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Flow of a gravity current in a porous medium accounting for drainage
from a permeable substrate and an edge
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We study the coupled drainage mechanisms of a propagating viscous gravity current
that leaks fluid through a permeable substrate and a fixed edge. Using both theoretical
analyses and numerical simulations, we investigate the time evolution of the profile shape
and the amount of fluid loss through each of the drainage mechanisms. For the case of a
finite-volume release, asymptotic solutions are provided to describe the dynamics of the
profile shapes. Specifically, for the case of buoyancy-driven drainage with finite-volume
release, an early-time self-similar solution is obtained to describe the profile evolution and
a late-time self-similar solution is approached in the limit of pure edge drainage. For the
case of constant fluid injection, numerical and analytical solutions are given to describe
the time evolution and the steady-state profile shapes, as well as the partition of the fluid
loss through each mechanism. We also briefly discuss the practical implications of the
theoretical predictions to the CO2 sequestration and leakage problems.
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I. INTRODUCTION

Gravity currents occur when a fluid of one density flows into another fluid of a different density,
with the flow velocity primarily parallel to the base. Typical examples of gravity currents can be
found, for example, in lava flows, sea breeze fronts, propagating dust storms, and leakage of viscous
fluids from containers. In this work we are interested in viscous gravity currents in porous media,
where inertial effects are negligible. A typical example arises in carbon dioxide (CO2) sequestration,
where supercritical CO2 is injected into a porous reservoir and spreads through the porous medium
because of buoyancy [1–9]. Other examples include fluid exchange and displacement in an oil
reservoir [10,11], fluid transport in a horizontal channel [12–14], and underground water injection
for seasonal heat storage [15].

Many investigations mentioned above assume that the gravity current is flowing on top of an
impermeable substrate. Nevertheless, recent studies have focused on the case where leakage of
the current is included during the propagation, as inspired by practical concerns, such as CO2

leakage from subsurface sequestration projects (see, e.g., Refs. [16,17]). For example, a viscous
gravity current with leakage through a thin permeable base is sketched in Fig. 1(a) (see, e.g., see
Refs. [18–20], where distributed leakage is considered). Also, several studies have investigated
the localized leakage of a gravity current through a fixed edge or a deep fracture in the substrate,
as shown in Fig. 1(b) (see, e.g., see Refs. [17,20–24]). Other drainage mechanisms are possible
including localized sinks [25], line sinks [26], drainage in vertical fractures [27], drainage in deep
porous substrates [28,29], and drainage that includes capillary effects [30,31].

Another practical concern arises when multiple drainage mechanisms occur simultaneously.
For example, Pritchard studied the steady-state profile solutions for gravity currents with coupled
drainage due to distributed substrate drainage and leakage through deep localized fractures under
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FIG. 1. Schematics of the coupled drainage problem, showing the typical profile shapes for a viscous gravity
current flowing in configurations where leakage occurs. (a) When there is no drainage from an edge, the current
will completely drain from the base. (b) When the substrate is impermeable, fluid can only drain from the edge.
(c) When the current overshoots a permeable base with a fixed length scale, the fluid drains from both the
permeable base and the edge. (d) Schematics of fluid drainage from both a permeable base and a fixed edge,
with mechanical properties of interest labeled.

constant fluid injection [16]. In this paper we are interested in the coupled drainage effects of a
permeable substrate and a fixed edge [Fig. 1(c)], which can occur due to a finite length of the
permeable caprock in the case of CO2 sequestration. We investigate the temporal evolution of the
gravity current profile with coupled drainage effects, especially under a finite-volume release. We
also seek to explore how the competition of these two mechanisms will change the gravity current
profiles and the amount of fluid loss.

In addition, based on the different vertical drainage velocities through a permeable base, our
analysis can be further categorized in two ways: The first is when the drainage is due to gravity and
the other is when the drainage is due to externally imposed effects, such as dissolution-driven
convection [4]. The former involves a heterogeneous drainage velocity along the horizontal
coordinate, depending, for example, on the local height of the current, as will be discussed in
Sec. II A. The analysis will be followed by a discussion of a uniform current drainage in Sec.
II B, which is associated with an externally imposed, homogeneous, and constant vertical drainage
velocity through the permeable substrate. In each section, the cases of both finite-volume release
and constant injection flow rate will be considered and each is studied with both theoretical analyses
and numerical calculations. Practical implications for CO2 leakage from geological sequestration
projects will be discussed in Sec. III.

II. THEORY

In this paper we consider the motion of a gravity current in a semi-infinite porous medium, where
the fluid can drain from both a permeable substrate and a fixed edge [Fig. 1(c)]. We assume that the
porous medium is homogeneous with permeability k and porosity φ and is filled with an ambient fluid
of constant density ρ. Fluid with density difference �ρ with the ambient fluid and viscosity μ flows
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above a permeable base, which has a small thickness b, permeability kb (kb � k), and porosity φb.
A vertical flow velocity v(x,t) is included to describe the effect of drainage through the permeable
substrate. In addition, a finite horizontal length scale L is imposed so that the buoyancy-driven
current will drain from the edge beyond this distance [Fig. 1(d)]. The shape of the current h(x,t) is
assumed to satisfy |∂h/∂x| � 1 [1,32] and is described by the one-dimensional continuity equation

φ
∂h

∂t
+ ∂

∂x
(uh) = −v, (1)

where u(x,t) represents the horizontal Darcy velocity and v(x,t) > 0 is the vertical Darcy velocity
draining through the permeable substrate. The horizontal velocity u(x,t) is described by Darcy flow
due to hydrostatic pressure and is sometimes referred to as the Dupuit approximation [33]

u = −�ρgk

μ

∂h

∂x
. (2)

A. Buoyancy-driven drainage

In this section we assume that the vertical flow is driven by buoyancy effects such that the vertical
flow velocity v(x,t) is given by

v ≈ �ρgkbh

μb
. (3)

Note that Eq. (3) has been employed in several previous studies that have considered drainage through
a permeable substrate [16,18,25,34] and this approximation is only valid with the assumption that
h � b. By substituting Eqs. (2) and (3) into (1), the evolution equation for the profile shape h(x,t)
can be rewritten as

φμ

�ρgk

∂h

∂t
= ∂

∂x

(
h

∂h

∂x

)
− kbh

kb
, (4)

which is the starting point for our analysis.

1. Finite volume

We first consider the sudden release of a fluid with a finite volume. We assume that the substrate
has a fixed length L and x = L represents the location of the edge. Here we consider a rectangular
profile with a finite volume V = h0L, which initially fills the domain 0 � x � L:

h(x,0) =
{
h0, 0 � x � L

0, x > L.
(5)

The velocity at the origin is zero u(0,t) = 0 due to symmetry. Therefore, we impose a no-flux
boundary condition at the origin x = 0 according to Eq. (2). We also assume that the current height
at the edge x = L is zero for all time. Thus, we obtain two boundary conditions

∂h

∂x

∣∣∣∣
x=0

= 0, h(L,t) = 0, (6)

which are the same as those in the case of pure edge drainage [20]. Note that in practice, we used a
tanh function in numerical simulations to approximate the rectangular profile (5) so that the initial
condition is smooth in the entire domain 0 � x � L. Thus the near-rectangular initial condition
and the boundary condition h(L,t) = 0 are consistent at the edge x = L and the profile is rapidly
smoothed for t̂ > 0. Dimensionless variables can then be defined as

x̂ ≡ x

L
, ĥ ≡ h

h0
, t̂ ≡ t�ρgkh0

φμL2
, (7)
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so that the governing equation (4) and the initial and boundary conditions (5) and (6) become

∂ĥ

∂t̂
= ∂

∂x̂

(
ĥ

∂ĥ

∂x̂

)
− λĥ, (8a)

ĥ(x̂,0) =
{

1, 0 � x̂ � 1
0, x̂ > 1,

(8b)

∂ĥ

∂x̂

∣∣∣∣
x̂=0

= 0, ĥ(1,t̂) = 0, (8c)

where

λ ≡ kbL
2

kbh0
(9)

is a dimensionless parameter that measures the resistance for the gravity current to drain through the
permeable substrate relative to flowing through the porous medium.

