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Turbulent bifurcations in intermittent shear flows:
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Localized turbulent structures such as puffs or oblique stripes are building blocks of the
intermittency regimes in subcritical wall-bounded shear flows. These turbulent structures
are investigated in incompressible pressure-driven annular pipe flow using direct numerical
simulations in long domains. For low enough radius ratio η, these coherent structures
have a dynamics comparable to that of puffs in cylindrical pipe flow. For η larger than
0.5, they take the shape of helical stripes inclined with respect to the axial direction. The
transition from puffs to stripes is analyzed statistically by focusing on the axisymmetry
properties of the associated large-scale flows. It is shown that the transition is gradual: as the
azimuthal confinement relaxes, allowing for an azimuthal large-scale component, oblique
stripes emerge as predicted in the planar limit. The generality of this transition mechanism
is discussed in the context of subcritical shear flows.
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I. INTRODUCTION

Subcritical wall-bounded shear flows have the ability to sustain turbulent motion despite the
linear stability of the laminar regime. As the flow rate is decreased starting from the fully turbulent
regime, partial relaminarization is frequently observed prior to global relaminarization, leading to
the intermittent occurrence of turbulence in an otherwise laminar flow [1]. For cylindrical pipe flow
driven by either a fixed pressure gradient or a fixed mass flux, this intermittency manifests itself
as disordered sequences of so-called puffs, i.e., turbulent structures filling the cross-section of the
pipe but localized in the streamwise direction [2]. The self-organization of these trains of puffs near
criticality results from the interplay between local relaminarization events and spatial proliferation
[3,4]. For planar shear flows such as plane Couette or plane Poiseuille flow, or any combination
of both [5], intermittency usually manifests itself as spatially periodic patterns of laminar-turbulent
coexistence in the form of stripes of turbulence [6,7]. These stripes display a nonzero angle with
respect to the streamwise direction. Closer to the onset of turbulence, these oblique structures have
been reported to break up into disjoint finite-sized turbulent spots whose interaction raises interesting
questions from a phase transition point of view [8,9]. Despite recent progress coming mainly from
low-order models [1,10], a general explanation for these different types of self-organization is still
lacking.

Identifying the conditions that lead either to puff-like or stripe-like structures in a given flow
geometry would help to unravel the mechanisms responsible for the localization of turbulence.
This ambitious task suggests that a flow case should be selected with a free parameter able to
bridge as continuously as possible the two limiting cases of turbulent puffs, on one hand, and
turbulent stripes on the other hand. In the context of pressure-driven flows, annular Poiseuille flow
(aPf) is an interesting candidate for such a homotopy procedure. This geometry features two long
(ideally infinite) coaxial pipes of different radii Ri and Ro (>Ri) (see Fig. 1), between which an
incompressible flow is maintained using a fixed axial pressure gradient. This flow geometry is relevant
in many important industrial processes ranging from nuclear plants to heat exchangers. As in all
pressure-driven flows, the dramatic drop in flow rate associated with the laminar-turbulent transition
makes the issues of whether and how turbulence maintains itself important for practical situations.
The shape of the associated laminar flow profile depends only on the radius ratio η = Ri/Ro. This
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FIG. 1. Configuration of annular Poiseuille flow and coordinate system.

profile turns out to be linearly stable even for values of the Reynolds number far above those
where turbulence starts to be sustained, making the transition in this flow case clearly subcritical
for all values of η [11,12]. In a former paper [13], the zoology of the different manifestations
of laminar-turbulent coexistence was addressed using numerical simulation in moderately long
(axially periodic) domains: while helical stripe patterns dominate the low-Re range for η � 0.5,
only statistically axisymmetric turbulent structures were identified for η = 0.1 and low enough
Reynolds number. The former type corresponds to the stripes found in plane Poiseuille flow (pPf)
in the presence of a wall curvature that vanishes asymptotically as η → 1−. The latter type can
be assimilated to puffs as in circular pipe flow, except that the presence of the inner rod implies
a different velocity profile both in the laminar and turbulent zones. Simulations for intermediate
η = 0.3 featured new axially localized helical structures baptized “helical puffs.”

In the present numerical study, we consider all these intermittent regimes in numerical domains
longer than in previous studies, parametrized as before by the radius ratio η with emphasis on the
patterning property of localized turbulence. Another important control parameter is the Reynolds
number Reτ = uτd/(2ν), where uτ = √

τ/ρ is the friction velocity, with τ the mean total wall
friction proportional to the pressure gradient and ρ is the density of fluid, ν its kinematic viscosity,
and d = Ro − Ri > 0 measures the spacing between the two cylinders. The details of the numerics
are given in Sec. II. The dynamics of the flow at marginally low values of Reτ is analyzed in Sec. III
for various values of η from 0.1 to 0.5. In Sec. IV, a statistical analysis of the transition from puffs
to stripes as η increases is suggested, based on the statistical quantification of the large-scale flows
present at the laminar-turbulent interfaces. Eventually, the generality of the transition mechanism
advanced in Sec.IV is discussed in Sec. V.

