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The steady radial stretching of a disk beneath a rigidly rotating flow with constant angular
velocity is considered. The steady base flow is determined numerically for both a stretching
and a shrinking disk. The convective instability properties of the flow are examined using
temporal stability analysis of the governing Rayleigh equation, and typically for small
to moderate radial wave numbers, the range of azimuthal wave numbers β, over which
the flow is unstable increases for both a stretched and a shrinking disk, compared to the
unstretched case. The inviscid absolute instability properties of the resulting base flows are
also examined using spatiotemporal stability analysis. For suitably large stretching rates,
the flow is absolutely unstable in only a small range of positive β. For small stretching
rates there exists a second region of absolute instability for a range of negative β values. In
this region the “effective” two-dimensional base flow, comprised of a linear combination
of the radial and azimuthal velocity profiles that enter the Rayleigh equation calculation,
has a critical point (unlike for β > 0) that can dominate the absolute instability growth
rate contribution compared to the shear layer component. A similar behavior is found to
occur for a radially shrinking disk, except these profiles have a strong shear layer structure
and hence are more unstable than the stretching disk profiles. We thus find for a suitably
large shrinking rate the absolute instability contribution from the critical point becomes
subdominant to the shear layer contribution.

DOI: 10.1103/PhysRevFluids.2.073904

I. INTRODUCTION

There have been many theoretical, numerical, and experimental studies that have examined the
flow of a rotating fluid above an infinite disk. The first theoretical investigation of this flow setup was
due to Bödewadt [1]. Bödewadt calculated the steady boundary layer flow over an infinite stationary
disk in the form of a similarity solution such that the flow is an exact solution of the Navier-Stokes
equations. The steady flow itself is characterized by a radial pressure gradient that balances the
centrifugal forces. This leads to a flow where fluid is pulled radially inward from infinity at the
surface of the disk and ejected upward as it travels toward the center of the disk. This type of flow
exemplifies a crossflow instability in a canonical example. This flow is relevant to industrial devices
such as rotor-stator systems [2] and cavity elements of turbine engines [3]. The Bödewadt flow is
not the only exact solution to the Navier-Stokes equations for rotating fluid flows that has received
much attention. von Kármán [4] examined the steady flow produced by a rotating disk of infinite
extent below a stationary fluid, while Ekman [5] examined a related flow where the disk and the
outer flow are both rotating with almost equal angular velocities.

The content of this paper focuses on the Bödewadt flow, except with the added feature that the
infinite disk is able to stretch, and we examine how the stability of the boundary layer is modified
by stretching the disk beneath the rigidly rotating flow. We document the steady base flow shear
stresses and velocity profiles as a function of the stretching (or shrinking) rate and investigate the
convective instability (CI) and absolute instability (AI) properties of the resulting flows in the limit
of large Reynolds number, where the Reynolds number is defined using the angular velocity of the
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rotating flow. Hence we investigate how disk stretching or shrinking can control instability growth
in the boundary layer and thus control the transition to turbulence.

Savaş [6,7] examined the stability of Bödewadt flow by conducting experiments on the spin-down
flow of a cylindrical cavity. Savaş suggests that until secondary instabilities start to grow, this
experimental setup is a suitable means to study the stability of Bödewadt flow. It was found that both
stationary spiral modes (often referred to as type I instability) and unsteady circular instability modes
appear. The circular modes propagate towards the center of the disk before dying out. Lopez and
Weidman [8] confirmed the experimental results of Savaş [6,7] via direct axisymmetric numerical
simulations and further experiments. By artificially allowing the sidewall of the cylinder to continue
rotating even after the end walls stopped in their simulations, Lopez and Weidman found that the
presence of the inwardly propagating circular modes could persist for longer times compared to
when the sidewalls were stopped with the end walls. From this they concluded that the circular
instability mode generation could persist indefinitely in the Bödewadt problem. The experimental
results have also been confirmed via theoretical studies [9,10]. The inwardly propagating circular
waves observed in the above experiments are of particular interest because, for the von Kármán
boundary layer, Lingwood [11] discovered an AI consisting of a coalescence of an inviscidly
unstable spiral mode and an inwardly propagating spatially decaying mode, similar to the circular
modes described above. Based on this finding, Lingwood [12] conducted a linear stability analysis
of the Bödewadt, Ekman, and von Kármán boundary layer flows, investigating the AI properties of
each flow. A flow is absolutely unstable if when impulsively forced the response to the transient
disturbance grows in time at the location where the forcing is applied. If the disturbance grows in
time along a characteristic with nonzero speed but decays at the point at which it was forced, then
the flow is convectively unstable [13]. Following the work of Briggs [14], the AI characteristics of
a flow can be determined via a spatiotemporal stability analysis in which both the wave number and
frequency of the flow are allowed to become complex. This is in contrast with a temporal or spatial
analysis where only the frequency or wave number, respectively, is allowed to become complex [15].
The AI growth rate is calculated by searching for special saddle points in the complex wave-number
plane, through which the inverse Fourier transform contour can pass. For each of the three above
cited flows, Lingwood [12] calculated neutral stability contours, at finite Reynolds numbers, for the
AI of the flows by transforming the governing linear partial differential equations into six first-order
ordinary differential equations. Using a parallel flow assumption Lingwood also conducted inviscid
AI calculations and found that the Bödewadt flow in particular was absolutely unstable for a range
of both positive and negative azimuthal wave numbers of the instantaneous forcing.

