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A theoretical model describing the blood spatter pattern resulting from a blunt bullet
gunshot is proposed. The predictions are compared to experimental data acquired in the
present work. This hydrodynamic problem belongs to the class of the impact hydrodynamics
with the pressure impulse generating the blood flow. At the free surface, the latter is directed
outwards and accelerated toward the surrounding air. As a result, the Rayleigh-Taylor
instability of the flow of blood occurs, which is responsible for the formation of blood drops
of different sizes and initial velocities. Thus, the initial diameter, velocity, and acceleration
of the atomized blood drops can be determined. Then, the equations of motion are solved,
describing drop trajectories in air accounting for gravity, and air drag. Also considered are
the drop-drop interactions through air, which diminish air drag on the subsequent drops.
Accordingly, deposition of two-phase (blood-drop and air) jets on a vertical cardstock sheet
located between the shooter and the target (and perforated by the bullet) is predicted and
compared with experimental data. The experimental data were acquired with a porous
polyurethane foam sheet target impregnated with swine blood, and the blood drops were
collected on a vertical cardstock sheet which was perforated by the blunt bullet. The highly
porous target possesses a low hydraulic resistance and therefore resembles a pool of blood
shot by a blunt bullet normally to its free surface. The back spatter pattern was predicted
numerically and compared to the experimental data for the number of drops, their area, the
total stain area, and the final impact angle as functions of radial location from the bullet
hole in the cardstock sheet (the collection screen). Comparisons of the predicted results
with the experimental data revealed satisfactory agreement. The predictions also allow one
to find the impact Weber number on the collection screen, which is necessary to predict
stain shapes and sizes.
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I. INTRODUCTION

Bloodstain pattern analysis (BPA) is the physical inspection of bloodstain patterns [1] to provide a
criminal (or accident-related) investigation with answers to the following questions: (i) What physical
mechanisms could have caused the patterns? (ii) What were the positions (or trajectories) of the
persons and objects involved? (iii) When were the bloodstains produced? A blood spatter pattern
is a collection of bloodstains located on a solid surface produced by airborne drops [1], typically
occurring in blunt-force (beating) or gunshot cases. In relation to question (ii), blood spatters have
been interrogated to determine the relative position of the alleged criminals with respect to their
victims. However, BPA techniques available to crime scene investigators to reconstruct droplet
trajectories currently are not based on the latest knowledge of fluid dynamics [2]. For instance, some
BPA techniques neglect the contributions of air drag and gravity [2]. Those currently used techniques,
called the method of strings or the trigonometric method, assume that drops travel in straight lines.
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FIG. 1. (a) Schematic of experimental setup with the cardstock used for back spatter collection. The X axis
is directed from the reader and the coordinate trihedron is located on the floor under the center of the target
shot by the bullet. (b) Bullet shape.

In some situations, this assumption gives rise to large uncertainties [2,3] in the determination of the
region of origin of a blood spatter, and of the relative positions of the persons involved, as in the
famous trials of music producer Spector and physician Shepard [2]. Also, a sound physical theory
describing the fluid mechanics of the blood pattern formation is not yet available to BPA practitioners
[4]. Thus, a lot of the quantitative information from the crime scene such as the number of stains,
their spatial distribution, and their area are left out of current crime scene reconstruction. This
information should not be neglected because it could help to differentiate between spatter types, for
example, blood patterns produced in forward spatter and backward, or blunt-force versus shooting
spatters [5]. It is therefore imperative to develop hydrodynamic models of blood spatter [2], as for
example [4] where the formation of blood drops was attributed to the Rayleigh-Taylor instability.
That instability necessarily occurs when denser blood is accelerated towards lighter air [6], which is
the case when blood deforms following a bullet impact.

Once a cloud of blood drops is generated due to a gunshot, its behavior in a sense is reminiscent
of that of a sprinkler or diesel-engine jets studied previously in [7,8]. Such jets entrain significant
volumes of air. The resulting two-phase flow diminishes the aerodynamic drag of drops moving
behind the leading ones, similarly to the V formation of a flying flock of birds [9]. Then, the
prediction of drop trajectories in such jets makes use of the initial drop sizes and initial velocities
resulting from the Rayleigh-Taylor instability and proceeds, accounting for gravity and air drag
forces, with the latter being diminished by the drop-drop interaction through air mentioned above
[7]. It should be emphasized that few other studies account for gravity and air drag (albeit without
accounting for the drop-drop interaction) to predict blood spatter patterns [10–12], however, they do
not consider the physical mechanism of drop formation.