We performed numerical simulations to solve Eq. (8a), subject to initial condition (8b) and
boundary conditions (8c). More details about the numerical schemes are provided in the Appendix.
After a finite volume of fluid is released, as shown in Fig. 2(a), the current drains from both the
edge and the permeable bed and the front of the current remains pinned at the fixed edge x̂ = 1. In
addition, the profiles at both the early and late times inspire us to seek self-similar solutions.

To begin with, we note that Eq. (8a) can be further simplified by using the substitutions [18,20,35]
to eliminate the dependence on λ:

H (x̂,τ ) = ĥ(x̂,t̂) exp(λt̂), τ = 1 − exp(−λt̂)

λ
. (10)

Substituting (10) into (8) and (9) yields an evolution equation for H (x̂,τ ), as well as the initial and
boundary conditions

∂H

∂τ
= ∂

∂x̂

(
H

∂H

∂x̂

)
, (11a)

H (x̂,0) =
{

1, 0 � x̂ � 1
0, x̂ > 1,

(11b)

∂H

∂x̂

∣∣∣∣
x̂=0

= 0, H (1,τ ) = 0. (11c)

The boundary-initial value problems (BIVPs) (11) and (8) are equivalent. By suppressing λ, the
BIVP (11) takes the same form as the case of pure edge drainage [20]. Nevertheless, τ is only
defined in the domain 0 � τ < 1/λ based on the transformation (10).

In the specific case of a rectangular initial condition, the rescaled gravity current height at the
origin H (0,τ ) remains as unity at early times before the information of the edge reaches the origin,
which can further restrict the Neumann condition ∂H

∂x̂
(0,τ ) = 0 in the boundary condition (11c) to a

Dirichlet condition

H (0,τ ) = 1. (12)

Thus, a scaling analysis can be performed and the form of the partial differential equation (PDE)
(11a) suggests that the early-time self-similar solution is in the form

H (x̂,τ ) = ψ(η), η = x̂ − 1√
2τ

, (13)

074101-4



FLOW OF A GRAVITY CURRENT IN A POROUS MEDIUM . . .

e f-(c)

(a)

(b)

=

=

={ },,

FIG. 2. Time evolution profiles of a gravity current draining from an edge for typical values of λ and the
early-time self-similar solution. (a) Profile evolution ĥ(x̂,t̂) for λ = 1 at t̂ = {0,0.01,0.03,0.1,0.5,100}. The
initial condition is a rectangular profile (8b). (b) Gravity current profile evolution for λ = 1 shown as the
transformed height H (x̂,τ ), where τ represents the transformed time. The information of the edge has not
reached the origin and H (0,τ ) = 1 before t̂ = 0.5 (or τ = 0.39). (c) Rescaled numerical solutions for λ = 1 at
different times t̂ = {0,0.01,0.03,0.1,0.5,100}. The early-time self-similar solution is shown as the red dashed
curve, which agrees well with the rescaled profiles at times t̂ = {0,0.01,0.03,0.1} (or τ = {0,0.01,0.03,0.1}).
The rescaled profiles deviate from the early-time self-similar profile at t̂ = {0.5,100} (or τ = {0.39,1.0}), since
the boundary condition H (0,τ ) = 1 does not hold anymore after the information from the edge has reached the
origin.

where ψ(η) is the early-time self-similar profile and η is the similarity variable. We expect that this
self-similar profile is approached before the information at the edge reaches the origin. Substituting
(13) into (11), we obtain

(ψψ ′)′ + ηψ ′ = 0 with ψ(−∞) = 1, ψ(0) = 0, (14)

which applies to any λ. The transformed profile evolution in time H (x̂,τ ) for λ = 1 is shown
in Fig. 2(b), where the edge information is still propagating towards the origin at times t̂ =
{0.01,0.03,0.1}. The gravity current profiles are rescaled and shown in Fig. 2(c), where the
rescaled profiles at times t̂ = {0.01,0.03,0.1} overlap one another and agree well with the early-time
self-similar solution (red dashed curve). After the information has reached the origin, the height at
the origin cannot be assumed to be H (0,τ ) = 1 anymore. Thus, the scaling shown in Eq. (13) fails
beyond this time scale and the rescaled profiles deviate from the early-time self-similar solution, as
shown in Fig. 2(c) for times t̂ = {0.5,100}.

074101-5



YINGXIAN ESTELLA YU, ZHONG ZHENG, AND HOWARD A. STONE

As time progresses, the assumption H (0,τ ) = 1 eventually fails and the early-time self-similar
solution no longer captures the gravity current profile evolution. At long times, however, Eq. (11)
can be rescaled differently, which leads to a late-time self-similar solution. As is well known, the
nonlinear PDE (11a) can be further reduced to a nonlinear ordinary differential equation via steps
inspired by scaling arguments. Since the substrate length scale L is a constant, the form of Eq. (11a)
and boundary conditions (11c) suggest that a late-time self-similar solution is given by

H (x̂,τ ) = f (x̂)

τ
, (15)

where f (x̂) represents the universal profile shape. This universal profile solution will be approached
at the transformed time limit τ → ∞, which can only be achieved for λ → 0. With Eq. (15), the
PDE (11a) as well as its boundary conditions (11c) can be reduced to a boundary value problem
(BVP) for the ordinary differential equation (ODE)

(ff ′)′ + f = 0 with f ′(0) = 0, f (1) = 0, (16)

whose solution is the late-time self-similar solution. At the limit λ → 0, the BVP (16) is identical
to that in pure edge drainage [20], in which (16) is solved numerically.

Notice that as time t̂ → ∞, the transformed time τ → 1/λ and therefore the gravity current
profile approaches the solution to Eq. (11) evaluated at τ = 1/λ. As a result, there are two different
late-time asymptotic limits in this coupled drainage problem: a numerical solution to Eq. (8) or
(11) as t̂ → ∞, which provides the final profile shape of the gravity current, and a self-similar
solution as τ → ∞, which can be approached only at the limit λ → 0. The value of λ determines
the extent to which the numerical solution approaches the self-similar solution. In the following
context, the discussion of the self-similar solution τ → ∞ (λ → 0) will be provided first, followed
by a discussion of the numerical solution with finite values of λ.