In the present study we reexamine the inviscid CI and AI properties of the Bödewadt flow as well
as for the new flows that incorporate a stretching or shrinking disk. In particular for the Bödewadt
flow problem, we consider the AI of perturbations with azimuthal wave numbers β < −0.3 that are
not present in [12]. Here we find that the growth rate of the AI reduces from its β > 0 maximum
value, but for β � −0.3 the growth rate becomes dominated by an additional saddle point that
produces a secondary maximum in the growth rate curve. It is shown that this additional saddle
point has an “effective” two-dimensional velocity profile containing a critical point away from the
surface of the disk. At this azimuthal wave number, the contribution to the AI from this critical point
is larger than that of the shear layer interaction with the disk surface and hence its growth rate is
larger. The same significant contribution from critical points on flow stability was shown for the von
Kármán flow by Healey [16] in the long-wave-number limit. In the current work it is also shown that
stretching the disk beneath the rotating flow tends to reduce the effect (both maximum growth rate
and existence range of azimuthal wave numbers) of the AI, while shrinking the disk enhances the AI.

The present paper is laid out as follows. In Sec. II we derive the steady base flow equations as well
as the governing ordinary differential equations for the inviscid linear stability analysis in the parallel
flow limit. In Sec. III we present numerical solutions to the base flow equations and examine the
asymptotic behavior in a region far from the surface of the disk. Convective and absolute instability
results for the base flow profiles are given in Sec. IV with a discussion and concluding remarks given
in Sec. V.
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FIG. 1. Schematic diagram of the radially stretching disk below a rotating fluid.

II. FORMULATION

The problem we consider is a disk radially stretching at constant strain rate a in the dimensional
(x̂,ŷ) plane, below a rigidly rotating fluid, which in the large-ẑ far field is rotating steadily with
constant angular velocity �. A schematic diagram of the physical setup is given in Fig. 1. The flow is
governed in the inertial nonrotating reference frame by the incompressible Navier-Stokes equations

∂û
∂t̂

+ û · ∇û = − 1

ρ
∇p̂ + ν∇2û, ∇ · û = 0,

where û is the dimensional fluid velocity, ρ is the fluid density, and ν is the kinematic viscosity.
We use cylindrical polar coordinates (r̂ ,θ,ẑ) to formulate the problem with corresponding velocity
components û = (û,v̂,ŵ). The boundary condition on the surface of the disk located at z = 0,
oriented in the (x,y) plane, is û = (ar̂,0,0) and in the far field ẑ → ∞, û → (0,�r̂,ŵ∞), where ŵ∞
is not prescribed but is found as part of the solution. The form of this boundary condition suggests
seeking a solution for the base flow that is axisymmetric.

We nondimensionalize the problem by introducing the common scales
√

ν/� for lengths,
√

ν�

for velocities, 1/� for time, and ρν� for pressure. Thus the dimensionless incompressible Navier-
Stokes equations in the inertial reference frame are

ut + uur + vuθ

r
+ wuz − v2

r
= −pr + urr + ur

r
+ uθθ

r2
+ uzz − u

r2
− 2vθ

r2
, (2.1a)

vt + uvr + vvθ

r
+ wvz + uv

r
= −pθ

r
+ vrr + vr

r
+ vθθ

r2
+ vzz − v

r2
+ 2uθ

r2
, (2.1b)

wt + uwr + vwθ

r
+ wwz = −pz + wrr + wr

r
+ wθθ

r2
+ wzz, (2.1c)

ur + u

r
+ vθ

r
+ wz = 0, (2.1d)

where (u,v,w) are the dimensionless velocity components, p is the dimensionless pressure, and
(r,θ,z) are the dimensionless cylindrical polar coordinates. The subscripts in (2.1) denote partial
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derivatives. In these nondimensional variables the disk boundary conditions are

u(r,θ,0) = σr, v(r,θ,0) = 0, w(r,θ,0) = 0 (2.2a)

and the far-field conditions are

u(r,θ,∞) = 0, v(r,θ,∞) = r, w(r,θ,∞) = w∞, (2.2b)

where w∞ is to be determined. The parameter σ = a/� defines a one-parameter family of possible
solutions.

A. Base flow

The flow can be separated into an axisymmetric steady base flow and a more general unsteady
part whose amplitude is characterized by a small parameter δ � 1. Thus inserting

u = rf ′(z) + δū(r,θ,z,t), (2.3a)

v = rg(z) + δv̄(r,θ,z,t), (2.3b)

w = −2f (z) + δw̄(r,θ,z,t), (2.3c)

p = P (r,z) + δp̄(r,θ,z,t) (2.3d)

into (2.1) and (2.2) and equating terms at O(1) leads to the coupled pair of nonlinear ordinary
differential equations

f ′′′ + 2ff ′′ − f ′2 + g2 − 1 = 0, (2.4a)

g′′ + 2(fg′ − f ′g) = 0 (2.4b)

to be solved together with the boundary conditions

f (0) = 0, f ′(0) = σ, f ′(∞) = 0, (2.5a)

g(0) = 0, g(∞) = 1. (2.5b)

In (2.3c) the form of the base flow −2f (z), is found by the need to satisfy (2.1d) and the primes
in (2.4) denote ordinary derivatives with respect to z. In deriving the above system of ordinary
differential equations it is also possible to compute the base pressure field

p(r,z) = p0 + 2σ 2 + 1
2 r2 − 2(f ′ + f 2), (2.6)

where p0 is the constant pressure at (r,z) = (0,0). The governing ordinary differential equations
(2.4) and the pressure field (2.6) can be shown to agree with (3.11)–(3.16) of [12] when the Rossby
number Ro ≡ 1. Note from (2.3c) that w∞ = −2f (∞).

The radial and azimuthal dimensional shear stresses on the disk surface are given by

τr = ρν�rf ′′(0), τθ = ρν�rg′(0).

Numerical results for the base flow equations are investigated in Sec. III.