The recent theory of the back spatter of blood was developed specifically for slender bullets [4],
e.g., full metal jacket bullets. Here we propose the fluid mechanical theory of blood back spatter
from blunt bullets. This theory is compared with the experiments also conducted in this work. The
experiments are described in Sec. II, the theory is presented in Sec. III, results are discussed in
Sec. IV, and conclusions are drawn in Sec. V.

II. EXPERIMENT

Experiments with back spatter resulting from a blunt bullet impact were performed at the indoor
shooting range in Izaak Walton League Park in Ames, Iowa, USA. The experimental conditions are
presented in Fig. 1 and summarized in Table I.

A cardstock sheet (141.4 × 111.4 cm2) was used to collect the backward spattered drops and was
located vertically between the muzzle of the gun and the target (see Fig. 1). The bullet trajectory
was parallel to the ground at a height of 60 cm and after penetrating through the cardstock sheet
traveled 50 cm until the impact with the target, at which point blood spattered backward toward the
collecting sheet. A high-density fiberboard pierced with a hole twice the diameter of that bullet’s
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TABLE I. Experimental parameters.

Condition Type and specifications

Rifle Rock River Arms, LAR-15 16” barrel M-4,
.223 cal with Yanki YHM Phantom 223 suppressor.

Bullet Hollow point BEE .224 cal
(corresponding to a diameter of 5.7 mm, 45 grain).

Casing and .223 Remington:
explosive powder: BLC-2
loading powder weight: 26.5 grains

primer: Winchester Small Rifle Primer
case: once fired Federal & Winchester.

Target Polyurethane foam sheet (16 × 23 × 10.5 cm3),
wrapped around a cardboard piece and held with binder clips.

Fluid Swine blood with ACD anticoagulant, hematocrit of 41%,
drawn two days before the experiment,
blood heated to 37 ± 2 ◦C before being clipped in target position.

Room 44 ± 5% relative humidity
16.8 ± 1 ◦C room temperature

was placed between the gun and the cardstock, to minimize the interference of the muzzle gases (a
topic of future research) with the back spatter process, which can either modify the drop trajectories,
or dynamically deform the cardstock. Two experiments were performed under the same conditions.
Then the collecting sheet was removed and digitized with a 600-DPI scanner. The information on
stain location, number of drops, and area (which was acquired via pixel density), were all found
with a purpose-developed in-house program. The in-house program lumped the stain characteristics
into a set of bins corresponding to 11 concentric disk-shaped areas with the following upper radial
bounds in centimeters: 2, 4, 6, 9, 12, 18, 24, 30, 40, 60, and 90.

III. THEORY

A. Blood flow induced by a blunt bullet impact

The blunt (hollow point) bullet shown in Fig. 1(b) has a front edge which resembles a disk. The
impact duration τ ∼ 1 μs, and the impact velocity V0 ≈ 1000 m/s, is at least of the order of the
speed of sound in blood and is supersonic relative to air. Then, the impact pressure �p ∼ ρV0Cs

where Cs is the speed of sound in blood and ρ is its density. Essentially, this is the situation where
�p → ∞, τ → 0, and the impulse � = ∫ τ

0 �pdt = O(1), with t being time. Such situations are
characteristic of impact-driven fluid mechanics, where the flows are inevitably potential, with the
potential ϕ = −�/ρ [13–16]. Accordingly, the flow potential satisfies the axisymmetric Laplace
equation

∇2ϕ = 1

r

∂

∂r

(
r
∂ϕ

∂r

)
+ ∂2ϕ

∂z2
= 0, (1)

with r and z being the radial and axial coordinates, respectively. The z coordinate is reckoned along
the axis of symmetry of the bullet, is zero at the free surface, and is positive in the direction away
from the free surface into the liquid bulk.

