir

 , and r

pol

 . This yields

b
(k) = −cOεB

cKε

(
LB1


 (ξ
0)

LB(ξ
0)
rdir

 + LB2


 (ξ
0)

LB(ξ
0)
r

pol



)
. (20)

An additional step is possible: Using the proportionality relation between cdir

 and c

pol

 for a velocity

zero-mode, we can rewrite the last equality as

b
(k)

rdir

 (k)

= cB



cdir



= cOεB

cKε
�B1


 (ξ
0)

or equivalently

b
(k)

r
pol

 (k)

= cB



c
pol



= cOεB

cKε
�B2


 (ξ
0),

with

�B1

 (ξ ) = −LB1


 (ξ )

LB

 (ξ )

+ L11

 (ξ )

L12

 (ξ )

LB2

 (ξ )

LB

 (ξ )

, �B2

 (ξ ) = L12


 (ξ )

L11

 (ξ )

LB1

 (ξ )

LB

 (ξ )

− LB2

 (ξ )

LB

 (ξ )

.

Thus, only one arbitrary constant, either cdir

 or c

pol

 , sets the levels of the directional, polarization,

and scalar anisotropy for the zero-modes of the velocity and concentration spectra. Computing

numerically the values of �B1

 (ξ
0) and �B2


 (ξ
0) and knowing that cOεB

cKε
= EKO

B (k)
EKO(k) , we can write that

b2(k)

rdir
2 (k)

≈ 1.02
EKO

B (k)

EKO(k)
,

b4(k)

rdir
4 (k)

≈ 1.45
EKO

B (k)

EKO(k)
,

b6(k)

rdir
6 (k)

≈ 1.61
EKO

B (k)

EKO(k)
.

Therefore, for zero-modes, b
(k) has the same sign as rdir

 and their ratio is on the same order as the

ratio of the main components of the potential and kinetic energy spectra in the inertial range.

VI. SUMMING EQUILIBRIUM AND ZERO-MODE SPECTRA

In the preceding section, we described the properties of the zero-modes of the EDQNM model
proposed in Ref. [19] in order to improve our understanding of the inertial range anisotropy of USH
and Rayleigh-Taylor turbulence. However, zero-modes are not the only components contributing to
the anisotropy of the inertial range: As recalled in the Introduction and in Sec. II, another component
is also required to ensure the balance between buoyancy production and nonlinear transfer terms.
This additional component is referred to as the equilibrium spectrum.

The purpose of this section is to describe the equilibrium spectrum and, above all, its superposition
with zero-modes.

A. Equilibrium spectrum

The equilibrium contribution was studied in Ref. [8] for Rayleigh-Taylor and implicitly for USH
flows. When recasting the results of [8] with the same notation as in this work, it is predicted in
Ref. [8] that the equilibrium contributions of rdir


 , r
pol

 , f
, and b
 are negligible for 
 � 4 and that

rdir
2 (k)|ES = adirk−3, r

pol
2 (k)|ES = apolk−3, f2(k)|ES = aF k−7/3, b2(k)|ES = aBk−3, (21)

with adir = apol = − 2
3ce(cK + cOεB/ε), aF = cF ε1/3(cK + cOεB/ε), and aB = − 4

3cp(cK +
cOεB/ε), where the exponent ES in Eq. (21) stands for equilibrium spectrum. As explained in
the Introduction, the scalings in Eq. (21) are compatible with dimensional arguments, such as those
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proposed in Refs. [11,13]. The values ce ≈ 1.2, cf ≈ 1.1, and cp ≈ 1.1 were obtained in Ref. [8] by
fitting the data of a direct simulation of a Rayleigh-Taylor flow with a moderate Reynolds number.
While these values may be approximate (and were indeed reevaluated in Ref. [20]) there is one
prediction, other than the scalings, that is independent of them. Namely, the ratio rdir

2 (k)/r
pol
2 (k) is

predicted to be equal to 1:

rdir
2 (k)

r
pol
2 (k)

∣∣∣∣
ES

= 1. (22)

From the EDQNM standpoint, the values of the constants appearing in Eq. (21) cannot be determined
save for cF . Equating buoyancy production and nonlinear transfer in the EDQNM model equation
for f2, one obtains that

cF |EDQNM = − 4

cT LF
2

(
7
3

) ≈ 3.8, (23)

with cT = 2
√

cK/
√

3a0 ≈ 3.8 and LF
2 (7/3) ≈ −0.28. Similar predictions for ce and cp are hindered

by the necessity to account for nonuniversal parts of the spectrum. We note that the value of cF is
much higher than the one previously estimated in Ref. [8] or even in Ref. [20]. This difference will
be commented on further in Sec. VI C.

Now zero-modes must be superimposed on this equilibrium solution. Using the results derived in
Sec. V, we consequently obtain the following description of the inertial range anisotropic spectra,
for 
 = 2:

rdir
2 (k) = rdir

2 (k)|ES + rdir
2 (k)|ZM = adirk−3 + cdir

2 k−ξ20 , (24a)

r
pol
2 (k) = r

pol
2 (k)|ES + r

pol
2 (k)|ZM = apolk−3 + c

pol
2 k−ξ20 , (24b)

f2(k) = f2(k)|ES + f2(k)|ZM = aF k−7/3 + cF
2 k−ξF

2 0 , (24c)

b2(k) = b2(k)|ES + b2(k)|ZM = aBk−3 + cB
2 k−ξB

2 0 , (24d)

where the exponents ZM and ES refer, respectively, to the zero-mode and equilibrium spectrum
contributions. For 
 � 4, rdir


 (k)|ES, r
pol

 (k)|ES, f
(k)|ES, and b
(k)|ES are predicted to be negligible

compared to the 
 = 2 harmonic, but are not precise. Hence, we will hereafter focus our discussion
on the 
 = 2 harmonic.

in Ref. [8], zero-modes were not accounted for and the anisotropic properties of the inertial
range of Rayleigh-Taylor and USH turbulence were consequently deemed to be those of the sole
equilibrium contribution (21). Thus, the question we would like to address in this section is how the
inclusion of zero-modes modifies the predictions originally made in Ref. [8].

B. Velocity and concentration spectra

Since ξ20 = ξB
2 0 ≈ 7/3 < 3, the zero-mode contribution appearing in Eqs. (24a), (24b), and

(24d) decays more slowly when k increases than the equilibrium contribution. As a result, for
asymptotically small scales, the zero-mode contribution of rdir

2 , r
pol
2 , and b2 is the dominant one:

Spectra with a slope close to −7/3 should be observed. This prediction is very different from the
one originally made in Ref. [8] and that assumed that k−3 velocity and concentration anisotropic
spectra extended down to the smallest inertial scales. This difference is not only quantitative. The
k−3 spectrum predicted in Ref. [8] implies that anisotropy is maintained by the direct and local
action of buoyancy forces. By contrast, anisotropy is shown here to be maintained by the action
of nonlocal nonlinear interactions, which transfer anisotropy from scale to scale and exchange it
between components. These two physical mechanisms are fundamentally different.
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Another significant difference arising from the presence of zero-modes comes from the ratio
between rdir

2 and r
pol
2 . The equilibrium solution predicted in Ref. [8] yields a ratio equal to 1 [see

Eq. (22)]. By contrast, the zero-mode solution yields a ratio equal approximately to 7.73 [see
Eq. (18)]. Therefore, the zero-mode value is much larger than its equilibrium counterpart:

rdir
2

r
pol
2

∣∣∣∣
ZM

≈ 7.73 >
rdir

2

r
pol
2

∣∣∣∣
ES

= 1.

This difference is especially striking when considering the directional or polarization decomposition
of the vertical velocity spectrum R33 [see Eq. (9)]. Indeed, neglecting spherical harmonics 
 � 4,

one has Rdir
33

R
pol
33

= rdir
2

6r
pol
2

. Therefore, while the analysis presented in Ref. [8] predicts a ratio Rdir
33

R
pol
33

much

smaller than one, the zero-mode analysis implies that this ratio is on the order of one, with Rdir
33 even

larger than R
pol
33 .

Similarly, the ratio between b2 and rdir
2 differs when zero-modes are accounted for. Without them,

one would obtain b2|ES

rdir
2 (k)|ES = aB

adir ≈ 1.8. However, with zero-modes, one should instead observe, as

explained in Sec. V C, b2

rdir
2

≈ 1.02EKO
B

EKO . With EKO
B ≈ EKO in the inertial range, one should get a ratio

b2/rdir
2 closer to 1 when accounting for zero-modes than without them.

To conclude the discussion of these aspects, we note that k−3 equilibrium spectra may still be
observed for rdir

2 , rpol
2 , and b2, but only for an intermediate range corresponding to the largest inertial

scales. The predominance of zero-modes is indeed only asymptotic. Furthermore, since adir = apol

and cdir
2 ≈ 7.73c

pol
2 , we can conclude, using Eq. (24), that if such a k−3 range exists, then it will be

observed first and foremost for the polarization harmonic r
pol
2 .