B. Linearized disturbance equations

Substituting (2.3) into (2.1) and equating terms of O(δ) furnishes the linearized disturbance
equations

Dū + rf ′′w̄ + f ′ū − 2gv̄ = −p̄r + Lū − ū

r2
− 2v̄θ

r2
, (2.7a)

Dv̄ + rg′w̄ + f ′v̄ + 2gū = − p̄θ

r
+ Lv̄ − v̄

r2
+ 2ūθ

r2
, (2.7b)
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Dw̄ − 2f ′w̄ = −p̄z + Lw̄, (2.7c)

ūr + ū

r
+ v̄θ

r
+ w̄z = 0, (2.7d)

where

D ≡ ∂

∂t
− rf ′′ ∂

∂r
+ g

∂

∂θ
− 2f

∂

∂z
, L ≡ 1

r

∂

∂r

(
r

∂

∂r

)
+ 1

r2

∂2

∂θ2
+ ∂2

∂z2
.

These linear partial differential equations have coefficients that depend upon r and z but not on θ or t

and therefore we can take Fourier and Laplace transforms respectively. However, since the resulting
disturbance equations remain as partial differential equations in r and z, they can only be reduced to
ordinary differential equations at leading order by considering a point on the disk far from the flow
axis of rotation where the boundary layer profile is assumed to be approximately parallel. For the
stability analysis presented in this paper we will work in this limiting regime.

If we let R̂ be the dimensional radial position at which we perform a stability analysis of the flow
on the disk, then we can introduce the Reynolds number Re such that

Re = R̂

√
�

ν
.

We next introduce a new scaled radial coordinate r̃ given by

r = r̃ Re,

where we assume Re 	 1, to be far from the flow axis of rotation, and r̃ = O(1) in this region. In
this region we neglect the weak nonparallel effects of the boundary layer on the disk and hypothesize
that the disturbance quantities assume the waveform given by

ū(r̃ ,θ,z,t) = u(z) exp[i Re(αr̃ + β̄θ − ωt)], (2.8a)

v̄(r̃ ,θ,z,t) = v(z) exp[i Re(αr̃ + β̄θ − ωt)], (2.8b)

w̄(r̃ ,θ,z,t) = w(z) exp[i Re(αr̃ + β̄θ − ωt)], (2.8c)

p̄(r̃ ,θ,z,t) = Rep(z) exp[i Re(αr̃ + β̄θ − ωt)]. (2.8d)

Here α and β̄ are O(1) scaled radial and azimuthal wave numbers, respectively, ω is the scaled angular
frequency, and we have recycled the notation (u,v,w,p) with the understanding that henceforth these
refer only to the perturbation quantities. The presence of the Reynolds number in the exponential
terms indicates that the resulting waves are short compared to the distance to the axis of rotation for
the flow field. Thus this is the basis for the WKB approximation in (2.8).

Substituting (2.8) into the linearized disturbance equations (2.7) and taking the limit as Re → ∞
leads to four ordinary differential equations for (u,v,w,p), which, on eliminating (u,v,p), reduce to
the Rayleigh equation

(Q − ω)(w′′ − γ 2w) − Q′′w = 0, (2.9a)

where

Q(z) = αf ′(z) + βg(z), γ 2 = α2 + β2, (2.9b)

β = β̄/r̃ , and the primes denote derivatives with respect to z. Note that Reβ̄ is an integer, but as we are
working in the large-Re limit we can consider β to be a real variable. While the disturbance equation
does not depend explicitly on r through the Reynolds number, there is still a radial dependence on
the solutions through the quantity β. The wave number α and/or the frequency ω are allowed to
become complex in order to satisfy the homogeneous boundary conditions

w(0) = 0, w(∞) = 0. (2.10)
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FIG. 2. Plot of the numerical shear stresses (a) f ′′(0) and (b) g′(0) as a function of σ given by the solid
lines and the three-term asymptotic expansions (3.1) and (3.2) given by the dashed lines.

Hence we perform both a temporal and spatiotemporal stability analysis of (2.9) in Sec. IV,
calculating α and ω such that (2.10) is satisfied.

III. NUMERICAL SOLUTIONS FOR THE BASE FLOW

In this section we present numerical results for the solution to the one-parameter system given
by (2.4) and (2.5). The system is solved using a fourth-order Runge-Kutta shooting method with
Newton iterations at z = zmax to update the values of f ′′(0) and g′(0) such that the far-field boundary
conditions are satisfied (see [17]). The integration domain z ∈ [0,zmax] and the integration step size
are varied to ensure that the results presented here are independent of these parameters. We find that
zmax = 20 is large enough to correctly capture the far-field boundary conditions. The resulting values
of f ′′(0) and g′(0) as a function of σ are shown in Fig. 2. The radial shear stress f ′′(0) is always
negative, while the azimuthal shear stress g′(0) is always positive for both stretching (σ > 0) and
shrinking (σ < 0) disks. However, both shear stresses exhibit extrema at σ ≈ 0, which corresponds
to the Bödewadt problem. The |σ | 	 1 asymptotic forms of the shear stresses are given by

f ′′(0) = σ 3/2[F0ZZ(0) + σ−2F2ZZ(0) + σ−4F4ZZ(0)] + O(σ−9/2), (3.1a)

g′(0) = σ 1/2[G0Z(0) + σ−2G2Z(0) + σ−4G4Z(0)] + O(σ−11/2) (3.1b)

for σ > 0 and

f ′′(0) = |σ |3/2[F̃0ZZ(0) + |σ |−1F̃2ZZ(0) + |σ |−2F̃4ZZ(0)] + O(|σ |−3/2), (3.2a)

g′(0) = |σ |3/2[G̃0Z(0) + |σ |−1G̃2Z(0) + |σ |−2G̃4Z(0)] + O(|σ |−3/2) (3.2b)

for σ < 0 and are plotted as the dashed lines in Fig. 2. The values of the coefficients are given along
with the asymptotic analysis in Appendix A.