The potential solution of Eq. (1) is finite at the z axis in the liquid bulk

r = 0 : ϕ < ∞. (2)
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At the free surface the boundary conditions read

z = 0 :
∂ϕ

∂z
= V0 at 0 < r < a, (3)

z = 0 : ϕ = 0 at a < r < ∞, (4)

where a is the radius of the blunt bullet edge.
In the far field within the liquid bulk the no-flow boundary condition is imposed,

z = ∞ :
∂ϕ

∂z
= 0. (5)

The problem (1)–(5) is singular because of the boundary conditions (2) and (4) (the axis of the
cylindrical coordinate system, and the radially infinite domain, respectively). Accordingly, being
solved using variable separation, it possesses a continuous spectrum ν, with the result being expressed
in the form of the following Fourier-Bessel integral:

ϕ =
∫ ∞

0
DνJ0(νr)e−νzdν, (6)

where Dν is a constant, i.e., it does not depend on either r or z.
Accordingly, the z component of flow velocity at the moment of impact is

vz = ∂ϕ

∂z
= −

∫ ∞

0
DννJ0(νr)e−νzdν. (7)

Accordingly, the boundary conditions (3) and (4) with the help of Eqs. (6) and (7) take the
following form:

−
∫ ∞

0
DννJ0(νr)dν = V0 for 0 < r < a, (8)

−
∫ ∞

0
DνJ0(νr)dν = 0 for a < r < ∞. (9)

Introducing ξ = r/a and η = νa, Eqs. (8) and (9) are transformed to the following form:∫ ∞

0
DνηJ0(ηξ )dη = −V0a

2 for 0 < ξ < 1, (10)

∫ ∞

0
DνJ0(ηξ )dη = 0 for 1 < ξ < ∞. (11)

It is easy to check that Eqs. (10) and (11) are satisfied with

Dν = 2

π
V0a

2

(
cos η

η
− sin η

η2

)
. (12)

Substituting Eq. (12) into Eq. (6), we arrive at the following expression for the flow potential at
the blunt bullet edge

ϕ|z=0 = 2

π
V0a

∫ ∞

0

(
cos η

η
− sin η

η2

)
J0(ηξ )dη for 0 < ξ < 1. (13)

The integrals in Eq. (13) can be evaluated, which yields

ϕ|z=0 = − 2

π
V0

√
a2 − r2 for 0 < r < a. (14)
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Also, Eqs. (6) and (12) yield the radial and axial velocity components at the free surface
1 < ξ < ∞,

vr |z=0 = ∂ϕ

∂r
= − 2

π
V0

∫ ∞

0

(
cos η − sin η

η

)
J1(ηξ )dη, (15)

vz|z=0 = ∂ϕ

∂z
= − 2

π
V0

∫ ∞

0

(
cos η − sin η

η

)
J0(ηξ )dη. (16)

Evaluating the integrals in Eqs. (15) and (16), one obtains

vr |z=0 = 0 for a < r < ∞, (17)

vz|z=0 = − 2

π
V0

[
a√

r2 − a2
− arcsin

(a

r

)]
for a < r < ∞. (18)

The latter equation can be found in [15]. Note also that vz|z=0 < 0, i.e., the flow at the free surface
is directed outward, toward air. The impulsive motions are established on the time scale τ = ca/V0

where c is a dimensionless factor. Accordingly, the acceleration of blood at the free liquid surface,
A, can be evaluated using Eq. (18) as

A(r) ≈ − 2

π

V 2
0

ca

[
a√

r2 − a2
− arcsin

(
a

r

)]
. (19)

The impact velocity that generates the impulsive motions V0 is less than the bullet approach
velocity Va , because the propagation of the sound wave within the liquid absorbs a part of the kinetic
energy of the bullet. Accordingly [16–18],

V0 = Va
1

1 + 4ρa3/(3m)
, (20)

where m is the bullet mass. For the bullet used in the experiments, the approach velocity is Va ≈
1000 m/s, while a = 0.285 cm, and m = 2.916 g, which results in V0 = 988.90 m/s.