C. Concentration flux spectrum

In Sec. V B, we obtained that ξF
2 0 is larger than 7/3. As a result, Eq. (24c) indicates that the

slope of the flux spectrum converges to −7/3 for very large k, even if a zero-mode exists. However,
because ξF

2 0 − 7/3 ≈ 0.13 is small, the convergence of the slope of the flux to −7/3 is very slow if
a zero-mode is present. This convergence can be understood in terms of increasing wave numbers k,
given an infinite Reynolds number. In particular, according to Eqs. (24) and (21), one should observe
that

|1 − f �
2 | ∝ k−δξF

, (25)

with

f �
2 = f2(k)

cF ε1/3(cK + cOεB/ε)k−7/3
, δξF = ξF

2 0 − 7/3 ≈ 0.13.

This slow convergence towards the equilibrium solution can explain why the value of cF measured
in the simulations of [8,20] is different from the one estimated from the EDQNM model.

It is also interesting to cast the convergence of the flux in terms of increasing finite Reynolds
numbers. More precisely, let us define the local slope of the flux as

n(k) = − k

f2(k)
∂kf2(k). (26)

From Eq. (24c) this exponent is equal to

n(k) = 7

3
+ δξF

cF
2

aF k−δξF

1 + cF
2

aF k−δξF
.
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The value of n closest to 7/3 is obtained at the end of the inertial range, i.e., for a wave number
proportional to the inverse of the Kolmogorov scale kη
T = Re3/2

λ , where 
T is the integral scale of
turbulence and Reλ is the Reynolds number based on the Taylor microscale. Then one obtains that

n(kη) = 7

3
+ δξF xF Re−3δξF /2

λ

1 + xF Re−3δξF /2
λ

,

where xF = 
−δξF cF
2

aF is a constant assuming that the zero-mode and equilibrium components of the
flux obey a self-similar scaling. Therefore, with δξF ≈ 0.13, one obtains that for large Reynolds
numbers

|n(kη) − 7/3| ∝ Re−0.2
λ .

As explained in Sec. V B, this prediction is independent of the Rayleigh-Taylor context and of the
anisotropy of the velocity field. It applies whenever a mean scalar gradient exists and in particular
it applies to a concentration flux spectrum in isotropic turbulence with a uniform gradient. This
situation was treated in Ref. [28], where 7/3 − n(kη) was found to decay as Re−0.54

λ . This value is
much higher than the one obtained here and would correspond to an exponent ξF

2 0 = 2.69 instead
of 2.46. Nonetheless, we note that the exponent proposed by [28] is a fit that matches well their
low-Reynolds-number data but not necessarily their higher-Reynolds-number data. For Reλ > 104,
their data appear to be actually better fitted with a smaller exponent. This result already suggests
that the concentration flux zero-mode will possess the characteristics predicted in this work only for
very high Reynolds numbers. For lower Reynolds numbers, zero-modes can still exist and play a
role, but their properties will be different from those predicted here in the infinite-Reynolds-number
case, with an infinite inertial range.

VII. VALIDATION

In order to validate the results derived in Secs. V and VI, we perform two sets of simulations.
First, we perform high-Reynolds-number (Re ∼ 107) EDQNM simulations of USH turbulence and
assess the predictions made in Secs. V and VI. Second, we carry out the same analysis, this time
based on the large-eddy simulation of a Rayleigh-Taylor flow performed in Ref. [17]. Note that
a comparison between EDQNM simulations and a 20483 USH direct simulation is described in
Ref. [21], with details given on the anisotropic properties of the turbulent spectra.

A. High-Reynolds-number EDQNM simulations of a USH flow

1. Initial conditions and numerical scheme

The EDQNM simulations discussed hereafter are similar to those already performed in
Refs. [19–21]. At initial time, the turbulent spectra are chosen to be isotropic. As a result, the
concentration flux is null and we only need to specify the kinetic energy spectrum E(k,t) and the
concentration modulus spectrum EB(k,t) defined as

E(k,t) = k2

2

∫
Rjj (k)d k̂, EB(k,t) = k2

∫
B(k)d k̂.

At t = 0, these spectra are chosen equal to

E(k,t = 0) = Ash(k), EB(k,t = 0) = Bsh(k),

where

h(k) =
(

k

kpeak

)s

exp

[
− s

2

(
k

kpeak

)2]
,
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with kpeak the most energetic wave number, s the slope of the infrared spectrum, and As and Bs

normalization constants setting the initial values of the kinetic energy K and concentration variance
B:

K(t) =
∫ ∞

0
E(k,t)dk, B(t) =

∫ ∞

0
EB(k,t)dk.

The values of As and Bs are set so that K(t = 0) = B(t = 0) = 0.25. The initial values of s and kpeak

are s = 2 and kpeak ≈ 44. The only unspecified remaining parameter is the value of the viscosity ν,
which is set to ν = 1.25 × 10−4.

With these parameters, we solve the EDQNM model equations (4) on a domain spanning six
decades, from kmin = 10−2 to kmax = 104. The numerical integration is performed with almost the
same method as the one detailed in Refs. [19,41]. We only introduce a small modification consisting
in the addition of a local time stepping, ensuring that the nonlinear time scale is well resolved.
This modification proves to be decisive for exploring large-Reynolds-number flows. Indeed, without
it, the time step �t of the EDQNM solver proposed in Refs. [19,41] is controlled by realizability
constraints and is empirically found to scale as �t ∝ τηRe−1/2, with τη the Kolmogorov time scale.
With the proposed modification, the scaling �t ∝ τη is achieved. As a result, the cost for reaching a
Reynolds number of 106 in USH turbulence is divided by a factor 103 with our local time-stepping
scheme.

Note that the cost of running an EDQNM simulation is not innocuous. Indeed, the cost of one
EDQNM time step is proportional to (NkNθ )2Nλ, with Nk , Nθ , and Nλ the numbers of points
discretizing, respectively, the wave numbers, the cosines of the angle θ , and the directions of the
triads appearing in the integrands of the system of equations (4). Doubling the resolution in each
direction leads to multiplying the cost of one time step by 32. In practice, while the USH simulations
detailed in Ref. [20] with Nk = 128, Nθ = 20, and Nλ = 20 take about 1 h on 128 processors to
reach a Reynolds number of 106, simulations with Nk = 1024, Nθ = 80, and Nλ = 20, such as those
detailed in this work, take about 48 h on 4096 processors to reach the same Reynolds number and
about a week to reach a Reynolds number of 107. The factor 103 gained by modifying the numerical
scheme is of course crucial for allowing these simulations to run in an acceptable time.

The reason we need higher resolutions than in Ref. [20] is because the anisotropic quantities
discussed in Secs. V and VI appear to converge slowly with the increase of Nk and Nθ . For instance,
in Ref. [20], the polarization spectrum R

pol
33 , defined in Eq. (9), was found to be always larger than its

directional counterpart Rdir
33 . However, when increasing Nk and Nθ , the ratio Rdir

33 /R
pol
33 in the inertial

range increases until it becomes larger than one. By contrast, the value of Nλ did not appear to have
any effect on this quantity or on any other aspect of the simulation. Figure 6 shows how the ratio
Rdir

33 /R
pol
33 evolves with Nk and Nθ . It can be seen that a converged value, with a relative variation

of less than 1%, is obtained for Nk � 1024 and Nθ � 60. The simulation discussed hereafter is
performed with Nk = 1024, Nθ = 80, and Nλ = 20.

2. One-point statistics

Detailed commentaries about the evolutions of the one-point statistics of USH turbulence can be
found in Refs. [16,18–21]. Here we recall that, after a transient, the second-order correlations of
velocity and concentration reach an exponential self-similar regime. Using the arguments developed
in Ref. [17] and concerning the permanence of large eddies, it can be shown that these correlations
evolve proportionally to exp( 4

s+3 t).
Figure 7 shows the evolution of the kinetic energy K, of the concentration variance B, and of the

Reynolds number defined as

Re = K2

εν
,
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(a) (b)

FIG. 6. Evolution of the maximum of the ratio Rdir
33 /R

pol
33 in the inertial range (a) as a function of Nθ for

Nk = 128 and (b) as a function of Nk for Nθ = 60.

with ε = 2ν
∫ ∞

0 k2E(k,t)dk. The self-similar regime can be observed after t ≈ 3. The predicted
exponential evolutions of K, B, and Re are then well verified: For t � 3, K, B, and Re ∝ e[4/(s+3)]t .

The flow being nonstationary, one may wonder how nonstationarity affects the properties of
inertial scales. While not detailed here, it can be shown that for harmonics 
 � 2 the unsteady terms
of rdir


 , rpol

 , f
, and b
 are small compared to their respective nonlinear transfer and buoyancy terms.

As a result, they do not modify the behavior of the inertial range, i.e., they do not affect the existence
of an equilibrium spectrum or the properties of zero-modes.

3. Zeroth-order harmonic: Kinetic energy and concentration modulus spectra

Once the Reynolds number becomes high enough, the kinetic energy and concentration modulus
spectra E(k,t) and EB(k,t) develop an inertial range with a Kolmogorov-Obukhov scaling, as
expressed by Eq. (7). To assess the validity of this scaling, we introduce normalized spectra

E∗(k) = E(k)

ε2/3k−5/3
, E∗

B(k) = EB(k)

εBε−1/3k−5/3
.

(a) (b)

FIG. 7. Evolution of several one-point statistics for (a) Reynolds number Re and (b) kinetic energy and
concentration variance.
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FIG. 8. Normalized spectra E∗(k) and E∗
B (k) for Re ≈ 107.