To start, we solve for the late-time self-similar solution analytically. After multiplying by ff ′
and integrating once, Eq. (16) reduces to

(ff ′)2 + 2
3

[
f 3 − f (0)3

] = 0 with f (1) = 0, (17)

which can be further simplified, by defining χ ≡ f/f (0), to

χ ′ = −
(

2

3f (0)

)1/2 (1 − χ3)1/2

χ
with χ (1) = 0. (18)

After integration using Mathematica, the self-similar solution can be expressed in terms of the
hypergeometric function 2F1:

2F1

(
1

2
,
2

3
;

5

3
; χ3

)
χ2 =

(
8

3f (0)

)1/2

(1 − x̂). (19)

The value of f (0) can be obtained by applying the condition χ (0) = 1, which gives

f (0) = 8�(7/6)2

3π�(5/3)2
= 0.8964, (20)

with � representing the Gamma function. A numerical shooting procedure is also performed using
the MATLAB subroutine ODE45 in order to solve Eq. (16), with λ = 10−5 and f (0) = 0.8964.
The numerically solved self-similar solution is found to agree with the analytical solution (19).
Therefore, the analytical solution (19) is shown in the figures as the late-time self-similar solution
in the remainder of this section. The time evolution for the gravity current with λ = 10−5 is shown
in Fig. 3(a), whose results are further rescaled and shown in Fig. 3(b), along with the self-similar
solution (19) (blue dashed curve) as a comparison. Note that for the limit λ → 0, the transformed
time τ → ∞ as t̂ → ∞; therefore, the numerical PDE solution as t̂ → ∞ is equivalent to the
late-time self-similar solution. As time progresses, the rescaled profiles τH (x̂,τ ) shown in Fig. 3(b)
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FIG. 3. Gravity current profile evolution for a finite-volume release. Numerical results for the evolution of
the gravity current with time, with λ = 10−5, t̂ = {0,0.4,1,3,10,100}, starting from an initial rectangular profile
(8b). The shapes of the gravity current are marked with colors varying from purple to green as the simulation
time progresses to larger values. (a) Numerical results showing the current changes with time. (b) Rescaled
profiles from (a), along with a comparison with the theoretically predicted solution profile (blue dashed curve)
obtained from Eq. (16). As time progresses, the rescaled profile approaches the self-similar shape.

approach a universal shape, which agrees with the theoretical prediction of the self-similar solution.
For example, at t̂ = 100, the value of τH (0,τ ) reaches 0.8850, which is within 1% of the theoretical
value f (0) = 0.8964. In addition, the initial fluid profile only affects the early-time current shapes
before the self-similar behavior is established. Thus, the initial fluid shape is not limited to the
rectangular profile chosen here.

As mentioned above, a finite value of λ corresponds to a finite upper bound for the transformed
time τ = 1/λ. Therefore, with an increase of the value of λ, it is expected that the numerical solution
(t̂ → ∞) will deviate from the self-similar solution. The gravity current profile evolution for λ = 1
is shown in Fig. 4(a). As time t̂ → ∞, the rescaled profile shapes resemble a similarity profile, which
corresponds to the solution of Eq. (11) as time τ → 1/λ. However, limited by the upper bound of τ ,
the transformed time τ is not large enough for the numerical solution to converge to the self-similar
solution (19) and disagreement between the numerical solution and the self-similar solution is shown
(for λ = 1). The effect of λ on the numerical solution as t̂ → ∞ is shown in Fig. 4(b), where the
rescaled numerical solutions at different values of λ are displayed. The self-similar solution (19) (red
dashed curve) is also displayed for comparison. As the value of λ increases, the rescaled numerical
solution deviates from the self-similar solution to a larger extent and the maximum deviation has
reached 7% at λ = 0.1. As a result, for large values of λ, the solution to the reduced equation (16)
cannot provide an accurate prediction to the final gravity current shape and solving Eq. (8) or (11)
is required.

It should also be pointed out that the numerical solutions corresponding to large values of λ can
become sensitive to the initial conditions. The upper bound for τ decreases with the increasing value
of λ, meaning that the transformed time may not be long enough to avoid the effect of the initial
condition. As shown in Fig. 4(c), the rescaled numerical solutions evolved from different initial
conditions are compared for λ = 10−5 and λ = 1, respectively. The rescaled numerical solutions
overlap one another at t̂ = 100 for λ = 10−5, since the numerical solution as t̂ → ∞ at the limit
of λ → 0 is equivalent to the self-similar solution. The rescaled numerical solutions for λ = 1, on
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FIG. 4. Numerical solutions for typical values of λ. (a) Rescaled profile evolution for λ = 1 at t̂ =
{0,0.3,0.8,2,100}. Initial condition is a rectangular profile (8b). The numerical solution as t̂ → ∞ disagrees
with the self-similar solution (red dashed curve) due to the finite value of τ = 1/λ = 1. (b) Rescaled numerical
solutions at different values of λ = {10−5,0.1,0.4,1,4} at time t̂ = 100. The black solid curves are the rescaled
numerical results from solving the Eq. (8), starting from a rectangular initial profile (8b). As the value of λ

increases, the numerical solution deviates more from the self-similar solution. (c) Initial condition dependence
of the numerical solutions for a general λ. The rescaled numerical solutions with different initial conditions are
compared for λ = 10−5 (dashed curves) and λ = 1 (solid curves), respectively. The rectangular, quarter-circular,
and triangular shapes in the legend represent the corresponding initial shapes of the gravity current. Green curves
correspond to the rectangular initial condition (8b), black curves correspond to the quarter-unit-circle initial
condition, and blue curves correspond to the triangular initial condition with ĥ(0) = 1 and ĥ(1) = 0. While
the rescaled numerical solutions for λ = 10−5 overlap one another and agree with the self-similar solution, the
rescaled numerical solutions for λ = 1 with different initial conditions differ from one another and deviate from
the self-similar solution.

the other hand, differ from one another depending on the initial conditions and disagree with the
self-similar solution.

The fluid volume remaining in the porous medium is a quantity of practical interest and it is
defined as

V̂ (t̂) ≡
∫ 1

0
ĥ(x̂,t̂)dx̂. (21)

Due to the solution’s initial condition dependence, the value of V̂ (t̂) for a general λ needs to be
solved numerically. However, in the limit λ → 0, the value of V̂ (t̂) can be obtained analytically. In
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FIG. 5. Rescaled nondimensional volume remaining in the reservoir at the limit λ → 0, calculated with a
representative value of λ = 10−5, at times t̂ = {0.1,0.2,0.4,0.7,1,3,6,20,30,50,100}. As time increases, the
volume approaches a constant 0.6930, which is predicted by the self-similar solution

∫ 1
0 f (x̂)dx̂ [see Eq. (21)].

The rescaled nondimensional volume reaches 0.6802 at t̂ = 100, which is within 2% of the theoretical prediction.

this limit, we can substitute Eqs. (10) and (15) into the definition of V̂ (t̂) (21) and obtain

V̂ (t̂) = λ

exp(λt̂) − 1

∫ 1

0
f (x̂)dx̂, (22)

where
∫ 1

0 f (x̂)dx̂ = 0.6930 is a constant determined from the numerical computation, which
represents the area enclosed between the self-similar profile (19) and the axes. Note that the volume
described in Eq. (22) is valid only after the universal profile shape is established. The evolution of
V̂ (t̂) with time is shown in Fig. 5. As time progresses, the value of V̂ (t̂)[exp(λt̂) − 1]/λ approaches
the theoretically predicted constant 0.6930.

Since both the fixed edge and the underlying permeable substrate are sources of fluid drainage,
we are also interested in the amount of fluid loss due to each of the mechanisms in the limit of
λ → 0. The flux q̂bed draining through the permeable bed per unit width of the current is given by

q̂bed(t) =
∫ 1

0
λĥ(x̂,t)dx̂ = λV̂ (t̂). (23)

The total flux q̂(t̂) of the fluid drainage is

q̂(t̂) ≡ −dV̂

dt̂
= λ exp(λt̂)

exp(λt̂) − 1
V̂ (t̂). (24)

Thus, the drainage fraction from the edge α ≡ q̂edge/q̂ can be expressed as

α = exp(−λt̂). (25)

This result is also validated from the numerical calculations, as shown in Fig. 6, and the results show
good agreement with Eq. (25). Note that the difference between the numerical simulation and the
theoretical prediction decreases in time and the error is already within 6% at time t̂ = 0.1.

