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Motivated by the redrawing of hot glass into thin sheets, we investigate the shape and
stability of a thin viscous sheet that is inhomogeneously stretched in an imposed nonuniform
temperature field. We first determine the associated base flow by solving the long-time-scale
stretching flow of a flat sheet as a function of two dimensionless parameters: the normalized
stretching velocity α and a dimensionless width of the heating zone β. This allows us to
determine the conditions for the onset of an out-of-plane wrinkling instability stated in
terms of an eigenvalue problem for a linear partial differential equation governing the
displacement of the midsurface of the sheet. We show that the sheet can become unstable
in two regions that are upstream and downstream of the heating zone where the minimum
in-plane stress is negative. This yields the shape and growth rates of the most unstable
buckling mode in both regions for various values of the stretching velocity and heating zone
width. A transition from stationary to oscillatory unstable modes is found in the upstream
region with increasing β, while the downstream region is always stationary. We show that
the wrinkling instability can be entirely suppressed when the surface tension is large enough
relative to the magnitude of the in-plane stress. Finally, we present an operating diagram
that indicates regions of the parameter space that result in a required outlet sheet thickness
upon stretching while simultaneously minimizing or suppressing the out-of-plane buckling,
a result that is relevant for the glass redraw method used to create ultrathin glass sheets.
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I. INTRODUCTION

The flow of thin viscous fluid sheets has been widely studied in the context of various industrial
and geophysical processes [1,2]. In these flows, the interplay between bending and stretching of the
thin fluid sheet often gives rise to folding and buckling instabilities that are observed in phenomena
that span orders of magnitude in length. Examples range from geophysical processes such as the
organization of supraglacial lakes [3], the buckling of layered geological strata [4], deformation of
the lithosphere and subduction zones [5,6], and surface folding of pāhoehoe lava flows [7] to more
mundane everyday phenomena such as the folding of a sheet of honey [8] and the wrinkling of the
skin of scalded milk [9]. Thin fluid sheet flows are also relevant in industrial applications involving
shaping, molding, extrusion, film casting, and film blowing processes and are particularly important
in the manufacture of flat glass by the float-glass processes [10], the overflow downdraw or fusion
processes [11], and the redraw processes [12]. In this last technique, precast sheets of molten glass
are simultaneously heated in a furnace and drawn via a tensile force to obtain ultrathin glass sheets
with typical thicknesses that are less than 100 μm, a necessity for many modern haptic technologies
(i.e., associated with the sense of touch) that integrate electronic circuits within flexible thin glass
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FIG. 1. (a) Example of a heated sheet of thin glass that is undergoing the redraw process. Wrinkles are
observed parallel to the edges and in the center of the sheet. Note the tensile wrinkles in the downstream end
of the glass, possibly due to strong inhomogeneity induced by temperature. (b) An analogous experiment in an
elastic setting, carried out by stretching a thin nitrile sheet of a uniform thickness of 0.10 mm cut into the shape
of the glass sheet with a longitudinal strain applied to the clamped edge shows elastic wrinkles; these vanish
when the boundary stresses are relaxed, unlike in the case of the glass sheet. (c) Schematic of the redraw process
for a thin viscous liquid with the inlet feed velocity Û0 and the outlet draw velocity Û1. Here y = D(x) is the
lateral free boundary. A Gaussian heating profile is prescribed in the furnace zone (see the inset). The color
map indicates the variation of the viscosity of the sheet. (d) Shown on top is an illustration of the out-of-plane
deformation of the sheet where the thickness is h(x,y,t) and the midsurface displacement is H (x,y,t). On the
bottom are the components of the resultant membrane stresses T and twisting and bending moments M on a
unit volume.

sheets to provide tactile stimulation and feedback. However, an injudicious choice of stretching rates
or applied heating profiles can give rise to wrinkles that, given the small thickness, adversely affect
the uniformity of the sheet. An example of these wrinkles in a glass sheet with varying thickness
that results from the redraw process is shown in Fig. 1. Consequently, understanding the formation,
size, and shape of these instabilities and determining the set of process parameters that suppresses
the instability are of great practical importance in achieving ultrathin flat glass sheets and are the
primary motivations of this paper.

Models for the dynamics of thin viscous sheets have focused on reduced order viscous plate
theories, where the full incompressible Navier-Stokes equations are asymptotically reduced to
equations that govern the bending and stretching of the centerline for thin sheets [13–16]. Viscous
plate models have been primarily used in studying buckling, coiling, and folding phenomena in
sheets with uniform viscosities. The exceptions include the work of Pfingstag et al. [17], who
have studied two specific two-dimensional examples involving nonhomogeneous viscosity in thin
sheets: necking induced by in-plane viscosity variations and the out-of-plane deformation under
imposed transverse variations in viscosity. Filippov and Zheng [18] determined the boundary shape
and thickness distribution of three-dimensional nonisoviscous sheets under a stretching flow in
the redraw process, for two model temperature profiles, and showed the existence of unstable
compressive zones. However, they do not solve for the out-of-plane deformation to determine the
shape of the unstable modes. Also related is the work of Perdigou and Audoly [19], who investigate
the problem of a falling viscous sheet under the action of gravity and determine the stability and
out-of-plane modes for a constant thickness and viscosity.

In this paper, motivated by the glass redraw process, we investigate the shape and stability of
three-dimensional thin nonhomogeneous viscous sheets. The aim of this work is to understand
how the region of instability in the sheet varies with the draw rate and the size and shape of the
heating zone and to compute the resulting shape of the most unstable modes in these zones. We
approach the problem in two parts. First, we determine the steady-state shape and plane deformation
of an initially flat sheet, analogous to the work of Filippov and Zheng [18], for a range of different
temperature and outlet velocities. Then, using this flat deformed sheet as the base-state solution, we
formulate and solve a linearized eigenvalue problem to determine the out-of-plane deformation of
the midplane and show that the eigenmodes correspond to a viscous buckling instability. In Sec. II
we introduce the geometry and variables of interest and state the equations governing both the
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in-plane steady-state flow and the out-of-plane buckling of the centerline. In Sec. III we determine
the base-state solutions as well as the out-of-plane deformations for the most unstable buckling
mode for different values of the operating parameters. We discuss the effect of surface tension and
determine the region of parameter space that results in a specified outlet sheet thickness while either
minimizing or eliminating the out-of-plane deformation. Finally, we provide a summary of our results
and discuss the implication of our study in the manufacture of ultrathin glass via the redraw technique.