These two normalized spectra are displayed in Fig. 8 at the final time of the simulation for a Reynolds
number Re ≈ 107. They both exhibit a plateau indicating the presence of an inertial range with a
Kolmogorov-Obukhov scaling. The heights of the plateau for E∗ and E∗

B give the following values
of the Kolmogorov and Obukhov constants:

CK ≈ 1.42, CO ≈ 0.65.

The two plateaus extend for about two decades, from ksi to kei , where

ksi ≈ 2kI , kei ≈ 0.02kη, (27)

with

kI =
∫

E(k)dk∫
E(k)

k
dk

, kη = ε1/4ν−3/4.

The wave number kI is the inverse of an autocorrelation length characteristic of large scales, while
kη is the inverse of the Kolmogorov dissipation scale. These properties were already described, with
additional details, in Refs. [19–21]. In the remainder of this section, we will assume that the inertial
range starts at ksi and ends at kei :

INERTIAL RANGE ≡ [ksi,kei].

Note that the spectral bump occurring beyond kei is not included into the inertial range. Its existence
is generally attributed to the so-called bottleneck phenomenon [42].

4. Velocity spectrum

We now turn our attention to the anisotropic properties of the flow. First, we consider rdir
2 (k)

and r
pol
2 (k), the second-order harmonics of the velocity spectrum defined by Eq. (10). Figure 9(a)

compares these two spectra along with the isotropic component E(k). We observe that rdir
2 (k) and

r
pol
2 (k) decay faster than E(k) in the inertial range and that their absolute values eventually become

much smaller than E(k):

|rdir
2 (k)|,|rpol

2 (k)| � E(k).
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(a) (b)

FIG. 9. Second-order harmonics of the velocity spectrum. (a) Comparison between rdir
0 , rdir

2 , and r
pol
2 .

(b) Compensated spectra rdir
2 k7/3 and r

pol
2 k7/3.

This observation agrees with the central hypothesis leading to the linearization of the EDQNM
model in Sec. IV and the derivation of zero-modes.

We also observe in Fig. 9(a) that rdir
2 (k) and r

pol
2 (k) exhibit an inertial slope close to −7/3. To

assess this property more precisely, we plot in Fig. 9(b) the compensated spectra rdir
2 k7/3 and r

pol
2 k7/3,

zooming in on the previously identified inertial interval [ksi,kei]. The inertial range appears to be
divided into two parts roughly delimited by a wave number kzm with an observed value of kzm ≈ 8ksi .

For ksi � k � kzm, r
pol
2 (k)k7/3 displays a variation compatible with a k−2/3 scaling, while

rdir
2 (k)k7/3 exhibits a variation that can be fitted with a function of the form A1 − A2k

−2/3. For
kzm � k � kei , both r

pol
2 (k)k7/3 and r

pol
2 (k)k7/3 remain approximately constant. Therefore, we have

approximately

rdir
2 (k) ∝ A1k

−7/3 − A2k
−3, r

pol
2 (k) ∝ k−3 for ksi � k � kzm,

rdir
2 (k) ∝ k−7/3, r

pol
2 (k) ∝ k−7/3 for kzm � k � kei .

These observations are coherent with the predictions made in Sec. VI. Indeed, Eqs. (21) predict that
rdir

2 and r
pol
2 are the sum of two contributions, an equilibrium contribution scaling like k−3 and a

zero-mode contribution scaling approximately like k−7/3. This description allows for the possibility
of observing a k−3 spectrum for the largest scales of the inertial range and an approximate k−7/3 for
its smallest scales. Whether a k−3 inertial subrange is actually seen or not depends on the relative
intensity of the two components, which is not predicted by the theory. For r

pol
2 , it seems that this

relative intensity is sufficient for the occurrence of an approximate k−3 component, while for rdir
2

it is not. This difference in behavior of r
pol
2 and rdir

2 is also in agreement with the discussion of
Sec. VI B.

Thus, the observed scalings of rdir
2 and r

pol
2 are consistent with the existence of velocity zero-modes

in the inertial range [ksi,kei] and with their predominance in the subinterval [kzm,kei]. Then, if
this is indeed the case, if zero-modes are indeed prevalent in [kzm,kei], one should obtain a ratio
rdir

2 /r
pol
2 ≈ 7.73, as predicted by the zero-mode theory.

This ratio is displayed in Fig. 10(a). It can be seen that for k � kzm, the value of rdir
2 /r

pol
2 is close to

the expected zero-mode value. We also note that most of the k−3 subinterval [ksi,kzm] corresponds to
a transition from a value rdir

2 /r
pol
2 ≈ 1 to rdir

2 /r
pol
2 ≈ 7.7. The value rdir

2 /r
pol
2 ≈ 1 is the one predicted

by the equilibrium solution, as explained in Sec. VI B. In Sec. VI B, it was also noted that such high
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(a) (b)

FIG. 10. Ratios of anisotropic components of the velocity spectrum: (a) ratio rdir
2 /r

pol
2 and (b) ratio R

pol
33 /Rdir

33 .

values of the ratio rdir
2 /r

pol
2 would correspond to a directional anisotropy larger than the poloidal one.

This is indeed the case, as can be seen in Fig. 10(b), which displays the ratio Rdir
33 /R

pol
33 .

As a last check of the presence of zero-modes, we plot the nonlinear frequencies |T dir
2 /rdir

2 |
and |T pol

2 /r
pol
2 | in Fig. 11. As explained in Sec. IV B, these frequencies should evolve as k2/3 save

for the presence of zero-modes. As can be seen in Fig. 11, the nonlinear frequencies exhibit a
k2/3 dependence only in the subinterval [ksi,kzm]. For k � kzm, they appear to be almost constant,
agreeing with the existence of zero-modes. Therefore, the scalings of rdir

2 and r
pol
2 , their ratios, and

the nonlinear frequencies |T dir
2 /rdir

2 | and |T pol
2 /r

pol
2 | are all coherent with the presence of zero-modes

for the second harmonic of the velocity spectrum.
This presence has been discussed so far for a Reynolds number Re = 1.2 × 107. One may wonder

if it is also observed for smaller Reynolds numbers. To answer this question, we plot in Fig. 12(a)
the compensated spectra rdir

2 k7/3 and r
pol
2 k7/3, nondimensionalized by their value at k = kI , as a

FIG. 11. Nonlinear frequencies |T dir
2 /rdir

2 | and |T pol
2 /r

pol
2 |.
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(a) (b)

FIG. 12. (a) Compensated spectra rdir
2 (k)k7/3/rdir

2 (kI )k7/3
I (solid lines) and r

pol
2 (k)k7/3/r

pol
2 (kI )k7/3

I (dashed
lines) at different Reynolds numbers. (b) Maximum value of rdir

2 (k)/r
pol
2 (k) in the inertial range as a function of

the Reynolds number.

function of k/kI , for different Reynolds numbers. We recall that kI is defined by Eq. (27) and
roughly corresponds to the peak of the energy spectrum. It can be seen that plateaus indicative of
the k−7/3 zero-mode scaling start to appear for Re � 105. We also note that for 104 � Re � 105,
the polarization harmonic r

pol
2 mostly scales as k−3, but that the directional one rdir

2 already differs
from this scaling because of the presence of a zero-mode. Hence, even if only partially, the effect of
zero-modes can be observed for Re � 104. Another indication of Reynolds convergence is shown
in Fig. 12(b). This figure displays the maximum value of the ratio rdir

2 /r
pol
2 in the inertial range. It

can be observed that this value converges towards the zero-mode prediction of 7.73 for Re � 105. It
can also be seen that it departs significantly from 1, the value corresponding to equilibrium spectra,
for Re � 104. These two observations confirm the conclusions already drawn from Fig. 12(a), i.e.,
that observing the full features of velocity zero-modes requires Reynolds numbers larger than 105,
but that the presence of zero-modes start influencing the velocity spectrum for Re � 104.

To conclude the description of the anisotropy of the velocity spectrum, we display in Fig. 13
some information about harmonics of order 4 and 6. More precisely, we show the ratios rdir


 /rdir
2

(a) (b)

FIG. 13. Ratios (a) |rdir

 /rdir

2 | and (b) |rpol

 /r

pol
2 | for 
 = 4 and 6.
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(a) (b)

FIG. 14. Second-order harmonic of the concentration flux f2(k) (a) without renormalization and (b) with
the k7/3 renormalization defined by Eq. (25): f �

2 = f2
cF ε1/3(cK+cOεB/ε)k−7/3 .

and r
pol

 /r

pol
2 for 
 = 4 and 6. The main observation is that these ratios are small compared to one in

the inertial range. This is consistent with the predominance of the second-order harmonic predicted
by the zero-mode analysis. However, the scalings of rdir


 and r
pol

 for 
 = 4,6 do not seem to obey

the predictions made in Sec. V A. For 
 = 4, rdir
4 /rdir

2 and r
pol
4 /r

pol
2 should decay with an exponent

ξ40 − ξ20 ≈ 0.53, but the decay of rdir
4 /rdir

2 is closer to 1/3, while r
pol
4 /r

pol
2 appears to be constant.