The corresponding radial and azimuthal velocity profiles f ′(z) and g(z) are plotted in Fig. 3
for integer values of σ between −4 and 4. For σ > 0, g(z) has a simple boundary layer structure,
increasing from zero at the disk to its far-field value g = 1. There are in fact small oscillations about
g = 1 as z → ∞, but these are not visible in the figure (see Sec. III). The radial velocity f ′(z)
behaves similarly, decreasing in magnitude from its value at the disk, σ , to f ′ = 0 as z → ∞. These
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FIG. 3. Plot of the velocity profiles (a) f ′(z) and (b) g(z) for integer values of σ between −4 and 4.

profiles are similar to those presented in [18], which studied the Bödewadt problem with an imposed
Navier slip condition at the wall, where the velocity at the wall is given as a multiple of the shear
value at the wall and thus is found as part of the solution procedure.

For σ � 0, on the other hand, g(z) exhibits a strong wall jet structure in the boundary layer,
the magnitude of which increases as σ decreases, while f ′(z) now includes a region of reverse
flow at the disk. In both cases the oscillations as z → ∞ are now obvious. In order to accurately
capture these oscillations at infinity, it is necessary to compute results to a high degree of precision.
For −5 � σ � 1 we find that quadruple precision is required to accurately integrate out to z = 20.
Outside this region double precision is sufficient to produce the required accuracy. Due to the reverse
flow at the surface of the disk, we expect the results for σ � 0 to be more unstable (both convectively
and absolutely) than those for σ > 0. However, the actual stability properties depend on the form
of the effective two-dimensional profile Q(z) in (2.9b), thus determining the stability properties is
difficult without first knowing the form of Q(z). Before performing the stability analysis, we first
highlight the large-z behavior of the base flow, which highlights the difficulty in solving the base
flow, but also allows for an alternative means for calculating the base flow, integrating from z = ∞
to the disk.

Oscillatory behavior at large z

It is possible to determine the asymptotic behavior of the velocity profile at large z by writing

g(z) = 1 + δg̃(z), f (z) = f∞ + δf̃ (z), (3.3)

where δ is a small parameter and f∞ = f (∞). Substituting these expressions into (2.4) and retaining
only terms at O(δ) leads to the pair of equations

f̃ ′′′ + 2f∞f̃ ′′ + 2g̃ = 0, (3.4a)

g̃′′ + 2f∞g̃′ − 2f̃ ′ = 0. (3.4b)

Substituting (3.4b) into (3.4a) and simplifying leads to the fourth-order ordinary differential
equation for g̃(z),

g̃(iv) + 4f∞g̃′′′ + 4f 2
∞g̃′′ + 4g̃ = 0. (3.5)
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FIG. 4. Plot of the constant f∞ = f (∞) from the numerical solution as a function of σ . The dashed lines
represent the large |σ | asymptotic results from Appendix A.

Solving this equation and retaining only those terms that tend to zero as z → ∞ gives

g̃(z) = eλrz(A cos λiz + B sin λiz), (3.6a)

where A and B are constants that are in principle determined by the boundary conditions at the disk
and

λr = −f∞ − 1

2

√
2f 2∞ + 2

√
f 4∞ + 4, λi = 2√

2f 2∞ + 2
√

f 4∞ + 4
. (3.6b)

It is clear from the form of λr < 0 and λi > 0 that the constant f∞ is important in determining the
large-z behavior and is plotted in Fig. 4.

The exponential form of the solution in (3.6a) and the quadratic nonlinearities that appear in (2.4)
suggest that the large-z form can be approximated by expanding in powers of exp(λrz), essentially
δ = 1 in (3.3), and exp(λrz) becomes the small component of the expansion. The first few terms in
the expansion for g(z) are

g(z) ∼ 1 + eλrz(A cos λiz + B sin λiz) + e2λr z(α + β cos λiz + γ sin λiz), (3.7)

where the forms of α, β, and γ are given in Appendix B. The corresponding form of f (z) can be
found using (3.4b), but as it is not required for the subsequent analysis, we do not express its full
form here.

The undetermined constants A and B in (3.7) are found from the numerical solution by matching
the position of the stationary points, zm of g̃, and the value of the function g̃m = g̃(zm) at these
points. This furnishes a pair of equations at each stationary point that can be solved to give

A = g̃me−λr zm

λi

(λi cos λizm + λr sin λizm), B = g̃me−λr zm

λi

(λi sin λizm − λr cos λizm). (3.8)

Performing this calculation at each stationary point, we find that the values of A and B converge as
the value of zm increases, at least to four or five significant figures, which we find to be sufficient for
graphical accuracy. The large-z form of g(z) (3.7) is plotted together with the numerical solution for
σ = {5,0, − 5} in Fig. 5. The values of A and B for these results are given in Table I. We have found
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FIG. 5. Plot of the azimuthal velocity g(z) − 1 for (a) σ = 5, (b) σ = 0, and (c) σ = −5. In each panel
the numerical solution is given by the solid line and the two-term and three-term asymptotic results from (3.7),
which are given by the dashed line and dotted line, respectively. (d) Plot of ln |g(z) − 1| to better show the
agreement between the numeric and asymptotic solution for σ = 0. Here only the three-term asymptotic result
is plotted.

TABLE I. Table of values of A and B from
(3.6) used in Fig. 5.

σ A B

−5 346.0600 1377.75896
0 −1.04752 0.23777
5 −0.41458 −6.28651
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in our study that correctly determining these far-field oscillations is important when undertaking the
stability analysis, in the subsequent section.