II. GEOMETRY AND VARIABLES

We consider small deformations of nearly flat thin sheets undergoing moderate out-of-plane
rotations in the redraw process, with a configuration as shown in Fig. 1(c). Carets indicate dimensional
quantities and plain variables denote dimensionless quantities. We use a coordinate system where x̂

denotes the position directed along the length axis, ŷ along the width axis, and ẑ along the thickness
axis. The origin is located on the undeformed centerline at the inlet and is indicated by the point O

in Fig. 1(d). The total length of the redraw zone is L̂, the initial width of the sheet is Ŵ , and the
initial thickness is ĥ0. The slenderness ratio is defined as ε = ĥ0/L̂ � 1. The sheet enters the inlet
at x̂ = 0 with a velocity Û0 and is initially at a temperature T̂0 before it flows to the heating zone
of the furnace where the viscosity decreases as illustrated in Fig. 1(c). In this study we ignore the
effects of fluid inertia and consider the scenario of small Reynolds number Re = ρ̂Û0L̂/μ̂0 � 1,
where ρ̂ is the density and γ̂ is the surface tension of the fluid, which are assumed to be constant, and
μ̂0 is a characteristic viscosity of the fluid defined in Sec. II C. Typical values of these parameters
in the redraw process are ρ̂ = 103 kg/m3, Û0 = 10−4 m/s, L̂ = 1 m, and μ̂0 = 106 Pa s, leading to
Re ∼ 10−7. We work in the regime of small Stokes number St = ρ̂0gL̂2/μ̂0Û0 � 1, so we neglect
the effect of gravity g (which is acting along the x̂ axis) relative to the viscous shear.

As discussed by Howell [14], there exist two different classes of models describing the
deformation of thin viscous sheets. These models are obtained by applying scaling assumptions
valid at different time scales. Over long time scales t̂ ∼ L̂/Û , the Trouton model is used to describe
the planar flow where the midsurface remains two dimensional and the sheet thickness and shape
deform purely by stretching. At short time scales t̂ ∼ ε2L̂/Û , the Buckmaster-Nachman-Ting (BNT)
scaling [13] describes the incipient out-of-plane deformation of the midsurface of the thin sheet.
Before describing the dimensionally reduced thin plate equations that are asymptotically valid in the
slenderness parameter ε = ĥ0/L̂, we first scale the in-plane coordinates as x̂ = xL̂ and ŷ = yL̂ and
in-plane velocities as û = uÛ0 and v̂ = vÛ0. The out-of-plane coordinate ẑ, the thickness ĥ, and the
centerline location Ĥ are scaled with the slenderness ratio ε as ẑ = zεL̂, ĥ = hεL̂, and Ĥ = HεL̂,
where ε � 1.

In the heating zone, an external temperature profile T̂ (x̂) is applied [see the inset of Fig. 1(c)].
We assume that the fluid is in radiative equilibrium with the furnace so that the temperature in the
viscous sheet is identical to that prescribed by the external heating device. This results in a prescribed
nonuniform viscosity field μ̂(x̂) across the length of the fluid sheet. At the outlet, which is located at
x̂ = L̂, the sheet is drawn at a large constant velocity Û1 and cooled to the initial temperature T̂0. The
stretching action of the draw roller at the outlet gives rise to a velocity field �U = (û,v̂,ŵ), where û,
v̂, and ŵ are the spatially varying velocity components along the x̂, ŷ, and ẑ directions, respectively.
Consequently, tensile and compressive stresses generated by the flow will result in a thinner and
laterally contracted viscous sheet downstream of the heating zone as illustrated in Fig. 1(c). The
dimensionless stretching velocity is defined as

α = Û1/Û0, (1)

where α > 1 is a measure of the magnitude of applied extensional flow in the redraw process.
The deformation of the thin sheet is driven by the viscous stretching and bending stresses that are
generated during the flow and depend on the values of α and choice of T̂ (x̂). The ensuing dynamics
of sheet deformation are described by the evolution of the sheet thickness ĥ(x̂,ŷ,t̂) and the location
of the midsurface Ĥ (x̂,ŷ,t̂). During deformation, the material of the sheet is confined between the
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surfaces ẑ± = Ĥ ± ĥ/2. Our goal is to understand how the dimensionless stretching velocity α and
applied heating profile T̂ (x̂) can be chosen to obtain a desired steady-state thickness distribution
ĥ(x,y) and a steady planar two-dimensional flow field û(x̂,ŷ), v̂(x̂,ŷ) in the redraw process, that are
also stable to any out-of-plane deformations that arise from perturbations of the midsurface Ĥ (x̂,ŷ)
and therefore result in flat thin sheets.

A. Base state

In the absence of out-of-plane deformations, the flow remains nearly two dimensional and planar
and the midsurface is constant, i.e., H (x,y) = 0. The four unknown variables that describe the
steady base state are the thickness field h(x,y), the in-plane velocity fields u(x,y) and v(x,y),
and the position of the free lateral edge of the sheet at the steady state D(x). In this planar state,
the in-plane velocities are independent of the z coordinate. Therefore, we require four governing
equations to fully determine the steady-state values of h, u, v, and D. The first relation is provided
by the conservation of volume for an incompressible liquid at steady state and is given by

(uh)x + (vh)y = 0, (2)

where (·)x = ∂(·)/∂x, etc. Then, for purely stretching flows of an initially flat sheet, a balance of the
Cauchy stress σ provides two of the remaining governing equations that are written in terms of the

resultant membrane stress T = ∫ z+

z− σdz at the steady state [14],

(T11)x + (T12)y = 0, (3)