As for 
 = 6, rdir
6 exhibit numerous changes of sign in the inertial range, which prevent any measure

of an inertial slope, while r
pol
6 does not display any clear power-law scaling. Thus, while evidence

of zero-modes can be identified for the second-order harmonics rdir
2 and r

pol
2 , this is not the case

for higher harmonics rdir

 and r

pol

 with 
 = 4 and 6. This may come from the action of buoyancy

forces or from the unaccounted nonlocal effect of distant interactions. In particular, as explained in
Sec. V A, high-order harmonics can only exhibit the features predicted in this work for very high
Reynolds numbers because the contribution from distant interactions becomes higher as 
 increases.

5. Concentration flux spectrum

Figure 14(a) shows f2(k), the second harmonic of the concentration flux spectrum, at the final
time of the simulation for a Reynolds number Re ≈ 107. As expected from Eq. (24c) and as already
observed numerous times [21,28], the inertial slope of the flux spectrum is close to −7/3. Figure 14(b)
displays a close-up in the inertial range of the renormalized spectrum f �

2 (k) defined by Eq. (25),
with constants set to cF = 3.8, cK = 1.42, and c0 = 0.65, in agreement with the EDQNM model
predictions. A non-negligible variation of f �

2 can be seen between the two wave numbers ksi and
kei , which have been previously identified as the limits of the inertial range. Such a variation is
compatible with the existence of a zero-mode of the concentration flux in the inertial range. Indeed,
the proximity of the zero-mode exponent ξF

2 0 to 7/3 implies a slow convergence of the slope of
the flux to −7/3. This slow convergence can also explain why f �

2 is not equal to 1 but only to 0.8
at the end of the inertial range and accordingly why the constant cF evaluated in simulations is
systematically smaller than the EDQNM prediction of cF = 3.8.

A more direct verification of the presence of a zero-mode can be performed by plotting |1 − f �
2 |.

According to Eq. (25), this quantity should decay proportionally to k−0.13. In Fig. 15, it can be seen
that, at the end of the inertial range, |1 − f �

2 | decays with an exponent close to 0.17, i.e., only 30%
higher than the predicted one.
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FIG. 15. Difference between f �
2 and its expected asymptotic value 1.

In addition, the slow convergence due to the presence of a zero-mode was recast in terms of
Reynolds numbers in Sec. VI C: The difference between the local slope n(k) at the end of the inertial
range and 7/3 is predicted to evolve as Re−0.2

λ for high Reynolds numbers. In order to verify this
prediction, we compute n(k) according to Eq. (26) with a central finite-difference approximation of
the gradient. This computation is done at the end of the inertial range, at k = kei/2. Then we plot in
Fig. 16 the difference 7/3 − n(kei/2) as a function of the Taylor Reynolds number Reλ defined as

Reλ =
√

20

3

k2

εν
.

FIG. 16. Difference between 7/3 and the inertial slope of the concentration flux measured at k = kei/2 as
a function of Reλ.
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FIG. 17. Nonlinear frequency |T F
2 /f2|.

It can be seen that 7/3 − n(kei/2) decreases approximately like Re−0.7
λ , i.e., with an exponent 3.5

times larger than predicted. However, for the highest Reynolds numbers, close to Reλ = 5000, a
departure from this approximate power law is observed. With a resolution of Nk = 1024, Nθ = 80,
and Nλ = 20, the CPU cost of the simulation was too high to go beyond Reλ = 5000. Therefore,
in order to explore the regime Reλ > 104, we performed two additional simulations with lower
resolutions Nk = 512, Nθ = 40, and Nλ = 20 and Nk = 256, Nθ = 20, and Nλ = 20.

As can be seen in Fig. 16, both high- and low-resolution simulations display similar features for
Reλ < 5000, as far as the decay exponent for 7/3 − n(kei/2) is concerned. In addition, for Reλ > 104,
the two lower-resolution simulations exhibit a change of decay exponent for 7/3 − n(kei/2). This
exponent becomes close to 0.2, i.e., to the value predicted by the zero-mode analysis. Note that we
performed additional verifications, changing the location where the slope of f2 is measured over one
decade, from k = 0.1kei to k = kei . The two zones of decay of 7/3 − n(k) delimited by Reλ = 104

were still observed. In addition, the decay exponent of the highest-Reynolds-number zone varied
from approximately 0.24 to 0.16: It still remained close to the zero-mode prediction.

As a last check of the presence of a zero-mode, we plot in Fig. 17 the nonlinear frequency |T F
2 /f2|.

According to Eq. (16), |T F
2 /f2| should increase as k2/3 save for the presence of zero-modes. It can

be seen in Fig. 17 that the tendency of |T F
2 /f2| towards k2/3 is only achieved at the end of the inertial

range. For the largest and intermediate scales of this range, the variation of |T F
2 /f2| is different

from k2/3. These observations are in agreement with the presence of a zero-mode that becomes
subdominant as k increases.

As a whole, the proximity of the concentration flux zero-mode exponent with its equilibrium
counterpart makes the identification of this mode difficult. Still, the compensated spectrum f �

2 , the
dependence of the inertial slope n(k) on the Reynolds number, and the nonlinear frequency |T F

2 /f2|
give several indications suggesting that this mode may indeed be present.

Concerning higher-order harmonics of the concentration flux, it can be seen in Fig. 18 that the
harmonics of order 
 = 4 and 6 are much smaller than the harmonic of order 
 = 2. In addition,
|f4/f2| appears to decay in the inertial zone with an exponent close to the zero-mode prediction
ξF

4 0 − ξF
2 0 ≈ 0.28. As for |f6/f2|, sign changes prevent observing a clear power-law decay. The first

part of the inertial range still appears to be compatible with the zero-mode prediction ξF
6 0 − ξF

2 0 ≈
2.29. Therefore, the harmonics of order 
 = 4 and 6 of the concentration flux display characteristics
that are not incompatible with the existence of zero-modes.
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FIG. 18. Ratio |f
/f2| for 
 = 4 and 6.

6. Concentration spectrum

The last spectrum we examine is the concentration spectrum. To begin with, we look at its
second-order-harmonic component b2(k). Figure 19(a) shows that b2(k) decays faster than the
isotropic spectrum EB(k) in the inertial range and becomes much smaller than EB . This is similar to
what was observed for the velocity spectrum and the first conclusions that can be drawn are identical
to those expressed in Sec. VII A 4.

The second observation that can be made from Fig. 19(a) is that the sign of b2 changes within the
inertial range. With b2(k) being the sum of an equilibrium spectrum b2|ES and a zero-mode b2|ZM,
this change suggests that b2|ES and b2|ZM may have opposite signs. This hypothesis requires further
confirmation.

(a) (b)

FIG. 19. Second-order harmonics of the concentration spectrum. (a) Comparison between b0 and b2.
(b) Compensated spectra b2k

7/3.
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FIG. 20. Ratio between b2(k) and bZM
2 (k).

We also observe in Fig. 19(a) that the inertial slope of b2(k) seems close to 7/3 in the range
[kzm,kei], as is expected from the zero-mode analysis. However, the compensated spectrum b2k

7/3

shown in Fig. 19(b) indicates that the actual slope converges very slowly as k increases and that it
remains smaller than 7/3 on the simulated range (but no smaller than 2.2). We note that the change
of sign of b2 limits the domains where power laws can be clearly identified.

Pursuing the analysis, we now look at the ratio between b2(k) and its zero-mode expression bZM
2

as a function of rdir
2 and r

pol
2 , as given by Eq. (20). It can be seen in Fig. 20 that this ratio is not

constant but that it approaches its zero-mode value of 1 towards the end of the inertial range.
Finally, given Eq. (16) and the fact that rdir

2 , rpol
2 , and b2 display scalings close to k−7/3 for k � kzm,

the nonlinear transfer term T B
2 of b2 should exhibit for k � kzm a scaling close to k−5/3 except for

the case when b2 is a zero-mode. As shown in Fig. 21, T B
2 exhibits a clear k−7/3 scaling, suggesting

that b2 behaves indeed as a zero-mode for k � kzm, even if its properties do not match exactly the
asymptotic predictions of the zero-mode analysis.

As a whole, these different observations suggest the presence of a zero-mode for the second-
order harmonic of the concentration spectrum. Still, they do not allow us to corroborate firmly the
predictions of the zero-mode analysis. Clear scalings or proportionality relationships cannot be put
forward. This is partly linked to the change of sign of b2, which seems to delay the establishment
of such features. This change of sign itself can be explained by attributing opposite signs to the
equilibrium and zero-mode contributions of the concentration spectrum. Despite these restrictions,
the properties of the spectrum b2 at the end of the inertial range seem to approach those expected
from the zero-mode analysis. A larger EDQNM simulation would allow us to confirm this tendency.

Concerning the harmonics of order 
 = 4 and 6, we observe in Fig. 22 a rather unexpected feature:
b4 and b6 appear to be much larger than the second-order harmonic b2 in the interval [ksi,kzm]. While
not shown here, b4 and b6 nonetheless remain much smaller than EB , so the linearization of the
EDQNM model is still valid. The harmonics b4 and b6 only become smaller than b2 for k � kzm, i.e.,
when zero-mode properties start to emerge. However, even in that range, b4 and b6 do not appear to
decay faster than b2, as is expected from the zero-mode theory. Thus, as for the higher harmonics
of the velocity spectrum, there is a discrepancy between the predicted properties of b4 and b6 and
the present EDQNM simulation. Reasons similar to those proposed at the end of Sec. VII A 4 can
possibly explain this difference.
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FIG. 21. Second-order harmonic of the nonlinear transfer term of B, T B
2 .