B. Blood droplet size distribution and ejection due to the Rayleigh-Taylor instability

The surface of splashed blood accelerated toward air is subjected to the Rayleigh-Taylor instability
[7]. The fastest growing wavelength of such instability defines the characteristic drop size l∗, which
is understood as its diameter,

l∗(r) = 2π√
ρ|A(r)|/(3σ )

w, (21)

where σ is the surface tension of blood and w is a dimensionless factor. The factor w appears due
to the fact that Eq. (21) is an order of magnitude estimate. Due to the action of surface tension, the
launched blood droplets maintain a spherical shape and are assumed to carry that shape until impact.
Note that as r → ∞, the acceleration tends to zero, and thus, l∗ → ∞. A practically relevant cutoff
used in this work was rmax = 5a.

Equations (18) and (21) show that smaller, faster drops originate close to the impacting blunt
bullet while the larger and slower ones are formed further from it.

The continuous drop population can be dissected into subfamilies with masses Mi as

Mi = ρτ

∫ bi+1

bi

|vz|z=0|2πrdr, (22)
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where the limits correspond to a subfamily i, bi � r � bi+1. The integral of Eq. (22) can be evaluated
with Eq. (18) resulting in

Mi = 4ρca

{
a
[√

b2
i+1 − a2 −

√
b2

i − a2
] − 1

2

[
b2

i+1 arcsin

(
a

bi+1

)
− b2

i arcsin

(
a

bi

)

+ a

√
b2

i+1 − a2 − a

√
b2

i − a2

]}
. (23)

The dimensionless factor c corresponds to the fact that an order of magnitude of the impact time
τ is used.

The number of droplets in each subfamily can then be found as

ni = Mi

ρπl3
∗,i/6

. (24)

C. Blood droplet spray propagation

Calculation of the drop trajectories, using the coordinate frame defined in Fig. 1, is described in
detail in our previous work [4], and is briefly outlined here.

The continuous spectrum of droplets issued as a result of the Rayleigh-Taylor instability was
dissected into discrete groups (bins, denoted by numerals i). These bins were considered as
interpenetrating continua with air which was entrained into motion by viscous suction due to the
eddy viscosity. Individual blood droplets from bin i experience air drag expressed using the drag
coefficient correlation already used for the forensic applications in [2,4], namely,

CD,i = 0.28 + 6

Re0.5
i

+ 21

Rei

for the Reynolds number 0.1 � Rei � 4000. (25)

In a dense spray, like those in blood spatter, air entrainment is dominated by the fastest moving
droplets “leading” the spray (the two-phase jet), whereas the other droplets are moving in the
aerodynamic wake of the leading ones and experience either no aerodynamic drag, or a significantly
diminished drag, as was previously shown for sprinkler jets and diesel sprays [7,8] and implemented
in the predictions of backward spatter in [4]. The effect of the aerodynamic wake of the preceding
droplets can be so severe that the trailing droplets can be even accelerated due to it, as it was recently
shown in the analysis of high-speed video observations of backward spatter caused by gunshots [19].

In distinction from [4], only a normal impact of a bullet onto the target is considered, i.e., the
impact inclination angle δ = 0◦. Also, it is assumed that the radius of the impact of the disklike area
of a blunt bullet is much smaller than the distances travelled by the spatter drops. As in [4], a set
of discrete angular positions of the disk where drops are spattered is considered, which corresponds
to a set of discrete values of the polar angle � in the disk plane. The angular positions on the disk
begin from � = 0, which is the rightmost point of the disk, and increase with �� = π/12. Then,
� = π/2 corresponds to the topmost point of the disk, � = π corresponds to the leftmost point,
etc. Then, according to [4], the initial angle of inclination of drop trajectories, ψ , is given by

ψ = arcsin [sin (�θ ) sin (�)], (26)

where �θ is the angle of the spatter relative to the bullet axis. This angle is discussed in more detail
in Sec. IV.

The distances reached by drops in their plane of flight are denoted as Zϕ and, as in [4], they
correspond to the normal distance from the target Z given by the following expression:

Z = Zϕ

cos (�θ )√
cos2(�θ ) + sin2(�θ )cos2(�)

. (27)
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In the direction parallel to the target surface these droplets are deposited at points with the lateral
coordinate X given by

X = Z[tan (�θ) cos (�)]. (28)

In the case of drop deposition on a vertical sampling cardstock located at a known distance from
the target, the latter determines the value of Zϕ entering Eq. (27) (and thus Z), the lateral coordinate
of the stain is given by Eq. (28), and its final height on the cardstock is directly found from the
governing trajectory equations of [4].