(T12)x + (T22)y = 0, (4)

where T11 = 2μh(2ux + vy), T12 = μh(uy + vx), and T22 = 2μh(ux + 2vy) are the components
of the membrane stress T for a flat sheet at the steady state, with H = 0. Note that typical
bending-related terms that arise in the in-plane momentum equations [see, for example, (11)–(13)
in Table I] vanish in the base state when the midsurface is constant. The final governing equation
that relates the unknown lateral edge D(x) to the velocity field is obtained via the no-flux boundary
condition

u · n̂ = un1 + vn2 = 0, (5)

where n̂ = (n1,n2) = ( −Dx√
1+D2

x

, 1√
1+D2

x

) is the outer normal vector at the free lateral edge [see

Fig. 1(c)] and u = (u,v) is the velocity vector at y = D(x). The boundary conditions for the base
state are given by the fixed velocities at the inlet and outlet and the stress-free boundary condition at
the lateral edges,

u = 1,v = 0 at x = 0,

u = α,v = 0 at x = 1,

(T11)n1 + (T12)n2 = 0 at y = D(x),

(T12)n1 + (T22)n2 = 0 at y = D(x),

(6)

where the sheet is initially at a uniform thickness of h = 1 and α is the draw ratio defined in (1).

B. Out-of-plane deformation

We state the general reduced-order thin plate equations governing the deformation of nearly flat
thin sheets in the absence of inertia and direct the reader to the work of Howell [14], Slim et al. [20],
and the recent work of Pfingstag et al. [21] for detailed asymptotic derivations. The four unknown
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fields during out-of-plane deformations are the midsurface displacement H (x,y,t), the thickness
h(x,y,t), and the mean in-plane velocities ū(x,y) and v̄(x,y). Here the mean velocities are defined as

ū = 1/h
∫ z+

z− udz and v̄ = 1/h
∫ z+

z− v dz, where u and v now depend on the z coordinate in contrast to
the base state. In the BNT scaling [13], the equation governing the conservation of volume reduces to

ht = 0. (7)

The leading-order thin plate governing equations are expressed as in terms of the resultant

membrane stresses T = ∫ z+

z− σdz and the bending and twisting moments M = ∫ z+

z− (z − H )σdz as

(T11)x + (T12)y = 0, (8)

(T12)x + (T22)y = 0, (9)

(M11)xx + 2(M12)xy + (M22)yy + HxxT11 + 2HxyT12 + HyyT22 + �(Hxx + Hyy) = 0, (10)

where T11,T12,T22 and M11,M12,M22 are the components of resultant stresses and moments [see
the inset of Fig. 1(d)], respectively, and in contrast to the base state now include nonlinear terms
due to finite rotations of the midsurface, i.e., H �= 0. Equations (8)–(10) are independent of the
constitutive law for the thin sheets and arise solely from force equilibrium and dimensional scaling
considerations. Equations (8) and (9) result from a balance of stresses in the in-plane directions and
(10) balances the bending stress due to out-of-plane displacements with a contribution of the in-plane
stresses that can either drive or stabilize out-of-plane deformations. The last term in (10) is due to
the contribution of surface tension γ̂ in stabilizing out-of-plane displacement of the sheet, where
� = 2γ̂ /μ̂0Û0 is an inverse capillary number and μ̂0 is the reference viscosity whose value will
be defined later in Sec. II C. To emphasize the general applicability of these equations to thin sheet
geometries, we have provided expressions that relate T and M to the kinematic variables in Table I
for two constitutive laws: an isotropic linear elastic solid and a Newtonian liquid. In the former case,
(8)–(10) reduce to the Föppl–von Kármán equations for thin elastic sheets. For Newtonian fluids,

TABLE I. Relations for the resultant membrane stresses T and the bending and twisting moments M for
thin elastic sheets with a Poisson ratio of ν = 1/2 and thin viscous sheets, where H (x,y) is the location of
the midsurface and h(x,y) is the thickness of the sheet, as shown in Fig. 1. For elastic sheets, ū and v̄ are the
mean in-plane displacements and G is the shear modulus. For viscous sheets, ū and v̄ are the mean z-integrated

in-plane velocities, where ū = 1/h
∫ H+h/2

H−h/2 u dz and v̄ = 1/h
∫ z+

z− u dz, and μ is the shear viscosity.

Elastic Viscous

T11 = 2Gh
(
2ūx + v̄y + H 2

x + 1
2 H 2

y

)
T11 = 2μh(2ūx + v̄y + 2HtxHx + HtyHy) (11)

T T12 = Gh(ūy + v̄x + HxHy) T12 = μh(ūy + v̄x + HtxHy + HtyHx) (12)

T22 = 2Gh
(
ūx + 2v̄y + 1

2 H 2
x + H 2

y

)
T22 = 2μh(ūx + 2v̄y + HtxHx + 2HtyHy) (13)

M11 = −Gh3

6
(2Hxx + Hyy) M11 = −μh3

6
(2Hxxt + Hyyt ) (14)

M M12 = −Gh3

6
Hxy M12 = −μh3

6
Hxyt (15)

M22 = −Gh3

6
(Hxx + 2Hyy) M22 = −μh3

6
(Hxxt + 2Hyyt ) (16)
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they represent the viscous sheet model [14,20,21] that is obtained using the scaling introduced by
Buckmaster et al. [13]. The close similarity in the expressions for the resultant membrane stresses
and moments in Table I is a manifestation of the Stokes-Rayleigh analogy between the isotropic
elastic solid with a Poisson ratio ν = 1/2 and the zero Reynolds number fluid flow.