2. Constant injection rate

If there is a continuous supply of fluid with a constant flow rate q at the origin x = 0, the current
will gradually evolve to a steady state for which the constant injection rate q equals the total drainage
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FIG. 6. Numerical results showing the drainage fraction α [Eq. (25)] variation with time, with λ = 10−1,
at times t̂ = {0.1,1,3,5,7,10,15,20,25,30,35,40,45,50,55,60,65}. The black dashed line represents the
theoretical prediction α = exp(−λt̂). Note that the difference between the numerical simulation and the
theoretical prediction decreases in time and the error is already within 6% at time t̂ = 0.1.

rate. While the governing equation remains (4), the initial and boundary conditions become

h(x,0) = 0, (26a)

h
∂h

∂x

∣∣∣∣
x=0

= − qφμ

�ρgk
, h(L,t) = 0. (26b)

According to boundary conditions (26b), we can determine a characteristic length scale for the
current height hc = (qLφμ/�ρgk)1/2, which is related to the injection rate q. Next we define the
dimensionless variables as

x̂ ≡ x

L
, ĥ ≡ h

( �ρgk

qLφμ

)1/2

, t̂ ≡ t

(
q�ρgk

L3φμ

)1/2

, (27)

which provide the dimensionless governing equation, as well as the initial and boundary conditions

∂ĥ

∂t̂
= ∂

∂x̂

(
ĥ

∂ĥ

∂x̂

)
− λqĥ, (28a)

ĥ(x̂,0) = 0, (28b)

ĥ
∂ĥ

∂x̂

∣∣∣∣
x̂=0

= −1, ĥ|x̂=1 = 0. (28c)

Here λq is defined as

λq ≡ kbL

kb

(�ρgkL

φμq

)1/2

, (29)

which is related to the competition between the drainage and the injection rates.
Using a finite-difference scheme to solve the PDE (28a) with its initial and boundary conditions

(28b) and (28c) (see the Appendix), we can obtain different current shape evolutions, depending on
the values of λq . Figure 7 presents three typical time evolutions for λq = 10−5, 2, and 10. As time
progresses, the gravity current gradually evolves to its steady-state profile, where color is used to
display the time evolution. The profile corresponding to the latest time shown in each plot represents
the profile shape when a steady state is reached.

At the steady state, the constant injection flow rate is balanced by the total drainage rate, from
both the permeable base and the edge, though the gravity current may only occupy 0 � x̂ � x̂f � 1,
where x̂f denotes the front of the gravity current. The steady-state governing equation and its
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(a)

(b)

(c)

FIG. 7. Buoyancy-driven drainage gravity current profile evolutions with constant injection flow rate. The
PDE solutions are shown at different λq values with a constant injection rate ĥ ∂ĥ

∂x̂
= −1 at the origin. As time

progresses, the current gradually evolves to its steady-state profile, whose color has gradually evolved to green.
The corresponding solution to the reduced equation (30) is also shown as the blue dashed curves in each case as a
comparison: (a) λq = 10−5, the gravity current overshoots the edge, for times t̂ = {0.02,0.08,0.22,0.4,0.7,10};
(b) λq = 2, the gravity current overshoots the edge, for times t̂ = {0.01,0.03,0.07,0.15,0.3,0.55,10}; and
(c) λq = 10, the gravity current drains only from the permeable base for times t̂ = {10−3,0.02,0.03,0.1,0.2,1}.

boundary conditions can be rewritten as

d2ĥ2
s

dx̂2
= 2λqĥs, (30a)

ĥs

dĥs

dx̂

∣∣∣∣
x̂=0

= −1, ĥs(x̂f ) = 0, (30b)

where ĥs(x̂) represents the steady-state profile shape. When the front of the gravity current does not
reach the fixed end (x̂f < 1), the extra information regarding the location of the leaking edge x̂f can
be obtained from

λq

∫ x̂f

0
ĥs(x̂)dx̂ = 1, (31)
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FIG. 8. Under constant flow rate fluid injection, steady-state profile variation with different values of λq .
(a) Steady-state shapes variation with λq = {10−5,1,2,3.5,10}. Numerical results are obtained from solving
the ODE (30a) subject to boundary conditions (30b) and show good agreement with the analytical solutions
(34) and (35) at the limits λq > 3

√
2 (i.e., x̂f < 1) (from Refs. [16,18]) and λq → 0 (from Refs. [16,23,33]),

which are shown as red dashed curves. (b) Rescaled steady-state profiles in (a). As the value of λq increases,
the steady-state profile shape changes from a convex shape to a concave shape.

which indicates that the total drainage rate from the permeable substrate is balanced by the continuous
fluid supply at the origin x̂ = 0. Given a value of λq , Eq. (30a) can be solved numerically, subject to
the boundary conditions (30b) and (31). We used a shooting procedure with the MATLAB subroutine
ODE45 and the corresponding solutions to Eq. (30) are shown as blue dashed curves in Fig. 7, where
the solutions obtained from the PDE and ODE show good agreement. The solutions to the reduced
equation (30) with different λq values are also shown in Fig. 8. As the value of λq increases, the
steady-state profile varies from concave curves to convex curves.

To obtain more analytic insights, we integrate Eq. (30a) once to find

dĥ2
s

dx̂
= −

(
8

3
λqĥ

3
s + c

)1/2

, (32)

where c is a non-negative integration constant, whose value is related to the drainage flux at the
current tip, or the current height at the origin:

c =
(

dĥ2
s

dx̂

∣∣∣∣
x̂=x̂f

)2

or c = 4 − 8

3
λqĥ

3
s (0). (33)

In particular, when λq is large enough, the gravity current will only drain from the permeable
substrate. Therefore, at the front x̂f , the drainage flux

√
c/2 is zero. Thus, Eq. (32) can be simplified

and solved with the flux boundary conditions (30b). The analytical solution in this case is

ĥs(x̂) = λq

6

⎡
⎣x̂ −

(
18

λ2
q

)1/3
⎤
⎦

2

, (34)

which recovers the result obtained by Pritchard et al. [16,18]. The steady-state current length x̂f can
then be calculated from the result above, which yields x̂f = (18/λ2

q)1/3. If x̂f < 1, or equivalently
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(a)

(b)

FIG. 9. Steady-state edge drainage fraction α and the steady-state volume V̂ for λq = {5 ×
10−3,[1,2,3,5,7] × 10−2,[1,1.3,2,3,5,7] × 10−1,1,1.5,2,3,4,5,7,10}. The results are obtained from solving
Eq. (28) until the steady-state profiles are reached. (a) As λq → 0, which represents the case of pure edge
drainage, α → 1. For λq > 5, α = 0 since the current tip has retracted from the edge and fluid only drains from
the permeable base. (b) As λq → 0, the current volume in the reservoir reaches its maximum value 2

√
2/3 [as

calculated using Eq. (35)], which is marked as the dashed line for a reference. On the other hand, V̂ → 0 as
λq → ∞. When λq is large enough to prevent the gravity current from overshooting, the steady-state volume
V̂ ∼ λ−1

q , as shown by the red dashed curve.

λq > 3
√

2, the gravity current only drains from the permeable substrate and the substrate length
scale L can be treated as infinite, since the system loses information about the edge.