IV. RESULTS AND DISCUSSION

The scanned images of the cardstock sheet, which was located vertically at a distance of 50 cm
from the target and perforated by a blunt bullet, were discretized radially from the penetration location
to the furthest drop into ten concentric disk-shaped areas of equal width. In each ring-shaped segment,
the number of stains was counted and summed to find the number of stains per segment. Also, the
average stain area and the total stain area per segment were found. These values were attributed
at the location of the mid radius of each segment. This procedure resulted in ten data points for
the number of drops, the average stain area, and the total stain area as the functions of the radial
coordinate from the blunt bullet penetration location on the vertical collector sheet.

It should be emphasized that the theory of Sec. III attributes formation of blood drops in back
spatter to the very first moment of the impact of the blunt edge of the bullet onto the target. Therefore,
the theoretical predictions are unaffected by the following disintegration of the bullet, which happens
in the experiments. To compare the theoretical data with the results of the experiment described in
Sec. II, several parameters must first be defined. The following values were used in the simulations:
the blunt bullet impact velocity V0 = 988.90 m/s (corresponding to a bullet approach velocity of
Va ≈ 1000 m/s), radius of the impact area of the blunt bullet (a disk), a = 0.285 cm, the spatter
spread angle, �θ = 15◦, the azimuthal discretization in the angular direction, �� = π/12, the
height of the impact, H0 = 56.0 cm, and the dimensionless factors were w = 0.112 and c = 786.6
(for a blunt bullet). In comparison, the latter two factors in [4] were taken as w = 0.9 and c = 0.001
(for a slender bullet). The drop size generated by a gunshot via the Rayleigh-Taylor instability should
be definitely affected by the bullet shape, which explains variation in the value of w [in the same
order of magnitude in Eq. (21)]. Also, it should be emphasized that the amount of blood splashed
by a blunt bullet is usually larger than that of a slender bullet. That is reflected by a different, much
larger, value of c used in the present work. Ultimately, the value of c is affected by the bullet shape,
as one of the factors, and the increased value used here reflects that fact.

The chosen value of �θ = 15◦ can be substantiated on the basis of several published experiments
and on our theoretical analysis. The x-ray measurements during impact of metallic projectiles in
water in [20] revealed a conical cavity trailing the projectile with 10◦ < �θ < 20◦, for diameters
and supersonic (by air) impact velocities comparable to that of our study. Interestingly, [20] reported
similar values of �θ for projectiles with various shapes, such as spheres, cylinders, with spherical
tips, and blunt cylinders. Similar values of 10◦ < �θ < 20◦ were reported in [21] for impacts of
spheres in water at both low and high Bond numbers. The authors of [22,23] used shadowgraphy to
estimate the pressure field in the fluid around the projectile.

A theoretical justification of the value of �θ in the present case of a blunt bullet atomization of
blood can be made as follows. According to Eq. (17) the radial velocity of splashed liquid is equal to
zero, and thus the initial ejection is expected to be strictly normal to the free surface. This is indeed
observed in the intact crownlike splashes resulting from drop impact onto a liquid surface (cf. Fig. 6 in
[24]). However, in the present case the ejected liquid is atomized practically from the very beginning,
which results in the suction of a significant mass of air, which inevitably happens at the periphery of
the spattered two-phase blob unaffected by any aerodynamic effects caused by a bullet (cf. Fig. 4 in
[19]). Accordingly, the ejected drop blob essentially forms an axisymmetric two-phase submerged
turbulent jet. This fact is accounted for in the present model following our previous work [4] in the
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calculation of the air mass entrained by the moving drop-air blob. It should be emphasized that due to
the air entrainment the drop-air blob widens to compensate for the decrease of its velocity due to the
action of the eddy viscosity and sustains the invariant value of the longitudinal momentum flux [25].
Accordingly, the asymptotic boundary of the two-phase jet associated with the one-tenth longitudinal
velocity u in comparison to the corresponding axial velocity value um is given by y0.1 = η0.1aT x,
where η0.1 is the value of the self-similar coordinate corresponding to the boundary and aT is the
semiempirical constant of the Prandtl mixing length theory (aT = 0.045 − 0.055) [25]. Since the
self-similar velocity profile in the jet cross-section is given by u/um = (1 + η2/8)−2, the value of
η0.1 is found as η0.1 = [8(

√
10 − 1)]1/2 = 4.16. Then, tan �θ = dy0.1/dx = η0.1aT = 0.229 (with

the value aT = 0.055 being used). Accordingly, �θ = 13◦, which is close to the value of �θ = 15◦
used in the calculations.