B. Large-eddy simulation of a Rayleigh-Taylor flow

1. Description of the simulation

As a last step in the validation of the results obtained in this article, we perform an implicit
large-eddy simulation (ILES) of Rayleigh-Taylor turbulence. More details about ILES can be found
in Ref. [43]. The reason for performing an ILES and not a DNS is that we are interested in inertial
scales and want to minimize the extent of the dissipation range. The simulation is performed with
the code TRICLADE, a massively parallel code intended to solve turbulent mixing of perfect gases in a
variable density context [44,45]. A shock capturing scheme provides just enough numerical viscosity
and diffusivity to ensure stability. More precisely, for this work, the monotonic upstream-centered
scheme for conservation laws–based finite-volume Godunov method referred to as M5 in Ref. [45]

FIG. 22. Ratio |b
/b2| for 
 = 4 and 6.
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TABLE I. Simulation parameters in nondimensional units.

Parameter Quantity

Atwood number At = ρh−ρl

ρh+ρl
0.1

stratification isentropic
grid resolution 1024 × 1024 × 1200

is used. It is accurate to fifth order in space and is combined with a low-storage strong stability
preserving Runge-Kutta scheme of third-order time accuracy. The one-dimensional total variation
diminishing limiter of [46] is used in reconstructing the primitive variables in order to ensure the total
variation diminishing property. The simple low-dissipation advection upstream splitting method’s
numerical flux of [47] is used at each cell face due to its good performances in the low-Mach-number
limit as shown in Ref. [45].

Table I summarizes the main parameters of the simulation. The grid is regular at the center of the
domain on a cube of size 1024 × 1024 × 1024. Two grids with a geometric progression are added
at both ends of this cube in the inhomogeneous direction.

The simulation is initialized by imposing a random perturbation of the vorticity field on a slab
of thickness 4�x centered at the interface. The perturbation is initialized by setting a broadband
spectrum peaking at κ ≈ π

4�x
and decaying as κ4 for κ → 0.

In order to improve the statistical accuracy of the results, this simulation is repeated four times,
keeping all parameters constant except for the seed of the random generator used to create the initial
perturbation. The results shown below are all ensemble averaged over these four simulations, at each
physical time t∗, in addition to using a spatial average operator over the homogeneous directions.

The simulation reaches a self-similar state characterized by a quadratic growth of the mixing
zone width L:

L = 2αAt gt2.

Figure 23 displays the evolution of α, computed by the formula α = (dtL)2

8At gL
, with L defined by the

expression L = 6
∫

c(1 − c)dx�
3 . It can be seen that α tends to a self-similar value close to 0.02, in

agreement with other numerical simulations [7,48].

FIG. 23. Evolution of α as a function of the mixing zone width L.
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FIG. 24. Compensated energy and concentration modulus spectra E(k,t) and EB (k,t) at the final time of
the simulation.

In the remainder of this section, we will work with nondimensional variables, as we did for USH
flows. These variables are defined identically to the USH case by Eq. (2). The only difference is the
definition of L, which is here taken equal to the mixing zone size. In particular, the wave number
k = 2π corresponds to the mixing zone size.

As a last remark, we would like to stress that we do not have access to the local values of
the dissipations of the kinetic energy and scalar variance, since we are using an implicit LES.
However, when the flow becomes self-similar, we can use the formula derived in Ref. [49] to find
the volume-averaged dissipations as a function of the second-order correlations of velocity and
concentration. These formulas yield

〈ε〉 = 〈u3c〉(1 − 12〈ujuj 〉), 〈εB〉 = 2〈u3c〉(1 − 6〈c′2〉), (28)

where

〈· · · 〉 =
∫

· · · dx3 = 1

L

∫
· · · dx�

3 .

2. Inertial range scalings

In order to verify whether an inertial range appears in the simulation, we plot in Fig. 24, at the
end of the simulation, the normalized spectra E∗(k) = E(k)

〈ε〉2/3k−5/3 and E∗
B(k) = EB (k)

〈εB 〉〈ε〉−1/3k−5/3 . From
k ≈ 4 to k ≈ 20, both normalized spectra exhibit a slow variation, which suggests a scaling close to
the Kolmogorov-Obukhov one. In addition, in this range, the values of E∗ and E∗

B are compatible
with a Kolmogorov constant CK ≈ 1.4 and an Obukhov constant CO ≈ 0.55. Thus, from k ≈ 4 to
k ≈ 20, the flow displays an interval of scales with characteristics close to those expected from an
inertial range. This range is at most half a decade long. While this is not insignificant, all the scaling
estimates that will be presented below should be considered with great caution.

In addition, there is also another restriction due to the small extent of this range: If we assume
that the EDQNM simulation of Sec. VII A is relevant to this Rayleigh-Taylor configuration, then
we will only be able to observe the interval k � kzm where the imprint of the equilibrium spectrum
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(a) (b)

FIG. 25. Second-order harmonics of the velocity spectrum for the Rayleigh-Taylor simulation.
(a) Comparison between E, rdir

2 , and r
pol
2 . (b) Compensated spectra rdir

2 k7/3 and r
pol
2 k7/3.

is still strong. The inertial range will not be large enough to reach a subinterval fully dominated by
zero-modes.

3. Velocity spectrum

We begin by examining the second-order harmonics of the velocity spectrum. Figure 25(a) shows
that rdir

2 (k) and r
pol
2 (k) decay faster than E(k) in the inertial range, as was the case in the EDQNM

simulation of USH turbulence. To estimate the inertial slopes of rdir
2 (k) and r

pol
2 (k), we plot in

Fig. 25(b) the compensated spectra rdir
2 k7/3 and r

pol
2 k7/3, zooming in on the inertial interval. For the

compensated directional spectrum we observe a plateau, indicating that the scaling of rdir
2 (k) is close

to −7/3. For the compensated polarization spectrum, we observe a decay agreeing with a k−2/3

variation and indicating that r
pol
2 (k) scales approximately as k−3.

These observations are compatible with the superposition of a k−3 equilibrium spectrum and a
k−7/3 zero-mode as predicted in Eq. (24). They also agree with the EDQNM simulations of USH
turbulence presented in Sec. VII A: The variations of rdir

2 (k) and r
pol
2 (k) are similar to those observed

in Fig. 9(b) for the largest scales of the inertial range (k � kzm).
Figure 26(a) shows the ratio rdir

2 /r
pol
2 in the interval identified as the inertial range. It can be seen

that this ratio increases with k and that it departs from the value of 1 predicted by the equilibrium
assumption, in agreement with the presence of a zero-mode. The largest value of this ratio, obtained
at the end of the inertial range, is about 1.8 and is still far from the asymptotic one predicted by the
zero-mode analysis. This is not unexpected: As shown in Fig. 12(b) for the EDQNM simulation, this
maximum value increases slowly with the Reynolds number. Convergence only occurs at Reynolds
numbers above 3 × 105, corresponding to inertial ranges much larger than the one obtained in the
present LES. From Fig. 12(b) we also see that a ratio of 1.8 would be obtained from an EDQNM
simulation with a Reynolds number on the order of 104, corresponding approximately to an inertial
range of about half a decade. This is on par with the present LES.

Finally, we display in Fig. 26(b) the nonlinear frequencies |T dir
2 /rdir

2 | and |T pol
2 /r

pol
2 |. As already

explained (see Sec. IV B), these frequencies should evolve as k2/3 save for the presence of zero-
modes. We see that the polarization frequency |T pol

2 /r
pol
2 | evolves indeed as k2/3, while |T dir

2 /rdir
2 |

does not. This result agrees with previous observations and is coherent with the presence of a
zero-mode yielding a dominant contribution for rdir

2 and subdominant one for r
pol
2 .

074603-32



INFLUENCE OF ZERO-MODES ON THE INERTIAL-RANGE . . .

(a) (b)

FIG. 26. (a) Ratio rdir
2 /r

pol
2 . (b) Nonlinear frequencies |T dir

2 /rdir
2 | and |T pol

2 /r
pol
2 |.

As a whole, the different observations made in Figs. 25 and 26 all point to the presence of
zero-modes in the second-order harmonics of the velocity spectrum. This body of corroborating
evidence requires further confirmation that can only be achieved by performing larger simulations.
In particular, it would be interesting to see if the inertial slope of r

pol
2 indeed changes to 7/3 and to

determine if the asymptotic value of the ratio rdir
2 /r

pol
2 corresponds to its zero-mode prediction.

Concerning higher-order harmonics, simulation results are not displayed but can be summed up
as follows: Harmonics of order 4 and 6 are much smaller than the harmonic of order 2. Other than
that, their properties appear to be different from those predicted by the zero-mode analysis. This is
similar to what was observed in EDQNM simulations and the possible reasons for explaining these
differences are the same as those proposed at the end of Sec. VII A 4.