To complete the formulation of the boundary value problem in (8)–(10), we need boundary
conditions at the inlet and the outlet. At x = 0 and x = 1, we use the clamped boundary conditions

H = 0, Hx = 0. (17)

At the free edges of the sheet, we consider a local orthogonal axis along the exterior normal n̂
and tangential direction ŝ [Fig. 1(c)]. We obtain the natural boundary conditions by considering the
boundary virtual work line integral along a segment C of the boundary [22],

W =
∫

C

(
TnH + Mns

∂H

∂s
+ Mnn

∂H

∂n

)
ds +

∫
C

(�nH )ds. (18)

The first term corresponds to the virtual work due to internal transverse stresses and bending
moments. The last term arises from the virtual work arising from external capillary forces. Here
∂/∂n and ∂/∂s indicate derivatives along the normal and tangent direction and Mnn and Mns are the
components of the moment at the lateral edge and can be expressed as

Mnn = M11 cos φ2 + 2M12 cos φ sin φ + M22 sin φ2, (19)

Mns = (M22 − M11) cos φ sin φ + M12(cos2 φ − sin2 φ), (20)

where φ is the angle between the exterior normal vector n̂ and the x axis and ŝ is the tangent vector
as shown in Fig. 1(c). In addition, Tn is the z-integrated transverse stress along the boundary plane

Tn = T13 cos φ + T23 sin φ, (21)

where

T13 = (M11)x + (M12)y + HxT11 + HyT12, (22)

T23 = (M12)x + (M22)y + HxT12 + HyT22, (23)

and �nds is the projection of the curvature force associated with surface tension in the transverse
direction along the boundary plane

�n = �(Hx cos φ + Hy sin φ). (24)

The natural boundary conditions are then obtained by setting the work-conjugate variables obtained
upon integration by parts of (18) to 0. As we consider only one-half of the sheet in our simulations,
the symmetry boundary conditions at y = 0 are then

Hy = 0, Tn − ∂Mns

∂s
+ �n = 0. (25)

The free edge boundary condition at the lateral edge y = D(x) where both the modified transverse
shear stress and bending moments vanish are expressed as

Mnn = 0, Tn − ∂Mns

∂s
+ �n = 0. (26)

The thickness h(x,y), midsurface location H (x,y), and mean in-plane velocities ū(x,y) and v̄(x,y)
are unknown and are coupled via the nonlinear partial differential equations (8)–(10) subject to the
boundary conditions (17), (25), and (26).
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C. Form of imposed temperature profiles

To complete the formulation, we also need the temperature field, which evolves rapidly compared
to the viscous field. This implies that the temperature field T̂ (x̂) in the fluid is equilibrated and is
modeled as a Gaussian of the form

T̂ (x̂) = T̂0 + �T̂ exp

(
− (x̂ − L̂/2)2

2β̂2

)
, (27)

where T̂0 is the inlet temperature, �T̂ is the maximum temperature rise in the furnace, and β̂

is a measure of the width of the heating profile. In our simulations, we parametrize the applied
temperature field by defining the scaled heating zone width

β = β̂

L̂
. (28)

Therefore, the heating zone gets smaller with decreasing values of β. This results in a prescribed
nonuniform viscosity field μ̂(x) across the length of the fluid sheet. Motivated by the application
to the glass redraw process and under the assumption of equilibration, we use the Fulcher equation
[23] to exponentially relate the viscosity to the temperature field as

log10 μ̂(x̂) = −A + B

T̂ (x̂) − C
, (29)

where A, B, and C are empirical constants that depends on the composition of the glass [23], T̂ (x̂)
is the glass temperature in degrees Kelvin, and μ̂ is the viscosity (in Pa s). We assume Fulcher
constants of A = 4.5, B = 7500 K, and C = 520 K. We define the scaled viscosity as μ = μ̂/μ̂0,
where μ̂0 is the viscosity at an arbitrary reference temperature chosen as T̂ = 1233 K.

III. ANALYSIS

The shape and stability of the sheet are influenced by the outlet draw velocity and the shape of the
temperature profile [18]. We systematically vary two dimensionless variables that parametrize these
effects: the dimensionless stretching velocity α = Û1/Û0 and the dimensionless heating zone width
β = β̂/L̂. In the analysis below, we assume an inlet temperature of the molten glass as T̂0 = 1123 K
and a maximum temperature rise of �T̂ = 100 K. This corresponds to the dimensionless viscosity
varying from a maximum of μ ≈ 80 at the inlet at x = 0 to a minimum of μ ≈ 1 at x = 0.5.
The numerical solutions are implemented using the COMSOL Multiphysics

R©
finite-element solver

package. For the base-state solutions, a rectangular geometry of L = 1 and width W are initialized
with between 104 and 105 mesh elements. The basis functions associated with the mesh nodes are the
Lagrange cubic shape functions. The unknown shape of the lateral edge y = D(x) is handled using
the built-in deformed mesh module. In this method, (2)–(4) are initially solved using the boundary
condition (6) for the starting geometry. An estimate of the lateral displacement of the free boundary at
step i is obtained from (5) by solving dyi/dx = vi/ui with the condition yi(0) = W/2. The solution
yi(x) is then specified as a prescribed boundary displacement for the lateral free edge, with the other
three boundaries held fixed. Upon displacing the lateral boundary edge, the ensuing deformation
of interior mesh elements is determined using a Laplacian smoothing algorithm. This process is
iteratively repeated until the deformed mesh shape and the unknown flow fields converge to a steady
base-state solution. The number of mesh elements is refined until mesh independence is achieved.
The final values of h, u, v, and D associated with the deformed mesh from the base-state solution
are carried over to the eigenvalue analysis. The eigenvalue problem and boundary conditions are
implemented using the COMSOL General Form PDE module. When performing the linear stability
analysis, the lateral edge is held fixed as its shape has already been obtained from the base-state
solution.
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FIG. 2. Base-state solutions of the flow. (a) Color plots indicating the shape and the normalized sheet
thickness of a representative base state obtained by solving (2)–(4) with α = 8 and β = 0.15. The thickness
h(x,y) decreases from h = 1 at x = 0 for α > 1. The solid lines indicate contours of fixed thickness and the
dotted line indicates the laterally contracted profile D(x). (b) Plots of the variation of the averaged normalized
sheet thickness 〈h〉 = 1/D(1)

∫ D(1)
0 h dy evaluated at x = 1 at the outlet with the heating zone width β. Curves

are shown for normalized stretching velocity α increasing in the direction of the arrow from 5 to 10 with
increments in intervals of unity.