Note that in [16,21] theoretical models for the evolution of the splash curtain formed at high
Weber number are presented, still in the velocity range well below that of a gunshot. Also, the work
[26] explains theoretically that the cavity shape is identical for various projectile shapes, provided
that the ratio of their cross-section times drag coefficient over their mass would be the same, which
was verified in [27].

Note also that the case of a backspatter caused by a conical bullet [4] belongs to the class of
the entry (Wagner) problems where a wedgelike or an axisymmetric body penetration into liquid is
accompanied by a splashed liquid jet rising over the body generatrix and forming a thin sheet prone
to atomization. The entry problems, which are essentially different from the instantaneous impact
problem we are dealing with here, were studied in detail in the following works and references
therein [15–18,28–30]. Recently, it was shown experimentally that the splashed liquid jet rising over
the body generatrix as a consequence of the body entry is displaced from the body surface due to
the air gulping, which can further affect the liquid atomization process in such situations [31]. In
typical BPA cases, muzzle gases can also deflect the ejected blood drops, as the experimental data
discussed in [19] revealed. In particular, the effect of the muzzle gases and the underlying bones
could cause �θ ≈ 90◦, as in [32]. In the present study however, the influence of the muzzle gases
has been made negligible by design of the experimental setup.

The experimental data in Fig. 2 reveal a significant difference in the total number of droplets
between the two sets of experimental data. The reasons for the differences are not clear to us at the
present time. The experimental trends, however, are similar, and the theoretical predictions closely
follow the data of the experiment T13. The results reveal a steep rise in the number of drops which
peak for a characteristic maximum around a distance of about 15–20 cm from the location where
the cardstock was penetrated by the bullet followed by a gradual decrease in the number of drops
deposited further on.

It is important to note that the experiments in Fig. 2 show a maximum spatial concentration of
stains at ∼20 cm from the bullet hole. Considering the distance of 50 cm between the substrate and
the cardstock sheet, this corresponds to a spatter spread angle �θ = tan−1(20/50) = 21◦, close to
�θ = 15◦, the value used in the calculations.

In a normal drop impact the stain is larger than the original drop size by the spread factor ξ

[33–35],

ξ = 0.61

(
Wef

Ohf

)0.166

, (29)

where Wef and Ohf are the final (impact) Weber and Ohnesorge numbers, respectively,

Wef = ρl∗iu
2
i,f

σ
, Ohf =

√
Wef

Rei,f

(30)

(note that the latter expressions involve two physical parameters of blood: its density ρ = 1.06 g/cm3,
and its surface tension σ = 60.45 g/s2 [36]). The subscript i in Eqs. (30) indicates each drop
subfamily (cluster) in the simulations, f stands for final, and Rei,f is the final Reynolds number for
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FIG. 2. Predicted and measured number of drops in back spatter at different radial locations relative
to the bullet path at a vertical cardstock collector at 50 cm before the target. Red circles show the
theoretical prediction, blue triangles show the data of experiment T13, and green diamonds show the data of
experiment T14.

each cluster. Since in the present case of back spatter drop impact on a vertical cardstock sheet the
impacts are not normal and therefore the spread factor alone cannot account for the arising stain
area, a relation with the impact angle must be found. Using the approach employed for crime scene
reconstruction [37], the relation between the longest size of drop stain, L, resulting from an oblique
impact, and the stain size after normal impact, ξ�∗ [cf. Eqs. (21) and (28)] can be taken as

L = ξ
l∗

sin α
(31)

with the angle α shown in Fig. 3. Accordingly, the effective stain area is evaluated as

A = πl2
∗ξ

2

4 sin α
. (32)

FIG. 3. Stain formation in oblique drop impact onto a vertical surface.
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FIG. 4. Comparison of the predicted and measured average stain area on the vertical collector located at
50 cm before the target. Red circles depict the theoretical prediction, blue triangles correspond to the experiment
T13, and green diamonds to the experiment T14.