IV. STABILITY PROPERTIES OF BASE FLOW PROFILES

A. Convective instability

To investigate the effect of the stretching disk on the CI properties of the flow, we consider
a temporal stability analysis of (2.9) for the real values of the radial wave number α = 0.2, 0.4,
and 0.8. The values of α = 0.2 and 0.4 are in the parameter region where the Bödewadt flow is
highly convectively unstable, while α = 0.8 lies at the edge of the instability region. The stability
properties are found by solving the dispersion relation �(α,ω; β,σ ) = 0, where �(α,ω; β,σ ) =
w(∞; α,ω; β,σ ) is found by solving (2.9) for a given base velocity profile Q(z) ensuring the
boundary condition (2.10) at z = ∞ is satisfied. This quantity equals zero when the correct value of
ω is chosen for a given α. The dispersion relation is solved using the same shooting process as used
for the base flow. In this section we investigate how the range of azimuthal wave numbers β over
which the flow is unstable [Im(ω) = ωi > 0] varies with σ . In a CI analysis we are interested in the
growth of individual waves, not their interaction with each other.

In Figs. 6(a) and 6(b) we plot the growth rate ωi for the CI with α = 0.2 for σ � 0 and σ � 0,
respectively. The results show for this wave number that, as expected, due to the increased amount
of reverse flow at the surface of the disk for σ � 0 (see Fig. 3), the growth rate is larger than the
σ = 0 result. In fact, as Fig. 7(a) shows, for σ � 0 the amount of shear in the base flow Q(z) [here
we plot Q(z)/α = f ′(z) + β

α
g(z)] is greater than the Bödewadt flow for all values of β/α plotted,

while the converse is true for the stretched disk σ > 0.
As for the range of β values exhibiting a CI, we first observe that the stability results consist

of multiple unstable modes, two of which exchange their dominance in the flow at β = 0.385 for
σ = 0, which is seen by the discontinuity in gradient of ωi in Fig. 6(a). In Fig. 7(b) we plot |w| for
each of these modes at α = β = 0.2 for σ = 0. Here the dominant mode has a mode shape with
maximum value close to the disk at z = 2.8835. When we compare this with the solid line for the
α/β = 1 result in Fig. 7(a) we observe this maximum occurring at the edge of the lower shear layer
in Q(z). The subdominant mode in Fig. 7(b) has its maximum at z = 6.3985, which corresponds to
the edge of the second shear layer of Q(z). Therefore, we note that both shear layers are contributing
to the stability of the flow, with the lower shear layer contribution dominating over the majority of
the instability region and the upper shear layer dominating for larger β values.

So for σ < 0 the range of β values for the existence of the CI increases from the Bödewadt result,
albeit after an initial decrease in size for 0 > σ � −0.5, and the value of β at which the maximum
growth rate occurs also decreases. For σ > 0 in Fig. 6(a) the maximum value of the growth rate
moves to larger values of β but interestingly, the maximum value of ωi decreases from σ = 0 to
σ = 1 and then increases at σ = 2. The overall range of β values for which there is an instability
increases as σ is increased, but note that ωi for β < 0 reduces to small values by σ = 2; thus
observing these modes at this parameter value in a set of spin-down experiments similar to those of
Savaş [6,7] would be difficult.

For α = 0.5 in Figs. 6(c) and 6(d) a similar behavior is observed as for the α = 0.2 case. Here the
range of β values over which an instability exists increases for both σ > 0 and σ < 0 compared to
the Bödewadt result. The significant difference at this wave number is the rate at which the maximum
value of ωi increases for σ < 0 and decreases for σ > 0 is much larger than for α = 0.2. Also note
that here the maximum value of ωi continues to decrease at σ = 2, unlike in the α = 0.2 case, thus
showing that the form of Q(z) for σ = 2 is more unstable to long waves (small α) but more stable
to shorter waves (larger α).

For α = 0.8 in Fig. 6(e) it is a different story. Here the size of the azimuthal wave-number region
is approximately constant for the different values of σ considered, but the position of the instability
region varies. We note here that the corresponding results for σ = 2, −1, and −2 are stable.
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FIG. 6. Plots of the temporal stability growth rates ωi(β) for (a) and (b) α = 0.2, (c) and (d) α = 0.5, and (e)
α = 0.8. In (a) and (c) the lines σ = {0,0.25,0.5,1,2} are labeled 1–5 respectively, in (b) and (d) the lines σ =
{0, − 0.25, − 0.5, − 1, − 2} are labeled 1–5 respectively, and in (e) the lines σ = {0,0.25,0.5,1, − 0.25, − 0.5}
are labeled 1–6, respectively.
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FIG. 7. (a) Plot of f ′(z) + β

α
g(z) for β

α
= {1,1/2, − 1/2} The three cases are separated by a constant and

in each case the solid line represents σ = 0, the dashed line represents σ = 0.5, and the dotted line represents
σ = −0.5. (b) Plot of |w| for α = β = 0.2 and σ = 0. Result 1 represents the dominant eigenmode with
ω = 0.0725 + 0.0278i, while result 2 gives the subdominant eigenmode with ω = 0.2312 + 0.0094i.

The results in this section indicate that the region of azimuthal wave numbers for CI typically
increases for a small to moderate fixed value of α when the disk is both stretched (σ > 0) and shrunk
(σ < 0). The corresponding behavior for AI is considered in Sec. IV B with particular interest in
how individual modes interact with one another.

B. Absolute instability

While the CI of a flow depends on the stability of individual waves, its AI is a consequence of
the interaction of these waves as they propagate as wave packets. The calculation of the response of
the base flow to infinitesimal perturbations in a frame of reference fixed on the disturbance position
for both the Bödewadt and Ekman layer flows can be found in [12] and for the von Kármán flow
in [11]. We apply the same fundamental approach to the base flows in this paper.