4. Concentration flux spectrum

Figure 27(a) shows f2(k), the second harmonic of the concentration flux spectrum for the
Rayleigh-Taylor simulation. The inertial slope of the flux spectrum is found to be close to −7/3.

(a) (b)

FIG. 27. Second-order harmonic of the concentration flux f2(k) for the Rayleigh-Taylor simulation
(a) without renormalization and (b) with a k7/3 renormalization: f �

2 = f2
cF 〈ε〉1/3(cK+cO 〈εB 〉/〈ε〉)k−7/3 .
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FIG. 28. Nonlinear frequency |T F
2 /f2|.

Zooming in on the inertial range previously identified in Sec. VII B 2, we show in Fig. 27(b) the
normalized spectrum f �

2 = f2

cF 〈ε〉1/3(cK+cO 〈εB 〉/〈ε〉)k−7/3 , with constants set to cF = 3.8, cK = 1.4, and
c0 = 0.55. The latter two values are chosen in agreement with Fig. 24. Variations of less than 20%
in relative value are observed for f �

2 (k), confirming that the scaling of f2(k) is close to −7/3.
Comparing Fig. 27(a) to its EDQNM equivalent in Fig. 14(b) may lead to the impression that the
variations of f �

2 (k) in the EDQNM case are much stronger than those obtained in the LES case.
However, most of this impression comes from the different scales of the figures and the different
inertial range sizes. Focusing on the first half decade of inertial range in Fig. 14(b), one can measure
relative variations of f �

2 (k) on the order of 25% for the EDQNM simulation. This is larger than but
still on the same order as the variation observed in the LES case.

In addition, we note that the value of the plateau of f �
2 is about 0.5, i.e., half as big as the one

predicted by the EDQNM model. Still, the EDQNM prediction is only for asymptotically small
scales. The first half decade of the inertial range of the EDQNM simulation shown in Fig. 14(b)
shows values of f �

2 that are also on the order of 0.5.
Unfortunately, the inspection of the second-order-harmonic spectrum of the flux f2 does not give

any clue as to the presence of a zero-mode. The small extent of the inertial range does not allow us
to separate scalings as close as k−7/3 and k−7/3−δξF

with δξF = 0.13. There is still one more piece
of information that can be looked at: According to Eq. (16), the nonlinear frequency |T F

2 /f2| is
expected to scale as k2/3 in the inertial range, save for the presence of a zero-mode. Figure 28 shows
that |T F

2 /f2| scales differently from k2/3, indicating that a zero-mode may be present. However,
this sole indication is certainly not sufficient to make any definitive conclusions about the presence
of zero-modes. We also note that in the derivation of the equilibrium spectrum [8], it is explicitly
assumed that |T F

2 /f2| scales as k2/3. Figure 28 consequently shows that the equilibrium explanation
is not fully satisfactory and that an element is missing.

5. Concentration spectrum

As in the EDQNM simulation, one of the most striking features of the second-order harmonic of
the concentration spectrum b2 in the inertial range is that its sign changes. As shown in Fig. 29(a),
from the middle to the end of the inertial range, b2 is positive, while it is negative for energetic
scales. In the EDQNM case, this positive interval was followed for larger k by another negative one
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(a) (b)

FIG. 29. Second-order harmonics of the concentration spectrum for the Rayleigh-Taylor simulation.
(a) Comparison between b0 and b2. (b) Compensated spectra b2k

7/3.

displaying approximately zero-mode properties. In the present LES simulation, the small extent of
the inertial range does not allow us to determine whether another negative interval will appear in the
inertial range. In addition, as in the EDQNM case, the change of sign prevents the identification of
any clear scaling, as can be seen from Fig. 29(b). Therefore, no conclusion can be drawn about the
influence of zero-modes on b2 in this simulation.

VIII. CONCLUSION

The purpose of this work was to study the anisotropic properties of the inertial range of USH
and Rayleigh-Taylor turbulence. Following [22–24], two main physical mechanisms are expected to
control these properties. The first one corresponds to the direct and local action of buoyancy forces
and gives rise to equilibrium spectra. The second one results from the nonlocal action of transfer
terms and translates into the apparition of zero-modes, i.e., of modes that nullify the anisotropic part
of transfer terms. The issue at stake in this article was to determine which of these two physical
mechanisms sustains anisotropy for small inertial scales. The equilibrium mechanism was already
studied in Ref. [8] and leads to a k−3 scaling for the velocity and concentration anisotropic spectra
and to a k−7/3 scaling for the concentration flux spectrum. The study of the second mechanism, i.e.,
of the properties of zero-modes, was the main objective of the present paper.

To determine zero-mode properties, we performed a zero-mode analysis of the EDQNM model
proposed in Ref. [19] with the procedure developed in Ref. [24]. From this analysis, we derived that
the velocity and concentration zero-modes display approximate k−7/3 scalings. As a consequence,
velocity and concentration zero-modes become predominant at very small scales compared to their
equilibrium counterparts, which, we recall, scale as k−3. Therefore, one of the main result of this study
is that, at the smallest scales of the inertial range, the anisotropy of the velocity and concentration
spectra is maintained by the nonlocal action of nonlinear terms and scales approximately
as k−7/3.

As for the concentration flux, the zero-mode analysis also yields an approximate k−7/3 scaling.
This scaling is close to the equilibrium scaling, but is different from it. This small difference is such
that the zero-mode contribution will eventually become subdominant as k increases. Therefore, the
conclusion is here the converse of the one obtained for the velocity and concentration spectra: At
the smallest scales of the inertial range, the anisotropy of the concentration flux spectrum is due
to the direct and local action of buoyancy forces. In addition, we also derived another noticeable
result for the concentration flux spectrum. Indeed, the zero-mode contribution decays only slightly
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more rapidly than the corresponding equilibrium contribution. When cast in terms of Reynolds
numbers, this property implies that the inertial slope of the concentration flux exhibits a slow
convergence to −7/3. Therefore, zero-modes provide a possible explanation for observations of this
slow convergence, which have already been made in different contexts [28,29].

To verify these predictions, we performed an EDQNM simulation of USH turbulence at a Reynolds
number of 107. This simulation confirmed the presence of zero-modes in the inertial range for the
second-order harmonic of the velocity spectrum. The scalings and ratio of the directional and
polarization anisotropy were found to be close to the ones derived from the zero-mode analysis.
In addition, the influence of zero-modes was also detected for the second-order harmonic of the
concentration flux spectrum through the slow convergence of its inertial slope to −7/3. As for the
second-order harmonic of the concentration spectrum, it displayed properties that approached those
predicted by the zero-mode analysis for the smallest scales of the inertial range. However, a larger
simulation would be required to confirm whether this tendency is real or not.

Finally, we performed a LES of Rayleigh-Taylor turbulence in order to check whether zero-modes
could be identified in the configuration that originally motivated the study. The main difficulty in
achieving this task lay in the small extent of the simulated inertial range. This prevented the
identification of clear scalings and of any other asymptotic properties of the spectra. Nonetheless,
keeping this limitation in mind, the velocity spectrum appeared to display features that were
compatible with the predictions of this work. In particular, the second-order harmonic of the
directionality spectrum showed a clear departure from the k−3 scaling originally proposed in Ref. [8]
and seemed to be compatible with the k−7/3 scaling of zero-modes. As for the concentration and
concentration flux spectra, no sign of zero-modes could be firmly exhibited. Independently of these
results on zero-modes, good agreement was observed between LES and EDQNM simulations when
comparing inertial ranges of similar extents.
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APPENDIX A: LINEARIZED TRANSFER TERMS OF THE EDQNM MODEL

Neglecting terms quadratic in rij , b, and f in Eqs. (5), we deduce the following linear
approximation for the EDQNM transfer terms in the inertial range:

T R
ab(k) =

∫
k+k′+k′′=0

MR
abcd (k,k′,k′′)rcd (k′)dk′ +

∫
k+k′+k′′=0

NR
abcd (k,k′,k′′)dk′rcd (k)

+
∫

k+k′+k′′=0
�dir(k,k′,k′′)QR

ab(k,k′,k′′)dk′, (A1a)

T B(k) =
∫

k+k′+k′′=0
MB(k,k′,k′′)b(k′)dk′ +

∫
k+k′+k′′=0

NB(k,k′,k′′)dk′b(k)

+
∫

k+k′+k′′=0
SB

ab(k,k′,k′′)rab(k′)dk′+
∫

k+k′+k′′=0
�dir(k,k′,k′′)QB(k,k′,k′′)dk′, (A1b)

T F
a (k) =

∫
k+k′+k′′=0

MF
ab(k,k′,k′′)fb(k′)dk′ +

∫
k+k′+k′′=0

NF
ab(k,k′,k′′)dk′fb(k), (A1c)

with

MR
abcd (k,k′,k′′) = �KO

kk′k′′Palm(k̂)
[
kPbdj (k̂)RKO

ij (k′′)+k′′Pidj (k̂
′′
)RKO

ij (k)
] + Sym. a ↔ b, (A1d)

NR
abcd (k,k′,k′′) = �KO

kk′k′′kk′′Paij (k̂)Pikc(k̂
′
)RKO

kj (k′′)δbd + Sym. a ↔ b, (A1e)
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MB(k,k′,k′′) = 2�KO
kk′k′′kikjR