The predicted average stain area on the vertical collector located at 50 cm before the target
is compared in Fig. 4 to the measured one and the agreement is quite satisfactory. The values
of l∗ in Eq. (32) calculated using Eq. (21) for five clusters are shown in Table II. It should be
emphasized that the pore size in the target sponge is of the order 0.1 cm, i.e., is an order of
magnitude larger than the drop size l∗ determined by the Rayleigh-Taylor instability (cf. Table II).
This means that the pores hardly impose a significant hydraulic resistance. Nevertheless, due to
a relatively high surface tension of blood (σ = 60.45 g/s2), individual blood jets issued from the
pores will immediately merge and form an intact layer, as observed in the experiments with high
surface tension liquids in [38]. In distinction from [38], this intact liquid layer is subjected to
tremendously high acceleration toward air and thus is prone to the Rayleigh-Taylor instability which
sets an ultimate drop size. Note also that when a target sponge is covered by tape or silicone (not
the case in the present work), the blood spatter can be affected causing an uneven distribution of
drops [19].

Figure 4 reveals that, on average, in back spatter, smaller drops land on the vertical collector
closer to the penetration location of the blunt bullet than the larger ones. It should be emphasized
that the largest drops land at the furthest locations. The number of drops times their average stain
area at a certain location yield the total stain area for their respective radial locations, which is
illustrated in Fig. 5.

TABLE II. Characteristic drop cluster sizes calculated using Eq. (21).

Cluster l∗ (mm)

1 0.1932
2 0.2242
3 0.2566
4 0.2903
5 0.3254
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FIG. 5. Comparison of the predicted and measured total stain area on the vertical collector located at 50 cm
before the target. Red circles depict the theoretical predictions, blue triangles correspond to the experiment
T13, and green diamonds to the experiment T14.

The experimental data sets fall on top of one another in Fig. 5 because T13 has a lower total
number of droplets yet a larger average stain area, and vice versa for T14. It is interesting to note the
plateau in the R = 35 − 50-cm range. This plateau is also seen in the theoretical predictions, albeit
to a lesser extent. The numerical predictions also allow one to find the final impact angle and the

FIG. 6. Predicted impact angle lumped over consecutive rings on the vertical collector screen located at
50 cm before the target. The angle is reckoned from the vertical collector screen direction. Red circles depict
the theoretical predictions, blue triangles correspond to experiment T13, and green diamonds to the experiment
T14. Note that the main discrepancy between theoretical and experimental data is for results close to the bullet
hole.
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FIG. 7. Dependence of the average final Weber number as a function of the radial coordinate predicted
numerically.

impact Weber number on the collection screen. This can be done with the same radial discretization
as in Figs. 2, 4, and 5.

The impact angle α relative to the vertical collector screen depicted in Figs. 6 reveal that the
larger drop impacts such a collector more tangentially than the smaller ones and at a further radial
distance from the bullet path. Note that the main discrepancy between theoretical and experimental
data is for the locations close to the bullet hole. This may be due to the experimental data collection
process where tears of cardstock at the periphery of the bullet hole are interpreted as stains. The final
Weber number, averaged over each ring-shaped segment, is shown in Fig. 7.

V. CONCLUSION

A theoretical model is proposed for predicting bloodstain patterns from back spatter resulting
from a blunt bullet. The model attributes the back spatter to the Rayleigh-Taylor instability of the free
surface of blood, and thus extends the previously proposed model for the back spatter due to slender
bullets. The drop flight through air from the target to the deposition surface (in the present case a
vertical sheet of cardstock located between the shooter and the target) is predicted accounting for
gravity and air drag. The latter incorporated the collective effect associated with the drag reduction
on the drops following the previous drops in their aerodynamic wake. The predicted and measured
number of drops, the average stain area, and the total stain area as functions of the radial distance
from the penetration point on the deposition surface are found to be in a fairly good agreement.
Future work will consider the additional complexity of the interaction of the muzzle gases with the
atomization and spattering processes, and also assess the practical implications of these experiments
and theoretical predictions for the criminal justice system.
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