At the other limit, when λq = 0, fluid can only drain from the edge and x̂f = 1. In this case,
Eq. (32) can be simplified and the solution is

ĥs(x̂) =
√

2(1 − x̂), (35)

which recovers the result from the literature (see, e.g., [16,23,33]).
As a practical consideration, we are interested in the change of the drainage fraction α = q̂edge/q̂

with λq and also the amount of fluid that can be stored in the reservoir at the steady state. The results
for these two quantities are provided in Fig. 9 based on the numerical calculations. Intuitively, one
expects that α → 1 as λq → 0, gradually decreases as λq increases, and stays zero above some
critical value of λq . On the other hand, the volume of fluid that can be stored in the reservoir

V̂ ≡ ∫ x̂f

0 ĥs(x̂)dx̂ will reach its maximum value V̂ = 2
√

2/3, computed using Eq. (35), as λq → 0
and decreases as λq increases, which is consistent with the numerical results in Figs. 9(a) and 9(b).
In fact, we can obtain the variation of V̂ at large λq . When the gravity current is not overshooting
the edge x̂f < 1, Eq. (31) indicates that V̂ = λ−1

q , which is plotted in Fig. 9(b) and shows good
agreement with the numerical results.

B. Uniform drainage

In this section we are interested in a situation where there is a gravity current with constant loss at
rate v0, while the vertical velocity in the propagating current is still much smaller than the horizontal
velocity (v0 � u). This configuration is proposed for some practical flow problems. For example,
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a homogeneous and constant fluid loss should be considered when a gravity current experiences
dissolution-driven convection to the ambient fluid, as verified by experiments [36]. This is equivalent
to the case where a uniform and constant vertical draining rate v0 through a permeable substrate is
considered. Assuming that the vertical volume flux per unit width is a constant v0, using (1) and (2),
the evolution equation for the profile shape h(x,t) has the form

∂h

∂t
= �ρgk

φμ

∂

∂x

(
h

∂h

∂x

)
− v0

φ
. (36)

We next consider the solutions to this equation for the distinct cases of finite-volume release and
constant flow rate injection.

1. Finite volume

When a finite volume of fluid is suddenly released, the governing equation (36) satisfies the initial
and boundary conditions

h(x,0) =
{
h0, 0 � x � L

0, x > L,
(37a)

∂h

∂x

∣∣∣∣
x=0

= 0, h(L,t) = 0. (37b)

The governing equation (36) and its initial and boundary conditions (37a) and (37b) can be
nondimensionalized following the definition of dimensionless variables in Eq. (7) and we obtain

∂ĥ

∂t̂
= ∂

∂x̂

(
ĥ

∂ĥ

∂x̂

)
− ε, (38a)

ĥ(x̂,0) =
{

1, 0 � x̂ � 1
0, x̂ > 1,

(38b)

∂ĥ

∂x̂

∣∣∣∣
x̂=0

= 0, ĥ(1,t̂) = 0, (38c)

where ε is a dimensionless constant defined as

ε ≡ v0μL2

�ρgkh2
0

� 1. (39)

We solved Eq. (38a) subject to (38b) and (38c) using a finite-difference scheme (Appendix) to obtain
the profile shape evolutions shown in Fig. 10 for ε � 1. Initially, the gravity current drains via both
the permeable substrate and the edge. However, as the profile height continues to decrease, the front
of the gravity current starts to retract, after which the gravity current only drains from the permeable
substrate, until the initial volume is drained out at a finite time t̂end.

As the front starts to retract from the edge, the gravity current gradually loses information about
the finite substrate length scale and the profile shapes shown in Fig. 10(a) inspire us to seek a
self-similar solution. The time-dependent variations of profile height at the origin ĥ(0,t̂) and the
gravity current frontal location x̂f (t̂) are shown in Figs. 10(b) and 10(c). We define τe ≡ t̂end − t̂ .
From numerical results, we observe that as τe → 0, ĥ(0,t̂) and x̂f (t̂) show a power-law dependence
in time, where

ĥ(0,t̂) = ετe, x̂f (t̂) = Aτ 1/2
e , (40)

with A = 0.4 being a fitting parameter.
Based on the form of Eq. (38a), a scaling analysis can be performed at τe → 0. According to (40),

the diffusion term in Eq. (38a) scales as ∂
∂x̂

(
ĥ ∂ĥ

∂x̂

) = O(τe), which becomes negligible as τe → 0.
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(a)

(b)

(c)

(d)

1

1
2

FIG. 10. (a) Numerical solutions to Eq. (38) showing the evolution of the current profile with time, with ε =
10−3, t̂ = {0,0.3,1.2,4.0,37,40}. (b) Time evolution of current height at the origin ĥ(0,t̂). As time progresses
towards t̂end, ĥ(0,t̂) is proportional to t̂end − t̂ . The black dashed line represents the theoretical prediction
ĥ(0,t̂) = ε(t̂end − t̂). (c) Time evolution of the current front location x̂f (t̂). As time progresses towards t̂end,
x̂f (t̂) follows a power law (t̂end − t̂)1/2. (d) Rescaling the numerical results to show the evolution of the stretched
current profile x̂/x̂f versus ĥ/ĥ(0) with time, with ε = 10−3, t̂ = {0,0.03,0.1,30,44}. The self-similar solution
(42) is given as the blue dashed curve for a comparison. At t̂ = 44, for example, the rescaled profile already
overlaps with the self-similar solution.

Thus the leading-order behavior becomes ĥ/τe = O(ε), which suggests that the profile height has
the form

ĥ(x̂,t̂) = ε[τe − τ0(x̂)], (41)
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(a)

(b)

FIG. 11. Drainage fraction α variation with time. (a) Numerical results of the drainage fraction α = q̂edge/q̂

as a function of time t̂ , with ε = {2 × 10−5,4 × 10−5,10−4,5 × 10−4,7 × 10−3}. (b) After rescaling time as
(t̂retract − t̂)

√
ε, the results in (a) collapse to a universal curve, with ε = {10−5,3 × 10−2,10−1,2.5 × 10−1,5 ×

10−1,1}. The theoretically predicted early-time behavior (44) is shown as the red dashed curve, which shows
good agreement with the universal curve.

where τ0 is a function of x̂, and τ0(x̂) = (x̂/A)2 can be further determined based on the frontal
location in Eq. (40). Thus, Eq. (41) can be rewritten as

ĥ(x̂,t̂)

ĥ(0,t̂)
= 1 −

(
x̂

x̂f (t̂)

)2

. (42)

The profile evolution shown in Fig. 10(a) is rescaled and shown in Fig. 10(d), along with the
self-similar profile (42), which exhibit good agreement. Notice that the retraction of a gravity
current draining from a substrate was also observed by Pritchard et al. [18] and in this particular
regime the same universal shape (42) is obtained. Nevertheless, the values for ĥ(0,t̂) and x̂f (t̂) in
this problem are obtained numerically from solving Eq. (38) and cannot be predicted directly from
the solutions of Pritchard et al. [18].

The drainage fraction through the edge α, which is defined as α = q̂edge/q̂, can also be calculated
numerically. Figure 11(a) displays the time variation of α for different values of ε. We define t̂retract

as the time when the gravity current starts to retract. As the finite volume of fluid is released, initially
the fluid mainly drains from the edge (α ≈ 1). The value of α decreases to zero at a finite time
t̂retract and remains α = 0 until the fluid drains out at t̂end. Since the variation of α only occurs when
0 < t̂ < t̂retract, in order to eliminate the ε dependence, the nondimensional time is rescaled and the
results in Fig. 11(a) collapse to a universal curve shown in Fig. 11(b).