KO
ij (k′′), (A1f)

NB(k,k′,k′′) = 2�KO
kk′k′′kik

′
jR

KO
ij (k′′), (A1g)

SB
ab(k,k′,k′′) = 2�KO

kk′k′′ka[kbB
KO(k′′) + k′′

bB
KO(k)], (A1h)

MF
ab(k,k′,k′′) = �KO

kk′k′′kj

{
2kPabi(k̂)RKO

ij (k′′) + k′′[Pjbi(k̂
′′
) + δjbk̂

′′
i ]RKO

ai (k)
}
, (A1i)

NF
ab(k,k′,k′′) = �KO

kk′k′′kk′[Pali(k̂)Plbj (k̂
′
) + k̂i k̂

′
j δab]RKO

ij (k′′), (A1j)

QR
ab(k,k′,k′′) = k

2
Palm(k̂)

[
kPbij (k̂)RKO

il (k′)RKO
jm (k′′)

+ k′Plij (k̂
′
)RKO

ib (k)RKO
jm (k′′)

+k′′Pmij (k̂
′′
)RKO

ib (k)RKO
j l (k′)

] + Sym. a ↔ b, (A1k)

QB
ab(k,k′,k′′) = 2ki{kj

[
RKO

ij (k′′)BKO(k′)
] + k′

j

[
RKO

ij (k′′)BKO(k)
]}, (A1l)

and

�KO = 1

cγ ε2/3(k2/3 + k′2/3 + k′′2/3)
, �dir = −(�KO)2[3a1N + ηdir(k) + ηdir(k′) + ηdir(k′′)],

(A1m)

where ηdir(k) = a0[
∫
k′�k

k′2rjj (k′)dk′/2]1/2 and cγ = a0(3cK/4)1/2. Substituting the definitions of
RKO

ij and BKO in these expressions, making the change of variables k′ ← k′/k and k′′ ← k′′/k in
the integrals, and neglecting the �dir contributions, we eventually obtain

T R
ab(k) = cT ε1/3k2/3

4π

(∫
k̂+k′+k′′=0

MR
abcd (k̂,k′,k′′)rcd (kk′)dk′

+
∫

k̂+k′+k′′=0
NR

abcd (k̂,k′,k′′)dk′rcd (k)

)
, (A2a)

T B(k) = 2cT ε1/3k2/3

4π

( ∫
k̂+k′+k′′=0

MB(k̂,k′,k′′)b(kk′)dk′ +
∫

k̂+k′+k′′=0
NB(k̂,k′,k′′)dk′b(k)

+ cOεB

cKε

∫
k̂+k′+k′′=0

SB
ab(k̂,k′,k′′)rab(kk′)dk′

)
, (A2b)

T F
a (k) = cT ε1/3k2/3

4π

(∫
k̂+k′+k′′=0

MF
ab(k̂,k′,k′′)fb(kk′)dk′ +

∫
k̂+k′+k′′=0

NF
ab(k̂,k′,k′′)dk′fb(k)

)
,

(A2c)

where cT = cK/cγ , cγ = a0(3cK/4)1/2, and

MR
abcd (k,k′,k′′) = �KO

k′k′′Paci(k̂)[Pbdj (k̂)Pij (k̂
′′
)k′′−11/3 + k′′Pidj (k̂

′′
)Pbj (k̂)] + Sym. a ↔ b,

(A3a)

NR
abcd (k,k′,k′′) = �KO

k′k′′k
′k′′−11/3Paij (k̂)Pikc(k̂

′
)Pkj (k̂

′′
)δbd + Sym. a ↔ b, (A3b)

MB(k,k′,k′′) = �KO
k′k′′k

′′−11/3k̂i k̂jPij (k̂
′′
), (A3c)

NB(k,k′,k′′) = �KO
k′k′′k

′k′′−11/3k̂i k̂
′
jPij (k̂

′′
), (A3d)

SB
ab(k,k′,k′′) = �KO

k′k′′ k̂a(k̂bk
′′−11/3 + k′′k̂′′

b ), (A3e)
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MF
ab(k,k′,k′′) = �KO

k′k′′ k̂j {2k′′−11/3Pabi(k̂)Pij (k̂
′′
) + k′′[Pjbi(k̂

′′
) + δjbk̂

′′
i ]Pia(k̂)}, (A3f)

NF
ab(k,k′,k′′) = �KO

k′k′′k
′k′′−11/3Pij (k̂

′′
)[Pali(k̂)Plbj (k̂

′
) + k̂i k̂

′
j δab], (A3g)

with

�KO
k′k′′ = 1

1 + k′2/3 + k′′2/3 . (A3h)

APPENDIX B: SPHERICAL HARMONIC DECOMPOSITION OF THE
LINEARIZED TRANSFER TERMS

In order to project the linearized EDQNM transfer terms defined in Eq. (A2) onto the spherical
harmonic decomposition, we apply the procedure proposed in Ref. [24]. This procedure is detailed
here for the directional harmonics of T R

ab only. The procedure is identical for the remaining harmonics
of the nonlinear terms.

The directional harmonics of T R
ab are defined as, for 
 � 0,

T dir

 (k) = 2
 + 1

2
k2

∫
T R

ab(k)Pab(k̂)Y
(cos θ )d k̂. (B1a)

Injecting the definition of the linearized EDQNM transfer terms Eq. (A2), we obtain that

T dir

 (k)

2
+1
8π

cT ε1/3k2/3
= 4πk2

∫∫
k̂+k′+k′′=0

[
MR

abcd (k̂,k′,k′′)rcd (kk′)

+NR
abcd (k̂,k′,k′′)rcd (k)

]
Pab(k̂)Y
(cos θ )dk′d k̂. (B1b)

Injecting the spherical harmonics decomposition of r , we derive that

T dir

 (k)

2
+1
8π

cT ε1/3k2/3

=
∑
m�0

∫∫
k̂+k′+k′′=0

MR
abcd (k̂,k′,k′′)

[
Pcd (k̂

′
)rdir

m (kk′)k′−2Ym(cos θ ′)
]
Pab(k̂)Y
(cos θ )dk′d k̂

+
∑
m�2

∫∫
k̂+k′+k′′=0

MR
abcd (k̂,k′,k′′)

[
Dcd (k̂

′
,n̂)rpol

m (kk′)k′−2Ÿm(cos θ ′)
]
Pab(k̂)Y
(cos θ )dk′d k̂

+
∑
m�0

rdir
m (k)

∫∫
k̂+k′+k′′=0

NR
abcd (k̂,k′,k′′)Pcd (k̂)Ym(cos θ )Pab(k̂)Y
(cos θ )dk′d k̂

+
∑
m�2

rpol
m (k)

∫∫
k̂+k′+k′′=0

NR
abcd (k̂,k′,k′′)Dcd (k̂,n̂)Ÿm(cos θ )Pab(k̂)Y
(cos θ )dk′d k̂. (B1c)

As explained in Ref. [24], the result of the inner integrals
∫

k̂+k′+k′′=0 · · · dk′ only depends on k and

cos θ . Then, using the definition cos θ = k̂ · n̂, we can replace the outer integration over k̂ by an
integration over n̂: ∫∫

k̂+k′+k′′=0
· · · dk′d k̂ =

∫∫
k̂+k′+k′′=0

· · · dk′d n̂.

The only terms depending explicitly on n̂ are the Legendre polynomials, their deriva-
tives, and Dab(k̂,n̂). Therefore, exchanging the order of integration between k′ and n̂ and
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knowing that
2
 + 1

4π

∫
Y
(cos θ )Ym(cos θ ′)d n̂ = Y
(k̂ · k̂

′
)δlm,

2
 + 1

4π

∫
Y
(cos θ )Dcd (k̂

′
,n̂)Ÿm(cos θ ′)d n̂ = k̂i k̂jDcdij (k̂

′
)Ÿ
(k̂ · k̂

′
)δlm,

Y
(1) = 1, Ÿ
(1) = (
 − 1)
(
 + 1)(
 + 2)

8
,

we obtain
T dir


 (k)
cT

2 ε1/3k2/3
=

∫
k̂+k′+k′′=0

MR
abcd (k̂,k′,k′′)Pab(k̂)Pcd (k̂

′
)Y
(k̂ · k̂

′
)rdir


 (kk′)k′−2dk′

+
∫

k̂+k′+k′′=0
MR

abcd (k̂,k′,k′′)Pab(k̂)Dcdij (k̂
′
)k̂i k̂j Ÿ
(k̂ · k̂

′
)rpol


 (kk′)k′−2dk′

+ rdir

 (k)

∫
k̂+k′+k′′=0

NR
abcd (k̂,k′,k′′)Pab(k̂)Pcd (k̂)dk′

+ r
pol

 (k)

(
 − 1)
(
 + 1)(
 + 2)

8

∫
k̂+k′+k′′=0

NR
abcd (k̂,k′,k′′)Pab(k̂)Dcdij (k̂)k̂i k̂j dk′.