A. Base state

The governing equations (2)–(4) for the base state are numerically solved to determine the
steady-state thickness field h and the in-plane velocities u and v for each pair of values of α and β.
In Fig. 2(a) we show the half profile of the sheet above the symmetry line y = 0 and its thickness
distribution for a representative value of α = 8 and β = 0.15. The isocontours of sheet thickness
are marked by solid lines. The half-width profile of the sheet D(x) is indicated by the dotted line.
Thinning of the sheet and lateral contraction occur near the heating zone in the region of low
viscosity as expected. The thickness of the sheet is increased at the edges, consistent with the results
of Filippov and Zheng [18]. To quantify the effective thickness as a result of the redraw process,
we define the mean sheet thickness at x = 1 as 〈h〉 = 1/D(1)

∫ D(1)
0 h dy. Here 〈h〉 is determined

for various values of α and β and is shown in Fig. 2(b). By increasing the stretching velocity or
narrowing the heating zone, thinner sheets can be obtained. For example, at a fixed value of β = 0.10,
〈h〉 decreases from 0.30 to 0.18 as α increases from 5 to 10. Decreasing the outlet sheet thickness
by narrowing the width of the heating zone is most effective only for small values of β.

The stretching of the incompressible fluid sheet along its length induces contraction in the other
two directions. Solving for the velocity profiles and the thickness allows us to determine the total
in-plane stress T at every point in the sheet, where T consists of both normal and shear stress
components. To visualize the state of tension and compression in the fluid sheet, we calculate the
eigenvalues of T and denote the smaller eigenvalue by T1 and the larger by T2. A value of T1 < 0
indicates that the sheet is locally under compression along the corresponding principal direction
and under tension in the orthogonal principal direction. When both eigenvalues T1,T2 > 0, the sheet
is under tension along both principal directions. For thin fluid sheets, compressive stresses drive
buckling instabilities in the absence of stabilizing effects such as surface tension. Therefore, locations
in the sheet where T1 < 0 are prone to buckling induced by compressive stresses.

In Figs. 3(a)–3(d) we show the effect of increasing the width of the heating zone on the position
and size of the unstable zones. The surface plots show the magnitude of T1 for values of β = 0.10,
0.15, 0.25, and 0.50, respectively. The redraw velocity was fixed at α = 8. Similar results are
obtained for other values of α. The local principal directions of the stress tensor are indicated by the
arrows with the length of the arrow proportional to the magnitude of the stress eigenvalue along the
corresponding direction. Regions of the sheet that are under compression along one direction (i.e.,
T1 < 0 and T2 > 0) are shown in red. In these regions the direction of compression is marked by
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FIG. 3. Surface plots of the most negative eigenvalues T1 of the local base-state stress tensor T for different
heating zone widths β at a fixed stretching velocity of α = 8 obtained by solving Eqs. (2)–(4) for values of (a)
β = 0.10, (b) β = 0.15, (c) β = 0.20, and (d) β = 0.50. The arrows correspond to the local eigenvectors of
T. The red regions indicate the presence of a compressive principal stress component (T1 < 0), while the blue
regions indicate tensile stresses (T1 > 0,T2 > 0).

yellow arrows. Regions where the sheet is under tension in both directions (i.e., T1 > 0 and T2 > 0)
are shown in blue. For β = 0.10 and 0.15, there are two unstable compressive zones, one located
upstream near the inlet and the other located downstream (i.e., x > 0.5) near the exit. Increasing
the width of the heating zone has two main effects: (i) The size of both unstable compressive zones
become smaller and (ii) the downstream compressive zone entirely vanishes beyond a critical value
of β. In our simulations, we observe that the sheet is always under tension in the region x > 0.5
when β > 0.2 for 5 � α � 10, the range of draw ratios investigated. Finally, the magnitude of the
maximum compressive stress diminishes in both regions when using a wider heating zone. As most
of the sheet thinning and lateral contraction occurs in the vicinity of the heating zone [see Fig. 2(a)],
the gradients in the in-plane velocities are localized to this region. A wider heating zone results in
a larger region over which the velocity gradients manifest, leading to the reduced magnitude of the
in-plane stresses. In the absence of surface tension, in thin viscous sheets, we qualitatively expect
buckling instabilities to occur in the compressive zones with the wrinkles oriented perpendicular to
the direction of compression.

B. Linear stability

In the preceding section we calculated the base-state stress distributions for the stretching flow
of the viscous sheet where the midsurface of the sheet H (x,y) = 0 is assumed to be planar and
constant. The existence of zones with compressive stresses implies that the constant midsurface
solution can be unstable to out-of-plane deformations in the absence of any stabilizing forces. We
linearize (8)–(10) to derive the eigenvalue problem that governs the out-of-plane displacement. We
consider small perturbations to the midplane of the form

H (x,y) = H 0 + H 1(x,y) exp(�t), (30)

074103-9



SIDDARTH SRINIVASAN, ZHIYAN WEI, AND L. MAHADEVAN

where H 0 = 0 is the base state, H 1(x,y) is the shape of the mode, and � is the growth rate, with
Re(�) > 0 indicating unstable modes. Substituting this expression in (11)–(16) and retaining terms
that are linear in H 1(x,y) leads to T11 = 2μh(2ux + vy), T12 = μh(uy + vx), and T22 = 2μh(ux +
2vy), i.e., upon linearization, the in-plane z-integrated stresses that arise during the incipient out-of-
plane deformations of the thin sheet are identical to the base-state stresses during stretching flow, to
first order in H 1. Linearizing the out-of-plane force balance of (10) that balances the transverse shear
stress and bending moments and retaining terms that are first order in H 1 leads to the eigenvalue
problem for the out-of-plane deformations