We note that in the limit ε → 0, edge drainage dominates at the early times (t̂ � t̂retract) and
the profile shape can be approximated by that in the case of pure edge drainage [20]. Thus, ĥ(x̂,t̂)
satisfies ĥ(x̂,t̂) = t̂−1f (x̂), where f (x̂) is identical to the self-similar solution (15). Therefore, the
edge drainage flow rate can be obtained:

q̂edge ≡ −ĥ
∂ĥ

∂x̂

∣∣∣∣
x̂=1

= −(ff ′)|x̂=1 t̂
−2. (43)
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10-3 10-2 10-1 100 101 102
0

0.5

1

Vbed

V0

FIG. 12. Numerical results showing the final volume fraction of fluid drained from the base for different
dimensionless drainage parameter ε, defined in Eq. (39). The current has a rectangular initial condition (38b)
and ε = {[1,2,4,7] × 10−3,[1,2,4,7] × 10−2,0.1,0.2,0.4,0.7,1,2,4,7,10,20,40,70}.

We define z ≡ −(ff ′)x̂=1 and according to the numerical calculation, z ≈ 0.693. Hence, the drainage
fraction α can be derived as

α(t̂) = zt̂−2/ε

zt̂−2/ε + 1
. (44)

We picked a small value of ε = 10−5 and plotted (44) in Fig. 11(b) as the red dashed curve. This result
shows good agreement with the universal curve at the early times. In the limit ε → 0, t̂retract → ∞ and
the curve stays at the asymptotic value α = 1, which is consistent with the case of pure edge drainage.

When a fixed amount of fluid is suddenly released, one of the practical concerns is the fraction
of fluid that the gravity current loses through draining from the permeable substrate. In dimensional
terms, we define Vbed as the final volume of fluid that drains through the permeable substrate, which
depends on ε as defined in Eq. (39) and is reported relative to the initial volume V0 = h0L. Intuitively,
the volume fraction Vbed/V0 → 1 as ε → ∞, while Vbed/V0 → 0 as ε → 0. Numerical results for
Vbed/V0 as a function of a large range of ε are reported in Fig. 12 in order to show the asymptotic
trend; the results are consistent with this argument. Notice that in natural situations, the condition
ε � 1 usually applies due to the small vertical drainage rate v0.

2. Constant injection rate

If there is a continuous supply of fluid with a constant flow rate q at the origin x = 0, the fluid
flow will eventually evolve to a steady state. Now the governing equation and initial and boundary
conditions are

∂h

∂t
= �ρgk

φμ

∂

∂x

(
h

∂h

∂x

)
− v0

φ
, (45a)

h(x,0) = 0, (45b)

h
∂h

∂x

∣∣∣∣
x=0

= − qφμ

�ρgk
, h(L,t) = 0. (45c)

After nondimensionalization, following Eq. (27), we arrive at

∂ĥ

∂t̂
= ∂

∂x̂

(
ĥ

∂ĥ

∂x̂

)
− εq, (46a)

ĥ(x̂,0) = 0, (46b)

ĥ
∂ĥ

∂x̂

∣∣∣∣
x̂=0

= −1, ĥ|x̂=1 = 0, (46c)
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(a)

(b)

(c)

FIG. 13. Evolution of a current with a constant injection rate ĥ ∂ĥ

∂x̂
= −1 at the origin. Fluid drains from

both the base and the edge, with εq = {10−3,0.8,1.5}. As time progresses, the current gradually evolves to its
steady-state profile, where color is used to display the time evolution. The corresponding steady-state solution
(52) or (53) is shown as a blue dashed curve in each case as a comparison: (a) εq = 10−3, the gravity current
overshoots the edge, for times t̂ = {0.01,0.04,0.12,0.28,0.6,10}; (b) εq = 0.8, the gravity current overshoots
the edge, for times t̂ = {0.01,0.04,0.1,0.25,0.6,10}; and (c) εq = 1.5, the gravity current only drains from the
permeable base, for times t̂ = {0.01,0.03,0.07,0.15,0.35,10}.
where εq is defined as

εq ≡ v0L

φq
. (47)

Equation (46a) can now be solved numerically subject to the initial and boundary conditions (46b)
and (46c) and results in different current profile evolutions for different values of εq . Figure 13
presents three typical shape evolutions at εq = 10−3, 0.8, and 1.5. As time progresses, the current
profiles are marked with the gradually changing colors from purple to green.

We are interested in investigating the effect of εq on the steady-state current profiles. Since the
governing equation is then invariant with time, Eq. (46) becomes

d2ĥ2
s

dx̂2
= 2εq, (48a)

ĥs

dĥs

dx̂

∣∣∣∣
x̂=0

= −1, ĥs(x̂f ) = 0, (48b)
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where ĥs(x̂) represents the profile shape at the steady state. Note that the boundary condition is refined
as ĥs(x̂f ) = 0 to remind us that if the gravity current is not overshooting from the edge (x̂f �= 1),
extra information about the frontal location x̂f is required to close the problem. This information
can be obtained based on the fact that the total drainage rate from the permeable substrate is now
balanced by the fluid injection rate at the origin

εq x̂f = 1, (49)

which leads to x̂f = 1/εq for εq � 1. When εq < 1, the gravity current overshoots the edge. In such
case, x̂f = 1 and the boundary condition ĥs(1) = 0 is imposed.

There exists an analytical solution to Eq. (48a), subject to boundary conditions (48b) and (49):

ĥs(x̂) =
√

εq x̂2 − 2x̂ + c, (50)

where c is a non-negative integration constant that is related to the steady-state profile height at the
origin

c = [ĥs(0)]2. (51)

We note that Eq. (50) has been shown previously, for example, in Ref. [33]. When the gravity
current overshoots the edge, the integration constant c = 2 − εq can be determined by applying the
boundary condition ĥs(1) = 0 and the solution becomes

ĥs(x̂) =
√

εq x̂2 − 2x̂ + 2 − εq. (52)

Equation (52) requires εq < 1 to ensure that the value of current height ĥs(x̂) remains real in the
entire domain of x̂ ∈ [0,1]. In particular, at the limit of εq = 0, the steady-state solution (35) is again
recovered [16,23,33]. In such a case, fluid only drains from the edge.

If εq > 1, Eq. (52) fails to have real values for the entire region of x̂ ∈ [0,1]. Physically, this means
that x̂f < 1 and fluid only drains from the permeable base. Therefore, by applying the boundary
condition ĥs(x̂f ) = 0, the integration constant c in Eq. (50) can be determined as c = 1/εq and we
recover the solution obtained by Pritchard et al. [18]:

ĥs(x̂) = 1√
εq

(1 − εq x̂). (53)

Analytic results (52) and (53) with different values of εq are displayed with the numerical solutions
to Eq. (46) at different times in Fig. 13 in order to highlight the profile shape evolution towards the
steady state; the results exhibit good agreement. Furthermore, the final shapes are displayed as a
function of εq in Fig. 14, provided by the analytical solutions (52) and (53) for ĥs(x̂). The rescaled
steady-state profiles of Fig. 14(a) are also shown in Fig. 14(b) and the rescaled profiles vary from
convex curves to straight lines as εq increases.

We are also interested in determining the ratio of fluid draining flux from the edge verses the total
drainage flux at the steady state α ≡ qedge/q. We already know that the ratio at εq > 1 approaches
zero, since fluid only drains through the permeable base. At εq < 1, knowing that q̂bed = εq x̂f = εq ,
the drainage rate fraction can then be determined as α = 1 − εq when the current is overshooting
from the edge. Thus, α can be summarized as

α = q̂edge

q̂
=

{
1 − εq, 0 � εq � 1
0, εq > 1.