Absolute instabilities of the flow correspond to special saddle points of the dispersion relation
�(α,ω; β,σ ) = 0 that satisfy the Briggs criteria for AI [12,14,19–22] and the position of the saddle
points are found by simultaneously solving �(α,ω; β,σ ) = �α(α,ω; β,ω) = 0. Note here that both
α and ω are typically complex.

In Fig. 8 we plot (a) ωr (β), (b) ωi(β), (c) αr (β), and (d) αi(β) when σ > 0 for the dominant
saddle point for values of β where the flow is absolutely unstable. Here the stretching parameter
takes the values σ = {0,0.25,0.5,1,2}. The result for σ = 0 is the Bödewadt result presented in
Figs. 9(b) and 9(d) of [12] (denoted by the Rossby number Ro = 1). We note that while our results
are in good agreement with those of [12] for β > 0, we obtain subtly different results for β < 0.
However, our results are qualitatively similar to those of [12] when the Rossby number therein is
Ro = 0.9 and 0.8 in the range −0.3 � β � 0. We believe this discrepancy is due to the difficulty
in accurately calculating the base flow for this value of σ , as described in Sec. III. The fact that
our results demonstrate qualitative agreement in behavior with the Ro = 0.9 and 0.8 results of [12]
gives us confidence in our numerical procedure.

The Bödewadt result has a maximum growth rate at β = 0.1871 and the AI extends over the
range of azimuthal wave numbers β ∈ [−0.6659,0.4605]. At β = −0.4096 there exists a second,
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FIG. 8. Plots of (a) ωr (β), (b) ωi(β), (c) αr (β), and (d) αi(β) for σ = {0,0.25,0.5,1,2} labeled 1–5,
respectively.

smaller, maximum growth rate that is caused by a second saddle point on the inversion contour
becoming the dominant saddle point. As the disk stretching rate is increased to σ = 0.25 the
two maximum growth rate values decrease in magnitude and in fact the AI actually vanishes
for a range of β values between these two maxima. The two maxima move to β = 0.2725 and
β = −0.4364, respectively, and the flow is absolutely unstable for azimuthal wave numbers β ∈
[−0.4673, − 0.3785] ∪ [0.0001,0.5280]. As σ increases to 0.5, the flow is no longer absolutely
unstable for β < 0, but the positive range of β for which an AI exists is larger still. Beyond this
value, the range of β values for the AI decreases and for σ = 2 the flow is only absolutely unstable
for β ∈ [0,0.3991], but this instability is weak, with a maximum growth rate of ωi = 1.773 × 10−3.
Note that this result is in contrast to the CI result in Fig. 6, which shows that the range of β values
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for CI increases as σ is increased from σ = 0, and at σ = 2, the magnitude of ωi for the CI is much
larger.

In Fig. 9(a) we plot Re(Q) = αrf
′ + βg, which is the velocity profile that gives the AI, for (σ,β) =

{(0,0.2),(0, − 0.2),(0, − 0.4),(0.5,0.2),(2,0.2)}. These profiles show a boundary layer shear flow
structure for σ = 0, with the maximum value of Re(Q) close to the surface of the disk increasing
and moving upward as β is reduced. As σ is increased for fixed β = 0.2 we observe that the shear
layer structure of the base flow profile for an AI is reduced and this coincides with the flow becoming
less absolutely unstable. If we examine |Q − ω| for the same profiles in Fig. 9(b), we now observe
why for (σ,β) = (0, − 0.4) there is an increase in the growth rate ωi as β is reduced for σ = 0.
This result [label 3 in Fig. 9(b)] has a critical point at zc = 4.1026 and this critical point makes an
additional contribution to the AI of the flow [16]. Healey [16] demonstrates for the von Kármán
rotating disk boundary layer, in the long-wave limit, that the contribution of a critical point (a second
critical point in that case) dominates the AI properties for small β values. A similar phenomenon is
occurring here, except it is the appearance of a critical point in Q(z) as β is reduced, for σ = 0, that
is responsible for the additional increase in AI growth rate. When the critical point exists in Q(z), it
is likely that nonlinearity will first occur close to this critical point in the inviscid theory. The result
plotted as label 5 in Fig. 9(b) also appears to exhibit a critical point at z ≈ 2; however this is merely
a point with a small value of |Q − ω| and not a critical point with Q = ω. This is why the flow
stability properties for these parameters are similar to those for other base flows with β > 0. Note
that, for profiles with a critical point, we modify our numerical scheme to integrate up to the critical
layer and then jump to the other side without modifying w or dw/dz. We can do this because we
consider the critical layer to be nonlinear and not viscous [23].

The growth rate curves in Fig. 10(b) demonstrate that as σ is decreased from zero the growth rate
ωi typically increases for all values of β, as was the case for the CI, except again at the edges of the
stability domain, for σ ∈ [−0.5,0]. For σ = −0.5 this instability range is β ∈ [−0.6219,0.4328].
The maximum value of the growth rate increases as σ decreases and when σ = −0.5, ωi = 0.092 38,
which is almost twice the maximum value when σ = 0.

The base velocity profiles Re(Q) in Fig. 11(a) show that the AI in this parameter regime is
dominated by the size of the shear layer within the boundary layer. For (σ,β) = (−0.5, − 0.4) (label
3) in Fig. 11(b) we again observe a critical point at zc = 3.6078 that dominates the AI properties of
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FIG. 10. Plots of (a) ωr (β), (b) ωi(β), (c) αr (β), and (d) αi(β) labeled 1–5, respectively, for σ = {0, −
0.25, − 0.5, − 1, − 2}.

the flow, over the shear layer magnitude. However, as σ is reduced further the critical point moves
towards the disk until its contribution to the AI of the flow becomes subdominant to the contribution
from the shear layer. This is seen to have occurred by σ = −2 in Fig. 11(b) for β = −0.4.