�

{[(
μh3

6

)(
2H 1

xx + H 1
yy

)]
xx

+
[(

μh3

6

)(
H 1

xx + 2H 1
yy

)]
yy

+
[(

μh3

3

)
H 1

xy

]
xy

}

= T11H
1
xx + T22H

1
yy + 2T12H

1
xy − �

(
H 1

xx + H 1
yy

)
, (31)

where h(x,y), T11, T12, and T22 are already known from the base-state solution obtained by solving
(3) and (4) for a given value of α and β and μ(x,y) is given by the prescribed temperature field in
(29). The linearized form of the boundary conditions in (17) for the inlet and outlet at x = 0 and
x = 1 are

H 1 = 0, H 1
x = 0. (32)

At y = 0, the symmetry boundary condition of (25) reduces to

H 1
y = 0, T12H

1
x + T22H

1
y + �H 1

y − �

{[(
μh3

3

)
H 1

xy

]
x

+
[(

μh3

6

)(
H 1

xx + 2H 1
yy

)]
y

}
= 0

(33)
and the linearized free edge boundary conditions at the lateral edge y = D(x) are

(
2H 1

xx + H 1
yy

)
cos2 φ + 2H 1

xy cos φ sin φ + (
H 1

xx + 2H 1
yy

)
sin2 φ = 0, (34)[

T11H
1
x + T12H

1
y + �H 1

x + �(M11)x + �(M12)y
]

cos φ

+ [
T12H

1
x + T22H

1
y + �H 1

y + �(M12)x + �(M22)y
]

sin φ

+�[(M22)x − (M11)x] sin2 φ cos φ + �[(M11)y − (M22)y] = 0. (35)

The most unstable eigenmode corresponds to the solution H 1(x,y) that has the largest value of
the growth rate Re(�). The eigenvalue � appears both in (31) and in the boundary conditions via
(33) and (34). We use the COMSOL finite-element package to solve for the largest eigenvalue � that
corresponds to the most unstable eigenmode and the shape of the out-of-plane displacement H 1(x,y)
for that eigenmode by a implementing a cubic Lagrange shape function discretization.

1. The case when the inverse capillary number � = 2γ̂ /μ̂0Û0 = 0

To determine the growth rates � and dimensionless wavelength λ, we use the ansatz in (30) for
the entire fluid sheet to solve the global eigenvalue problem defined in (31). The eigenmodes we
obtain fall into two categories: (i) those with out-of-plane deformations localized only near the upper
compressive zones that we refer to as upstream modes and (ii) those with deformations localized in
the downstream compressive region that we refer to as downstream modes. Each eigenmode that is
localized in the upstream and downstream regions has a distinct growth rate. In Fig. 4 we show the
combined shape of the most unstable buckling eigenmodes H 1(x,y) from each region for different
values of β = β̂/L̂, fixed α = Û1/Û0, and the inverse capillary number � = 0. That is, we combine
the fastest growing out-of-plane modes separately from the upstream and downstream solutions
(i.e., with each having a distinct value of �) in a single figure and plot the sum, with the maximum
amplitude in each region normalized to unity.
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FIG. 4. Eigenmodes of the midplane deformation that are obtained by solving Eq. (31) for values of (a)
β = 0.10, (b) β = 0.15, (c) β = 0.20, and (d) β = 0.50 and for a fixed stretching velocity α = 8 and � = 0.
Note that for each parameter value, the most unstable eigenmodes localized to the upstream and downstream
region are combined and plotted in a single figure, as discussed in the main text. For β > 0.2 there are no
unstable modes downstream. The growth rates � in the upstream region for the plots in (a)–(d) are 8.6,
7.6 ± 0.2i, 5.2 ± 0.2i, and 0.9 ± 0.04i, respectively. In the downstream region, � = 168.0 for β = 0.10 and
� = 22.7 for β = 0.15.

In the absence of surface tension, the upstream zone of the sheet is always unstable and undergoes
buckling at all shear rates. The location of these eigenmodes overlaps well with the regions of
compressive stress in the base state shown in Fig. 3, as expected. A phase map of the growth rates
of the most unstable mode in the upstream region can be determined as shown in Figs. 5(a) and
5(b), where Re(�) decreases with increasing β and increases with increasing α. In general, the
non-Hermitian form of (31) allows for oscillatory modes where Im(�) �= 0.

To show the transition between stationary and oscillatory modes in the upstream region, we
consider a path starting at the point A in Fig. 5(a). For small values of β [i.e., in the region in
Fig. 5(a) denoted by dashed lines], we observe that Re(�) > 0 and Im(�) = 0, leading to stationary
instabilities that span the upstream region of the viscous sheet. An example of a stationary unstable
mode is shown in Fig. 4(a). Gradually increasing β [i.e., following the dotted red line in Fig. 5(a)]
continues to result in stationary instabilities until the bifurcation threshold is reached at point
B. Beyond this critical point, we observe that Re(�) > 0 and Im(�) �= 0, resulting in a pair of
complex conjugate eigenvalues that result in oscillatory unstable modes. This change in behavior
corresponds to a transition from a stationary bifurcation to a Hopf bifurcation. By (30), these complex
valued growth rates correspond to a pair of unstable traveling modes with a period T = 2π/Im(�).
Examples of deformation shapes of these oscillatory modes are shown in Figs. 4(b)–4(d). This
unstable oscillatory regime is in contrast to the case of a homogeneous elastic sheet, where only
stationary modes are allowed [24]. The transition to the unstable oscillatory mode occurs at earlier
values of β for increasingly large stretching velocities α, as shown in Fig. 5(b). In contrast, the
downstream unstable eigenmodes are always purely real and therefore stationary for all values of α
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FIG. 5. (a) Real part of the growth rate � of the most unstable upstream buckling mode in Eq. (30) as a
function of β. The red dashed lines are regions where � is purely real and corresponds to stationary modes,
while the solid black lines indicate growth rates with nonzero complex parts corresponding to oscillatory modes.
(b) Corresponding phase diagram of the growth rate of the most unstable upstream eigenmode in the complex
plane. The crosses represent discrete points where � was determined for a pair of values (α,β). (c) Growth rate
of the most unstable downstream buckling mode as a function of β. (d) Dimensionless wavelength λ = λ̂/L̂

(as shown in Fig. 4) of the most unstable upstream mode with � = 0 plotted against the effective width of the
compression zone W̄ for various values of α and β.

and β in our study. The growth rates downstream are also seen to be larger in magnitude than the
upstream region. Additionally, the growth rates downstream sharply drop with increasing β until
they reach 0, as shown in Fig. 5(c), after which the downstream compressive zone entirely vanishes.