(54)

III. IMPLICATIONS FOR CO2 SEQUESTRATION PROJECTS

The work in this paper is partly inspired by the practical concerns related to the leakage of the
supercritical CO2 from geological sequestration projects [37–43], in which the determination of
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(a)

(b)

FIG. 14. Under constant flow rate fluid injection, steady-state profile variation with different values of εq .
(a) Steady-state profile shapes variation with εq = {10−3,0.5,0.8,1,1.5,2.5}. Analytical solutions (52) and (53)
with different of different values of εq are displayed and show good agreement with the profile shapes at the
limits εq > 1 (i.e., x̂f < 1) (from Refs. [16,18]) and εq → 0 (from Refs. [16,23,33]), which are shown as
red dashed curves. (b) Rescaled steady-state profiles in (a). After normalization, the curves corresponding to
εq = {1,1.5,2.5} collapse with one another and agree with the rescaled solution (52) [16,18]. As the value of
λq increases, the steady-state profile shape changes from a straight line to a concave shape.

the current profile shapes is crucial, since it is closely related to the amount of CO2 that can be
stored underground and the prediction of the storage time scale. Permeable substrate drainage and
edge drainage are among the most commonly discussed leakage mechanisms. It is known that the
gravity current profiles predicted from the two different leakage mechanisms are distinguished from
one another [16,18,23]. Therefore, in this paper we have studied the viscous gravity current profile
and the competition between the two drainage mechanisms using both theoretical analyses and
numerical simulations. Note that in the theoretical and numerical analyses above, the gravity current
fluid is assumed to be denser than the ambient fluid. However, in CO2 sequestration projects, CO2

is less dense than the surrounding brine. Thus, buoyancy is pointing upward rather than downward,
as assumed in the paper thus far, but the theoretical results still apply on reversal of the vertical
coordinate.

As one of the possible ways to slow down the accumulation of CO2 in the atmosphere, the
demonstration project of CO2 storage in the Utsira sand reservoir at Sleipner in the North Sea was
started in 1996 [17,19,22,44–47]. Thus, there is an industrial interest in the case of a buoyancy-driven
current subject to constant fluid injection. Upon injection, CO2 is captured beneath several thin
layers of mudstone (caprock). Due to the limited length of the thin mudstone layers and low yet not
negligible permeability of the caprocks, permeable substrate drainage and edge drainage become
important factors that may lead to a possible long-term storage problem beneath the caprock. It is
therefore crucial to determine the storage capability of each mudstone layer and the steady-state
current profile.

According to the analysis in Sec. II A 2, we know that the nondimensional drainage parameter
λq needs to be greater than 3

√
2 ≈ 4.2 in order to prohibit the edge drainage and it is required for

λq → 0 to eliminate the effects of the substrate drainage. In order to maximize the storage capability
of each mudstone, the calculation here is therefore based on x̂f = 1. For the limit of dominant
substrate drainage, the current profile satisfies Eq. (34), with the critical parameter λqc

= 3
√

2, and

074101-20



FLOW OF A GRAVITY CURRENT IN A POROUS MEDIUM . . .

TA
B

L
E

I.
Ph

ys
ic

al
pa

ra
m

et
er

s
in

pr
ac

tic
al

C
O

2
ge

ol
og

ic
al

se
qu

es
tr

at
io

n
pr

oj
ec

ts
.

C
O

2
B

ri
ne

C
O

2
R

es
er

vo
ir

R
es

er
vo

ir
B

as
e

In
je

ct
io

n
Pe

rm
ea

bl
e

Pe
rm

ea
bl

e
de

ns
ity

de
ns

ity
vi

sc
os

ity
po

ro
si

ty
pe

rm
ea

bi
lit

y
pe

rm
ea

bi
lit

y
ra

te
/w

id
th

ba
se

ba
se

ρ
c

(k
g/

m
3
)

ρ
w

(k
g/

m
3
)

μ
(P

a
s)

φ
k

(m
2
)

k
b

(m
2
)

q
(M

t/
ye

ar
m

)
th

ic
kn

es
s
b

(m
)

le
ng

th
L

(m
)

(2
.7

–
(9

.5
×

10
2
)–

(3
.0

–
0.

20
–0

.6
0

(2
.3

–
(5

.8
×

10
−1

9
)–

0.
50

–3
.5

1.
0–

5.
0

(2
.3

×
10

3
)–

R
an

ge
7.

3)
×

10
2

(1
.2

×
10

3
)

5.
0)

×
10

−5
0.

20
–0

.6
0

6.
1)

×
10

−1
2

(1
.1

×
10

−1
6
)

(2
.7

×
10

5
)

B
en

ch
m

ar
k

va
lu

es
5.

0
×

10
2

1.
1

×
10

3
4.

0
×

10
−5

0.
40

4.
2

×
10

−1
2

5.
5

×
10

−1
7

2.
0

3.
0

1.
4

×
10

5

R
ef

er
en

ce
[5

,4
5]

[5
,4

5]
[5

,4
5]

[4
5,

48
]

[4
5]

[4
8]

[5
,4

5]
[4

5]
[4

9]

074101-21



YINGXIAN ESTELLA YU, ZHONG ZHENG, AND HOWARD A. STONE

(a)

(b)

q

FIG. 15. Drainage regime based on the drainage mechanism. (a) Drainage regime based on the drainage
parameter λq . When λq → 0, current drainage can be considered as edge drainage dominant. When λq � 3

√
2,

substrate drainage is dominant. While 0 < λq � 3
√

2, one should consider the coupled drainage effect due to
both a fixed edge and a permeable substrate and the results provided in Sec. II A 2 apply. (b) Drainage regime
example based on substrate permeability kb. Drainage regimes can be defined similarly based on the substrate
permeability, given that the mean values of the other properties are used.

the nondimensional volume of the steady-state current is V̂ = √
2/6 ≈ 0.24. Using the definition

in Eq. (29), we can compute the critical value of substrate permeability kb based on the critical
λqc

= 3
√

2 and the benchmark values listed in Table I for �ρ, g, k, L, φ, μ, q, and b. This leads to
kb = 2.1 × 10−16 m2, as shown by the dashed line in Fig. 15(b), and the steady-state current volume
per unit width becomes V = 2.5 × 109 m2.

If the edge drainage dominant limit is considered instead, λq = 0, which also corresponds to an
impermeable substrate with kb = 0. The current profile satisfies Eq. (35) and the nondimensional
volume of the steady-state current now becomes V̂ = 2

√
2/3 ≈ 0.94, which corresponds to a

dimensional volume per unit width V = 1.0 × 1010 m2.
Now we take into account the reported parameters involved in a CO2 sequestration project, which

is tabulated in Table I based on studies about permeability of natural mudstone. According to (29),
the value of λq can vary from 4.1 × 10−6 to 99. Yet if the benchmark value of each parameter is
used, the corresponding λq = 1.1, which falls into the coupled drainage regime. In this case, the
nondimensional volume is V̂ = 0.62, which corresponds to a dimensional volume per unit width
V = 6.6 × 109 m2.

As shown in the calculation above, the estimated storage capacity differs significantly with
and without the consideration of the coupled drainage mechanisms. As discussed in Sec. II A 2,
the drainage coefficient λq is the parameter that indicates the drainage regime and among all the
properties considered, the permeability of the mudstone is one of the most important. Thus, using
the benchmark value of the other properties, one can also determine the drainage regime depending
on the value of the mudstone permeability kb, as sketched in Fig. 15.