(B2)

Now, as explained in Ref. [24], the integrand in the remaining integral over k′ only depends on k′

and k̂
′ · k̂. Then, using spherical coordinates k′, �′, and �′, with the angle �′ defined from the axis

k̂, we can neglect the dependence on �′ and simplify the above integrals as

T dir

 (k)

cT

2 ε1/3k2/3
= 2π

∫ ∞

0
rdir

 (kk′)

∫ 1

−1
MR

abcd (k̂,k′, − k′ − k̂)Pab(k̂)Pcd (k̂
′
)Y
(a)da dk′

+ 2π

∫ ∞

0
r

pol

 (kk′)

∫ 1

−1
MR

abcd (k̂,k′, − k′ − k̂)Pab(k̂)Dcdij (k̂
′
)k̂i k̂j Ÿ
(a)da dk′

+ 2πrdir

 (k)

∫ ∞

0
k′2

∫ 1

−1
NR

abcd (k̂,k′, − k′ − k̂)Pab(k̂)Pcd (k̂)da dk′

+ 2πr
pol

 (k)

(
 − 1)
(
 + 1)(
 + 2)

8

×
∫ ∞

0
k′2

∫ 1

−1
NR

abcd (k̂,k′, − k̂ − k′)Pab(k̂)Dcdij (k̂)k̂i k̂j da dk′, (B3)

where a = cos(k̂ · k̂
′
) = cos(�′) and k̂ and k′ are now expressed in a two-dimensional (2D) reference

frame based on k̂ and on a second unit vector ẑ orthogonal to k̂ as

k̂ = (0,1), k′ = (k′√1 − a2,k′a).

Thus, due to the reasoning proposed in Ref. [24], we expressed the directional harmonics of the
linearized transfer terms of the velocity spectrum with 2D integrals. All that needs to be done is to
replace the rdir


 and r
pol

 with their power-law dependence given by Eq. (12).

The same procedure also applies to the remaining harmonics of the linearized transfer terms. It
eventually yields Eq. (14). In these equations, the following definitions apply:

L
ij


 (ξ
) =
∫ ∞

0
k′−ξ


∫ 1

−1
MR

abcd (k̂,k′, − k′ − k̂)�ij

abcd (k̂,k̂
′
)da dk′

+
∫ ∞

0
k′2

∫ 1

−1
NR

abcd (k̂,k′, − k′ − k̂)�ij

abcd (k̂,k̂)da dk′, (B4a)
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LF



(
ξF



) =
∫ ∞

0
k′−ξF




∫ 1

−1
MF

ab(k̂,k′, − k′ − k̂)�F
ab(k̂,k̂

′
)da dk′

+
∫ ∞

0
k′2

∫ 1

−1
NF

ab(k̂,k′, − k′ − k̂)�F
ab(k̂,k̂)da dk′, (B4b)

LB



(
ξB



) =
∫ ∞

0
k′−ξB




∫ 1

−1
MB(k̂,k′, − k′ − k̂)�B(k̂,k̂

′
)da dk′

+
∫ ∞

0
k′2

∫ 1

−1
NB(k̂,k′, − k′ − k̂)�B(k̂,k̂)da dk′, (B4c)

LB1

 (ξ
) =

∫ ∞

0
k′−ξ


∫ 1

−1
Sab(k̂,k′, − k′ − k̂)�B1

ab (k̂,k̂
′
)da dk′, (B4d)

LB2

 (ξ
) =

∫ ∞

0
k′−ξ


∫ 1

−1
Sab(k̂,k′, − k′ − k̂)�B2

ab (k̂,k̂
′
)da dk′, (B4e)

with

�11
abcd (k̂,k̂

′
) = Pab(k̂)Pcd (k̂

′
)Y
(a), (B5a)

�12
abcd (k̂,k̂

′
) = Pab(k̂)Dcdij (k̂

′
)k̂i k̂j Ÿ
(a), (B5b)

�21
abcd (k̂,k̂

′
) = Pcd (k̂

′
)Dabij (k̂)k̂′

i k̂
′
j Ÿ
(a), (B5c)

�22
abcd (k̂,k̂

′
) = Pab(k̂)Pcd (k̂

′
)

[(

(
 + 1)

2

)2

Y
(a) − (
2 + 
 − 1)aẎ
(a) + a2Ÿ
(a)

]

+[Pab(k̂)Pci(k̂
′
)Pdj (k̂

′
)k̂i k̂j + Pcd (k̂

′
)Pai(k̂)Pbj (k̂)k̂′

i k̂
′
j ]

×
(

(
 − 1)(
 + 2)

2
Ÿ
(a) − a

...
Y 
(a)

)

+ [Pai(k̂)Pic(k̂
′
)Pbj (k̂)Pjd (k̂

′
) + Pai(k̂)Pid (k̂

′
)Pbj (k̂)Pjc(k̂

′
)]Ÿ
(a)

+Pai(k̂)Pbj (k̂){k̂′
i k̂m[Pjc(k̂

′
)Pmd (k̂

′
) + Pjd (k̂

′
)Pmc(k̂

′
)]

+ k̂′
j k̂m[Pic(k̂

′
)Pmd (k̂

′
) + Pid (k̂

′
)Pmc(k̂

′
)]}...

Y 
(a)

+ [Pai(k̂)Pbj (k̂)Pcm(k̂
′
)Pdn(k̂

′
)k̂′

i k̂
′
j k̂mk̂m]

....
Y 
(a), (B5d)

�F
ab(k̂,k̂

′
) = Pai(k̂)Pbi(k̂

′
)Ẏ
−1(a) + Pai(k̂)Pbj (k̂

′
)k̂j k̂

′
i Ÿ
−1(a), (B5e)

�B(k̂,k̂
′
) = Y
(a), (B5f)

�B1
ab (k̂,k̂

′
) = Pab(k̂

′
)Y
(a), (B5g)

�B2
ab (k̂,k̂

′
) = Dabij (k̂

′
)k̂i k̂j Ÿ
(a). (B5h)

Note that, for k̂ = k̂
′
, i.e., for a = k̂ · k̂

′ = 1, one has

�11
abcd (k̂,k̂) = Pab(k̂)Pcd (k̂), �12

abcd (k̂,k̂) = 0, �21
abcd (k̂,k̂) = 0,

�22
abcd (k̂,k̂) = (
 − 1)
(
 + 1)(
 + 2)

8
[−Pab(k̂)Pcd (k̂) + Pac(k̂)Pbd (k̂) + Pad (k̂)Pbc(k̂)],

�F
ab(k̂,k̂) = (
 − 1)


2
Pab(k̂), �B(k̂,k̂) = 1, �B1

ab (k̂,k̂) = Pab(k̂), �B2
ab (k̂,k̂) = 0.
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APPENDIX C: NUMERICAL METHOD

Once again, we follow [24] in order to solve numerically the 2D integrals appearing in the
Eqs. (B4) giving the values of L∗


 , where ∗ stands for any of ij , F , B, B1, and B2. A Newton-Cotes
method of order 10 is used for the integration over a and a Simpson method for the integration
over k′. The bounds defining the integral over k′ are set to k′

max = 106 and k′
min = 10−8 for 
 = 2,

k′
min = 10−6 for 
 = 4, and k′

min = 10−4 for 
 = 6. A logarithmic repartition of points is used to
discretize this interval. A number of 105 points is used in each direction.

As shown in Ref. [24], the integrals L
ij


 (ξ ) converge provided ξ < ξ�

 = 3 for 
 � 2 and ξ <

ξ�

 = 
 − 1 for 
 > 2. This is also the case for LF


 , LB1

 , and LB1


 . Here LB

 only diverges for 
 � 2

and the convergence criterion is then ξ < 3. Because of this diverging behavior, the interval [0,k′
min]

has a non-negligible contribution to the value of the integrals L∗

(ξ ) when ξ is close to ξ�


 . To account
for this contribution, L’vov et al. [24] propose to split the integrals over k′ appearing in Eqs. (B4) in
the form

L∗

(ξ ) =

∫ ∞

0
· · · dk′ = I ∗


 (ξ ) + δI ∗

 (ξ ),

with

I ∗

 (ξ ) =

∫ ∞

k′
min

· · · dk′, δI ∗

 (ξ ) =

∫ k′
min

0
· · · dk′.

The first integral is the one that is computed numerically with the method described above. The
second one can be estimated analytically knowing the asymptotic behavior of the integrand. This
estimate takes the form

δI ∗

 (ξ ) = α∗




k
′ξ�


 −ξ
min

ξ�

 − ξ

.

The values of α∗

 are determined by performing a Taylor expansion of the integrands of L∗


 : For

 = 2,

α11

 = 968

945 , α12

 = 752

315 , α21

 = 64

35 , α22

 = − 752

105 , αF

 = 8

15 ,

αB

 = − 2

15 , αB1

 = 88

189 , αB2

 = 44

315 ;

for 
 = 4,

α11

 = − 2192

2835 , α12

 = 2192

189 , α21

 = 128

21 , α22

 = 7568

63 , αF

 = 192

35 ,

αB

 = 0, αB1


 = −836
2835 , αB2


 = − 836
189 ;

and for 
 = 6,

α11

 = − 721 480

729 729 , α12

 = − 2 885 920

104 247 , α21

 = 24 320

1287 , α22

 = 20 615 200

34 749 , αF

 = 5120

231 ,

αB

 = 0,αB1


 = − 27 590
66 339 , αB2


 = − 110 360
9477 .
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