V. DISCUSSION AND CONCLUSIONS

In this paper we examined the flow generated by the linear radial stretching of a disk below
a rotating fluid with constant angular velocity � and kinematic viscosity ν. We studied both the
velocity profiles of the steady base flow and the inviscid CI and AI properties of this flow to
infinitesimal perturbations via linear stability theory. The steady base flow was nondimensionalized
and solely characterized by a single nondimensional parameter σ = a/�, where a is the radial rate
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of strain of the disk. Numerical results of the base flow equations showed that the radial component
of the shear stress on the disk is always directed towards the origin, while the azimuthal component
of the disk shear stress is directed in the positive θ direction.

For σ � 1 the radial velocity component consisted of a velocity profile that obtained its maximum
value at the surface of the disk and decreased to zero outside the boundary layer, while the azimuthal
component was zero at the disk and increased to a unit value outside the boundary layer. For σ � −1,
on the other hand, the radial velocity profile consisted of a shear layer profile with a region of reverse
flow at the disk, while the azimuthal component had a wall jet structure with its maximum velocity
confined to the boundary layer. For −1 � σ � 1 the flow transitioned between these two states.
In particular, the case σ = 0 is the problem studied by Bödewadt [1]. For all values of σ the flow
was shown to have oscillations outside the boundary layer that decay as z → ∞. These oscillations
are small for σ > 0 and more visible for σ � 0 and it was found that accurately calculating these
oscillations was important in the subsequent stability analysis.

By considering infinitesimal perturbations of the base flows we examined the inviscid stability
properties of the flow, in particular AI properties, to investigate the potential of the stretching disk
to enhance or inhibit transition. We considered the stability of the flow at large radii, such that
the flow is assumed to act parallel to the disk, so that nonparallel contributions to the stability
calculation are neglected. For σ = 2 the flow was found to be absolutely stable except for a small
region of azimuthal wave numbers β ∈ [0,0.3991], where the magnitude of the AI growth rate
was determined by the magnitude of the shear layer in the effective two-dimensional velocity
profile Q(z) = αf ′(z) + βg(z). As σ was reduced the growth rate increased and eventually a second
instability region was found to exist for β < 0 [see Fig. 8(b)] where the magnitude of the growth
rate was determined by the contribution of a critical point that occurs in Q(z). Note that a critical
point does not occur for β > 0. As σ is decreased further the AI due to the shear layer grows in
both magnitude and the range of β values for which it exists and ultimately dominates the whole
instability range when σ = −2. For this value of σ the AI velocity profiles with a critical point still
exist and produce an AI, but they are subdominant to the shear layer contribution. The CI results are
in accord with the AI results for σ � 0, but for σ � 0 the existence region for the CI increases with
increasing σ , at least up to σ = 2, considered here.
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APPENDIX A: ASYMPTOTIC ANALYSIS FOR |σ | � 1

In this appendix we consider the asymptotic form of the base flow for large disk stretching and
shrinking rates |σ |. We consider the two asymptotic regimes of a rapid stretching disk σ 	 1 and a
rapidly shrinking disk −σ 	 1.

1. The rapidly stretching disk: σ � 1

The velocity profiles in Fig. 3 for σ > 0 suggests for large positive σ there exists a boundary
layer close to the disk. The thickness of this boundary layer is O(σ 1/2); outside this layer the outer
solution is trivially

g(z) = 1, f (z) = f∞. (A1)

The inner solution is found by introducing a new stretched boundary layer variable Z, such that
z = |σ |1/2Z, and the scaled inner functions F (Z) and G(Z),

f = σ 1/2F (Z), g = G(Z). (A2)

Introducing these scaled variables into (2.4) leads to

FZZZ + 2FFZZ − F 2
Z + σ−2(G2 − 1) = 0, F (0) = 0, FZ(0) = 1, FZ(∞) = 0, (A3a)

GZZ + 2(FGZ − FZG) = 0, G(0) = 0, G(∞) = 1. (A3b)

We seek an asymptotic solution to these equations where we expand F (Z) and G(Z) in powers of
σ−2,

F (Z) = F0(Z) + σ−2F2(Z) + σ−4F4(Z) + O(σ−6),

G(Z) = G0(Z) + σ−2G2(Z) + σ−4G4(Z) + O(σ−6).

Inserting these expansions into (3.8) and equating powers of σ−2 leads to the following hierarchy of
system equations: At O(1),

F0ZZZ + 2F0F0ZZ − F 2
0Z = 0, F0(0) = 0, F0Z(0) = 1, F0Z(∞) = 0,

G0ZZ + 2(F0G0Z − F0ZG0) = 0, G0(0) = 0, G0(∞) = 1;

then at O(σ−2),

F2ZZZ + 2(F0F2ZZ + F2F0ZZ) − 2F0ZF2Z + G2
0 − 1 = 0, F2(0) = 0, F2Z(0) = 0, F2Z(∞) = 0,

G2ZZ + 2(F0G2Z + F2G0Z − F0ZG2 − F2ZG0) = 0, G2(0) = 0, G2(∞) = 0;

and at O(σ−4),

F4ZZZ + 2(F0F4ZZ + F2F2ZZ + F4F0ZZ) − 2F0ZF4Z − F 2
2Z + 2G0G2 = 0,

F4(0) = 0, F4Z(0) = 0, F4Z(∞) = 0,

G4ZZ + 2(F0G4Z + F2G2Z + F4G0Z − F0ZG4 − F2ZG2 − F4ZG0) = 0,

G4(0) = 0, G4(∞) = 0.