It is also worth pointing out that once the constant fluid injection is stopped, the current spreading
problem then falls into the finite-volume drainage regime. It is of particular interest to understand
the time scale at which the majority of the fluid is drained out and the amount of fluid that will drain
from the edge. We assume a rectangular initial condition so as to provide a relative time scale for
the sake of comparison. The following results are obtained from numerically solving Eq. (8a) with
different values of λ, as defined in Eq. (9). Using the benchmark values of the properties (Table I),
if pure edge drainage is considered (kb = 0), it requires t̂ = 61 in order to drain out 90% of the
fluid. This dimensional time corresponds to t = 2.1 × 104 years. If both substrate and edge drainage
are considered instead, taking λ = 1.1, the dimensionless time is t̂ = 1.9. Therefore, t ≈ 640 years
are required to drain 90% of the fluid, 76% of which is drained through the substrate. Note that
the gravity current drainage rate may deviate from the exponential relationship shown in Eq. (8a)
due to the accumulated defects in caprock or dissolution of CO2 in brine after long-term storage.
Nevertheless, the theoretical results from this study point out the relative significance of substrate
drainage over edge drainage for the long-term CO2 storage.
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TABLE II. Summary of equations and solutions of buoyancy-driven drainage.

Model Finite volume Constant flux

PDE or ODE
(

φμ

�ρgk

)
∂h

∂t
= ∂

∂x

(
h ∂h

∂x

) − kbh

kb

∂

∂x

(
h ∂h

∂x

) = kbh

kb

initial condition h(x,0) = {h0, 0 � x � L

0, x > L
h(x,0) = 0 (0 � x � L)

Early time: Late time:
boundary conditions h(0,t) = h0

∂h

∂x
(0,t) = 0 h ∂h

∂x
(0,t) = − qφμ

�ρgk

h(L,t) = 0 h(L,t) = 0 h(L,t) = 0

solution H = ψ(η), η = x̂−1√
2τ

H = f (x̂)
τ

dĥ2
s

dx̂
= −

√
8
3 λqĥ3

s + c

simplified ODE (ψψ ′)′ + ηψ ′ = 0 (ff ′)′ + f = 0 d2ĥ2
s

dx̂2 = 2λqĥs

ψ(−∞) = 1 f ′(0) = 0 ĥs
∂ĥs

∂x̂
|
x̂=0

= −1

ψ(0) = 0 f (1) = 0 ĥs(x̂f ) = 0
drainage fraction α α = exp(−λt̂) (λ � 1, late time) Fig. 9(a)

comments λ = kbL2

kbh2
0
, H = ĥ exp(λt̂), τ = 1−exp(−λt̂)

λ
λq = kbL

kb

(�ρgkL

qφμ

)1/2

IV. SUMMARY AND CONCLUSIONS

In this paper we studied the dynamics of a gravity current in a homogeneous porous medium under
the coupled effects of drainage from both a permeable substrate and a fixed edge. Furthermore, the
substrate drainage is categorized as buoyancy-driven drainage or uniform drainage. In each category,
both the case of a sudden release of a finite volume and the case of constant fluid injection are
discussed. Using theoretical analyses and numerical simulations, we investigated the time evolution
of current profiles and drainage rates through each of the mechanisms. For the cases of a finite-volume
release, we obtained self-similar solutions and the fluid drainage flow rate fraction α through the
edge. Specifically, for the buoyancy-driven drainage, we found that the drainage fraction varies as
α = exp(−λq t̂); for the uniform drainage case, we found that α varies with time following a universal
curve [Fig. 11(a)].

For the cases of a continuous flow rate, we have presented steady-state current profiles, as well as
the fluid loss through each drainage mechanism. In particular, for gravity-driven drainage, a simplified
ODE (32) and its boundary conditions were obtained to describe the variation of the steady-state

TABLE III. Summary of equations and solutions for uniform flow drainage.

Model Finite volume Constant flux

PDE or ODE ∂h

∂t
= �ρgk

φμ

∂

∂x

(
h ∂h

∂x

) − v0
φ

�ρgk

φμ

∂

∂x

(
h ∂h

∂x

) = v0
φ

initial condition h(x,0) = {h0, 0 � x � L

0, x > L
h(x,0) = 0 (0 � x � L)

boundary ∂h

∂x
(0,t) = 0 h ∂h

∂x
(0,t) = − qφμ

�ρgk

conditions h(L,t) = 0 h(L,t) = 0

solution ĥ(x̂,t̂)
ĥ(0,t̂)

= 1 − (
x̂

x̂f (t̂)

)2
ĥs(x̂) = {√

εq x̂2 − 2x̂ + 2 − εq , 0 � εq � 1
1√
εq

(1 − εq x̂), εq > 1

simplified ODE

d2ĥ2
s

dx̂2 = 2εq

ĥs
∂ĥs

∂x̂
|
x̂=0

= −1

ĥs(x̂f ) = 0

drainage fraction α Figs. 11(a) and 11(b) α = {1 − εq , 0 � εq � 1
0, εq > 1

comments ε = v0μL2

�ρgkh2
0

εq = v0L

φq
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profile along with different values of the drainage parameter λq ; the results for the drainage fraction
α and the amount of fluid remaining in the reservoir are shown in Fig. 9. For the uniform flow
drainage, an analytical solution (50) was obtained, depending on the value of εq . In addition, the
drainage fraction α was obtained analytically and α = 1 − εq if εq < 1 and α = 0 otherwise. A
summary of the equations and solutions included in this paper is listed in Tables II and III.

The investigation of the coupled drainage effects on a gravity current can provide useful
insights into the CO2 sequestration projects and other subsurface flows. As mentioned in Sec. III,
understanding the coupled effects can provide a better approximation for the fluid storage capability
under caprocks, as well as the time required for possible CO2 leakage. Although the permeability of
the caprock is typically very small, the relevant time scales are large and therefore the drainage effect
through the caprock may be significant, which can influence CO2 geological storage problems. The
results in this paper provide a model that may help better design CO2 sequestration procedures and
make better use of the natural reservoirs to ensure the success of long-term CO2 storage projects.
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APPENDIX: NUMERICAL SIMULATION

A cell-centered, forward-time, finite-difference scheme is chosen to solve the partial differential
equations. For each drainage parameter chosen, a convergence test is performed in order to ensure
that the maximum error in current height �ĥ(x̂,t̂)/ĥ(x̂,t̂) is within 0.5% of ĥ(x̂,t̂) when the number
of grid points is doubled or the numerical simulation time is doubled. A stability analysis for the
numerical simulations was not performed, but the time step �t was chosen such that no instability
was observed within the time interval of interest. The equations used as an approximation of the
terms in the nonlinear PDE (8a) are

ĥn+1
i =

(
J n

i+1/2 − J n
i−1/2

�x
− λ

)
�t + ĥn

i , (A1)

J n
i+1/2 =

(
ĥn

i+1 + ĥn
i

2

)(
ĥn

i+1 − ĥn
i

�x

)
, (A2)

where ĥn
i stands for the current height at the ith grid at time n�t and J n

i+1/2 represents the flux into
the ith grid at time n�t .

In the cases where the front of the current is not pinned at the edge for all time, grid refinement is
carried out. Take the retracting current in Sec. II B 1 as an example, the grids are originally defined
in a spatial region x̂ ∈ [0,1] as the finite volume of fluid is released. As the current length shrinks to
half of the domain size, the space is redefined in domain x̂ ∈ [0,1/2] with the same number of grid
points to ensure accuracy. This refinement is carried out five times before the current is completely
drained. A convergence test is performed for each refinement.
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