The shape of the eigenmodes we obtain, as well as the transition from a static to a Hopf bifurcation,
is analogous to the curtain modes shown in the work of Perdigou and Audoly [19] for a falling viscous
sheet. Similar to their results, we observe that the wavelength of the instability does not span the
entire width of the sheet and is instead localized in the compressive zones. In the upstream region,
the wave vector is perpendicular to the edge of the sheet. The wavelength also sharply decreases
upon increasing the width of the heating zone. This phenomenon, shown in Figs. 4(a)–4(d), is
directly related to the reduction in size of the local compressive region in the base state shown in
Figs. 3(a)–3(d). We define W̃ as the length of the longest chord that lies within the compressive
zone, passing through the location of maximum compressive stress and oriented along the direction
of compression. To better illustrate this dependence of the wavelength on the size of the compressive
zone, we plot the spatial wavelength of the most unstable mode in Fig. 5(d), against the effective
width W̃ of the compressive zone along the wave-vector direction. Here λ is observed to be linearly
proportional to W̃ for all values of draw ratio, confirming that the deformation in the upstream region
occurs by a buckling instability. In the downstream region, the unstable eigenmodes vanish beyond a
value of β ≈ 0.2, even when � = 0, when the viscous sheet locally transitions from a state of being
under local compression to under local tension as discussed earlier.

2. The case when the inverse capillary number � �= 0

If the compressive membrane stresses exceeds the inverse capillary number, all wavelengths will
be unstable and surface tension will not selectively stabilize the small wavelength deformations.
This happens when the rate at which the surface tension flattens the deformation of the midsurface is
less than the rate at which compressive stresses destabilize the sheet. In the viscous plate eigenvalue
problem (31), the stabilizing effect of surface tension (via �) and the destabilizing effect of the
compressive membrane stresses are both coupled to the curvature of the midsurface and scale as
λ−2. Therefore, consistent with this physical interpretation, we observe that the viscous sheet is
linearly stable to all out-of-plane deformations in the limit when � > |T1|max. In Fig. 6(a) the most
unstable wave number k = 2π/λ is plotted for various values of �/|T1|max. The curves are generated
by varying � for the specified value of α and β indicated in the legend and estimating λ and |T1|max

from the solutions of the corresponding most unstable mode and the base state as discussed in the
previous sections. For each of these curves, we see that k → ∞ as � approaches |T1|max.
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FIG. 6. (a) Variation of the most unstable wave number k = 2π/λ in the upstream zone upon increasing the
inverse capillary number � = γ̂ /μ̂0Û0 scaled by the maximum magnitude of the compressive stress |T1|max.
Also shown are the most unstable modes for (b) � = 1 and (c) � = 3, with α = 8 and β = 0.25 and (d) the
most unstable eigenmodes for operating conditions used in a prototypical industrial redraw process, where
α = 10 and � = 0.0015. The viscosity field μ(x) is plotted according to (36), with parameter values θ0 = 0.8,
xL = 0.125, xR = 0.625, k = 40, Tc = 0.34, and ν = 0.15.

As the long-wavelength deformations are only weakly aligned with the compressive membrane
stress eigenvector direction, a finite value of � is sufficient to suppress these long-wavelength
deformations and instead select short wavelength modes that are strongly aligned with the
compressive eigenvector direction. This effect can be seen in Figs. 6(b) and 6(c), where increasing �

leads to smaller wavelengths whose wave vectors are aligned with the compressive stress eigenvector
indicated by the yellow arrows.

3. Instability of a glass sheet under redraw

To provide an example of how this numerical solution method can be applied to the glass redraw
process, we simulate the base-state flow and determine the stability of the viscous sheet in an
industrially relevant scenario. Typical furnace heating profiles that are currently used exhibit sharp
gradients in the fluid sheet temperature near the heating zone such that the sheet temperature rapidly
varies from its inlet value to a maximum value over a narrow region. To mimic these real operating
conditions and to show the applicability of our technique beyond the simple Gaussian model used
in (27), we use the temperature-viscosity relation implemented in [12],

T (x) = θ0 + (1 − θ0)

(
1

1 + exp[−k(x − xL)]
+ 1

1 + exp[k(x − xR)]
− 1

)
,

μ(x) = exp

[
1

ν

(
1

T − Tc

− 1

1 − Tc

)]
.

(36)

Here θ0 = 0.8, xL = 0.125, xR = 0.625, k = 40, Tc = 0.34, and ν = 0.15 are the relevant parameters
that result in a dimensionless viscosity profile that is shown in Fig. 6(d), where x = x̂/L̂. From
Fig. 1(a) we estimate the ratio of the width to the length of the sheet to be Ŵ/L̂ = 0.72. We assume
a draw ratio of α = 10 and a surface tension value of γ ≈ 250 mN/m, corresponding to an inverse
capillary number of � = 0.0015. The small value of � confirms that the large viscous stresses
dominate capillary effects in the glass redraw process.