These systems of equations are solved consecutively using the same numerical scheme as for the
full system. The resulting asymptotic shear stress values are found to be

F0ZZ(0) = −1.173 720 738 913, G0Z(0) = 0.528 652 929 118,

F2ZZ(0) = −0.772 897 415 441, G2Z(0) = 0.203 722 589 589,

F4ZZ(0) = 0.114 592 927 248, G4Z(0) = −0.071 141 123 212.
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2. The rapidly shrinking disk: −σ � 1

For σ < 0 the boundary layer thickness is again O(|σ |1/2) and the outer solution is also (A1).
Using the same boundary layer variable Z as in Appendix A 1 but the scaled inner functions F̃ (Z)
and G̃(Z),

f = |σ |1/2F̃ (Z), g = |σ |G̃(Z),

in (2.4) leads to the system

F̃ZZZ + 2F̃ F̃ZZ − F̃ 2
Z + G̃2 − |σ |−2 = 0, F̃ (0) = 0, F̃Z(0) = −1, F̃Z(∞) = 0, (A4a)

G̃ZZ + 2(F̃ G̃Z − F̃ZG̃) = 0, G̃(0) = 0, G̃(∞) = |σ |−1. (A4b)

The |σ |−1 term in the boundary condition for G̃ suggests an asymptotic solution in the form

F̃ (Z) = F̃0(Z) + |σ |−1F̃1(Z) + |σ |−2F̃2(Z) + O(|σ |−3),

G̃(Z) = G̃0(Z) + |σ |−1G̃1(Z) + |σ |−2G̃2(Z) + O(|σ |−3).

Inserting these expansions into (3.10) and equating powers of |σ |−1 leads to the following hierarchy
of system equations: At O(1),

F̃0ZZZ + 2F̃0F̃0ZZ − F̃ 2
0Z + G̃2

0 = 0 F̃0(0) = 0, F̃0Z(0) = −1, F̃0Z(∞) = 0,

G̃0ZZ + 2(F̃0G̃0Z − F̃0ZG̃0) = 0 G̃0(0) = 0, G̃0(∞) = 0;

then at O(|σ |−1),

F̃1ZZZ + 2(F̃0F̃1ZZ + F̃1F̃0ZZ) − 2F̃0ZF̃1Z + 2G̃0G̃1 = 0, F̃1(0) = 0, F̃1Z(0) = 0, F̃1Z(∞) = 0,

G̃1ZZ + 2(F̃0G̃1Z + F̃1G̃0Z − F̃0ZG̃1 − F̃1ZG̃0) = 0, G̃1(0) = 0, G̃1(∞) = 1;

and at O(|σ |−2),

F̃2ZZZ + 2(F̃0F̃2ZZ + F̃1F̃1ZZ + F̃2F̃0ZZ) − 2F̃0ZF̃2Z − F̃ 2
1Z + 2G̃0G̃2 + G̃2

1 − 1 = 0,

F̃2(0) = 0, F̃2Z(0) = 0, F̃2Z(∞) = 0,

G̃2ZZ + 2(F̃0G̃2Z + F̃1G̃1Z + F̃2G̃0Z − F̃0ZG̃2 − F̃1ZG̃1 − F̃2ZG̃0) = 0,

G̃2(0) = 0, G̃2(∞) = 0.

Numerically solving these systems give the asymptotic shear stress values as

F̃0ZZ(0) = −0.725 131 902 079, G̃0Z(0) = 1.157 973 962 096,

F̃1ZZ(0) = −0.000 000 000 088, G̃1Z(0) = 0.000 000 000 018,

F̃2ZZ(0) = −0.633 741 006 320, G̃2Z(0) = 0.690 472 088 227.

APPENDIX B: COEFFICIENTS OF THE LARGE-z ASYMPTOTIC EXPANSION

In the large-z asymptotic form of g(z) in (3.7) the coefficients α, β, and γ are given by

α = ζ1 + ζ2

8
(
8f∞λ3

r + 4λ4
r + 4f 2∞λ2

r + 1
) ,

β = 1

8
(
π2

1 + π2
2

) [π1(ζ1 − ζ2) + π2ζ3],

γ = 1

8
(
π2

1 + π2
2

) [−π2(ζ1 − ζ2) + π1ζ3],
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where

π1 = 8f∞λ3
r − 24f∞λ2

i λr + 4λ4
i − 24λ2

i λ
2
r + 4λ4

r − 4f 2
∞λ2

i + 4f 2
∞λ2

r + 1,

π2 = −8λi(f∞ + 2λr )
(
f∞λr − λ2

i + λ2
r

)
,

ζ1 = 1
2

(
8f 2

∞λ2
i − 4f 2

∞λ2
r + 4f∞λ2

i λr − 4f∞λ3
r + λ4

i − 4λ2
i λ

2
r − λ4

r − 4
)
A2

− λ2
i

(
4f∞λr − λ2

i + 5λ2
r − 2f 2

∞
)
B2

− 2λi(f∞ + λr )
(
2f∞λr − λ2

i + λ2
r

)
AB,

ζ2 = −λ2
i

(
4f∞λr − λ2

i + 5λ2
r − 2f 2

∞
)
A2

+ 1
2

(
8f 2

∞λ2
i − 4f 2

∞λ2
r + 4f∞λ2

i λr − 4f∞λ3
r + λ4

i − 4λ2
i λ

2
r − λ4

r − 4
)
B2

+ 2λi(f∞ + λr )
(
2f∞λr − λ2

i + λ2
r

)
AB,

ζ3 = 2λi(f∞ + λr )
(
2f∞λr − λ2

i + λ2
r

)
(A2 − B2)

+ (
4f 2

∞λ2
i − 4f 2

∞λ2
r + 12f∞λ2

i λr − 4f∞λ3
r − λ4

i + 6λ2
i λ

2
r − λ4

r − 4
)
AB.
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