Under these conditions, the viscous glass sheet is unstable to out-of-plane deformations and the
most unstable eigenmodes are shown in Fig. 6(d), with the dimensionless growth rate � = 2.2 in
the upstream region and � = 83 in the downstream region. Comparing the results of our simulation
in Fig. 6(d) with Fig. 1(a) demonstrates that we are able to qualitatively reproduce the shape of the
viscous sheet and the location of the buckling eigenmodes in both the upstream and downstream
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FIG. 7. (a) Location of the zones of compressive stress in the upstream and downstream regions obtained
by solving (2)–(4) for the base state. Regions with compressive stresses are shown in red and regions under
tension in blue. (b) and (c) Operating diagram where each circle corresponds to a base-state solution of (2)–(4)
for a fixed (α,β) where 5 � α � 10 in steps of unity and 0.05 � β � 0.5 in steps of 0.01 for the (b) upstream
and (c) downstream regions. The size of each circle is proportional to the mean sheet thickness 〈h〉 at x = 1
and the color denotes T1, the magnitude of the minimum in-plane stress. The dotted lines correspond to contour
lines of fixed values of T1. The hatched region corresponds to parameter values where the downstream zone
is under tension (and thus globally stable) for all values of α and �. Also shown are stability diagrams for (d)
� = 1 and (e) � = 8 in the upstream region and for (f) � = 1 and (g) � = 8 in the downstream region.

regions. Our results are sensitive to the prescribed temperature field and therefore require precise
determination of the temperature profile and viscosity in the sheet in order to quantitatively compare
the sheet thickness, wavelength, and growth rates. As our model only considers the initial linear
out-of-plane deformation, we cannot predict the nonlinear evolution of the instability and its final
shape and amplitude. Despite these limitations, the results of our simulation are consistent with the
final shape and deformation patterns shown in Fig. 1(a) and demonstrate the potential use in the
redraw process, particularly in the context of avoiding wrinkles, a problem we now turn to.

C. Inverse problem: How to prevent wrinkles

By eliminating the downstream compressive zone, the out-of-plane deformations of the glass
sheet near the outlet can be suppressed. This leads to the inverse problem, i.e., of determining the set
of values in the parameter space of draw ratios α and choice of furnace heating profile, which either
eliminates the buckling instability or minimizes the out-of-plane deformation while simultaneously
achieving a target sheet thickness 〈h〉 at the outlet. In order to parametrize the temperature profile in
a simple way, we use the Gaussian temperature profile defined in (27) and vary β, the width of the

074103-14



WRINKLING INSTABILITY OF AN INHOMOGENEOUSLY . . .

heating zone. Identifying regimes in the parameter space of α, β, and � that eliminate out-of-plane
instabilities, if they exist, would allow for a rational framework to manufacture ultrathin sheets of
glass by the redraw method.

In Figs. 7(b) and 7(c) we provide a design chart for operating the redraw method that corresponds to
the upstream and downstream regions, respectively. Each circle corresponds to solving the base-state
equations (2)–(4) for a fixed value of α and β, with the size of the circle proportional to the mean
sheet thickness. To achieve the thinnest sheets at the outlet, large draw ratios α 
 1 and narrow
heating zones β � 1 are required. This corresponds to the upper left region of Figs. 7(b) and 7(c).
However, a choice of α 
 1 and β � 1 results in a large value of that base-state compressive
stress T1 that destabilizes the viscous sheet. The results of Sec. III B imply that the sheet is linearly
stable to out-of-plane deformations when either T1 > 0 or � > |T1|max. When there is no surface
tension, then all compressive regions undergo a wrinkling instability. Increasing the magnitude
of � can stabilize regions of the sheet that were previously unstable to out-of-plane deformations.
However, for the glass redraw process, the viscous forces are generally much larger than the capillary
forces and consequently � � 1 and it is unrealistic to achieve � ∼ |T1| ∼ O(1) using the stretching
velocities normally employed. Therefore, in practical applications, the destabilizing effect of the
viscous stresses cannot be stabilized by surface tension alone. We show the influence of surface
tension for completeness in Figs. 7(d)–7(g). The first two plots show regions of the parameter space
in the upstream region that are linearly stable due to surface tension, where � > |T1|max. The last
two plots show a similar transition to stability for the downstream region with increasing �. Note
that β > 0.2 is globally stable even when � = 0 as the sheet is under tension and this transition to
stability appears to be insensitive to the choice of α. The shaded region in Fig. 7(b) highlights the
region of parameter space where the sheet is always under tension in the downstream region.

Our analysis therefore immediately suggests a method to manufacture ultrathin glass sheets of a
required thickness. As the stability boundary in Fig. 7 can only be slightly shifted by manipulating
the surface tension of the molten glass, the optimal strategy in the redraw method is to entirely
eliminate the downstream regions of compressive stress by utilizing a sufficiently wide, gradually
varying heating profile [e.g., choosing β > 0.2 in Eq. (27)], coupled with large values of draw ratio
α > 10 to achieve the desired target output thickness.

IV. CONCLUSION

The manufacturing of glass for electronics applications requires the processing of thin viscous
sheets that are susceptible to wrinkling instabilities. Here we have analyzed this instability by
considering the deformation of the midsurface of thin viscous sheets with a nonhomogeneous
temperature field for a sheet thickness and viscosity subject to an extensional flow within the
framework of a linearized thin viscous plate model [cf. (31)]. The effect of the stretching velocity is
characterized by two dimensionless parameters: an outlet-to-inlet velocity ratio parameter α and a
scaled width of the heating zone β. The extensional flow induced by stretching at the outlet, coupled
with the localized heating zone around midpoint of the sheet, leads to a lateral contraction and
reduction of the sheet thickness. Localized zones of compressive stresses develop in two regions that
are respectively upstream and downstream of the heating zone that tend to destabilize the sheet in the
absence of surface tension. In the upstream region, the instability was shown to manifest either as a
stationary or an oscillatory mode, depending on the values of α and β. In contrast, the downstream
unstable modes are always stationary with purely real growth rates. Additionally, the downstream
unstable mode was shown to vanish beyond a critical width of β ≈ 0.2, where the state of stress
locally transitions from compression to tension. Including surface tension stabilizes the sheet when
the inverse capillary number � is larger than the maximum magnitude of the compressive stress.
Finally, we developed an engineering diagram to aid in the choice of outlet draw velocity α and
heating zone width β that result in desired normalized sheet thickness while still maintaining stability.
Our framework can be readily extended to include more complicated spatially inhomogeneous flows

074103-15



SIDDARTH SRINIVASAN, ZHIYAN WEI, AND L. MAHADEVAN

and therefore is beneficial in studying the dynamics of thin sheets in many diverse processes in
physical and biological settings.
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