II. NUMERICAL SIMULATION

The geometry is best described using the classical cylindrical coordinate system (r , θ , x), where
the x axis is the axis common to both cylinders. We also define the rescaled azimuthal coordinate
z = rθ and the wall-normal distance from the inner wall y = r − Ri . At r = Ro we have y = d and
an azimuthal extent Lzo = 2πRo, while for r = Ri we have y = 0 and Lzi = 2πRi (see Fig. 1).
The specific values of Lzo and Lzi are listed in Table I. Periodicity is considered in both x and θ ,
with respective spatial periods Lx and 2π , while no slip (u = 0) is imposed at each wall. The flow
between the two cylinders is governed by the incompressible Navier-Stokes equations:

∇ · u = 0, (1)

∂tu + (u · ∇)u = −ρ−1∇p + ν∇2u. (2)

Denoting, respectively, by τi and τo the wall shear rate at the inner and outer wall, the axial pressure
gradient at equilibrium reads dp/dx = −(2/d)(τo + ητi)/(1 + η), from which uτ =

√
−ρ−1dp/dx

and, hence, Reτ are defined. The numerical algorithm used to solve Eqs. (1) and (2) combines
fourth-order finite differences in both x and θ , together with a second-order scheme in r on a
nonuniform radial grid. Time stepping is performed using an Adams-Bashforth scheme for the
nonlinear terms and a Crank-Nicolson scheme for the wall-normal viscous terms, which results in
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TABLE I. Computational conditions for DNS: Lx and Lz are the streamwise and azimuthal lengths (Lzi =
2πRi and Lzo = 2πRo); Nx and Nz the corresponding grid numbers (z = rθ ), while Ny is fixed at 128 for all
the cases (y = r − Ri). Basically, longer Lx with larger Nx were used for DNS at lower Reτ .

η 0.1 0.2 0.3 0.4 0.5 0.8
Reτ 46–150 50–150 50–150 52–80 52–150 52–150

Lx/d 51.2–180.0 102.4–166.0 51.2–160.0 102.4–160.0 51.2–80.0 51.2–80.0
Lzi(η)/d 0.70 1.57 2.69 4.19 6.28 25.1
Lzo(η)/d 6.98 7.85 8,98 10.5 12.6 31.4
Nx 2048 or 4096 4096 2048 or 4096 4096 2048 2048
Nz 256 256 512 512 512 1024

a second-order algorithm. Further information about the numerical method employed here can be
found in Refs. [13,14].

All numerical parameters are reported in Table I. The local numerical resolution has been checked
in our previous article [13]. The length of the computational domain has been varied between 51d

and 180d depending on the outcome of the simulations. It is longer than most simulations from
Ref. [13] in order to capture the interaction between several distinct localized turbulent structures.

III. TEMPORAL DYNAMICS OF LOCALIZED TURBULENT STRUCTURES

The procedure (quenching from the turbulent regime) chosen here is similar to that in
Refs. [13,15]: for each value of η, a statistically steady turbulent flow is first reached easily by
adding a random perturbation of finite amplitude to the laminar base flow at Reτ = 150. For
this value of Reτ , turbulence unambiguously occupies the whole numerical domain. Then, Reτ is
decreased in finite steps until statistically steady laminar-turbulent coexistence is detected from
visualizations, usually around Reτ ≈ 80. The control parameter is then lowered further in smaller
steps until turbulence globally collapses, typically for Reτ � 50. Let us denote by Rec

τ = Rec
τ (η) the

critical value of Reτ below which no turbulence is sustained in the long time limit. Throughout this
paper, the superscript (·)c will be used to represent a critical point for the sustainment of localized
turbulence. However, the values suggested in this paper are not based on a full but costly statistical
analysis—like, e.g., in Ref. [3]—but are estimated from our limited set of simulations. We describe
below the different types of spatiotemporal dynamics encountered around Rec

τ in order of increasing
η. Note again that all simulations have been performed here in longer domains than in Ref. [13] and
that the spatiotemporal regimes resulting from the interaction between different localized patches of
turbulence are more complex than in previous works. All the spatiotemporal diagrams shown in this
section involve the streamwise velocity averaged azimuthally 〈ux/uτ 〉θ = ∫ 2π

0 uxdθ/2π , evaluated
at midgap.

A. Localized puffs for η = 0.1

We describe first the regimes found for low η = 0.1. Laminar-turbulent coexistence is easily
visualized using spatiotemporal diagrams of the quantity 〈ux/uτ 〉θ at midgap as a function of the
streamwise coordinate x and of the time t in units of d/uτ . For easier visualization, the reduced
streamwise coordinate x ′ is used instead of x, where x ′ = (x − ct)/d with c an adjustable streamwise
speed. This speed of the reference frame was adjusted simply by eye in order to cancel out the apparent
drift of puffs. It should be noted that the present c does not rigorously correspond to the propagation
speed of puffs. Figures 2(a)–2(e) show such diagrams for Reτ = 56, 52, 50, 48, and 46, respectively,
with the color map adjusted so that the red color is an indicator of local turbulent motion. For
Reτ = 56, the flow consists of a train of four or five several puffs interacting via sequences of
replication and merging events. At Reτ = 52 and 50, the number of puffs interacting drops to two
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FIG. 2. Space-time diagram of azimuthally averaged streamwise velocity at midgap for η = 0.1 and
different Reτ . Color map of 〈ux/uτ 〉θ is plotted against a reduced variable x ′ = (x − ct)/d , in a moving
frame of reference, and its range is (〈ux/uτ 〉θ |tur, 〈ux/uτ 〉θ |lam): (a) (18, 22), (b) (19, 24), (c) (20, 25), (d) (21,
25), and (e) (21, 25).

or three, with relaminarization or replication (“splitting”) events occurring on longer timescales
and no merging event. For Reτ = 48, a single isolated puff survives over the whole observation
time, though at several occasions its internal fluctuations bring it close to splitting or to collapsing.
For Reτ = 46, the isolated puff attempts to split into two parts that both collapse after less than
5d/uτ . This description is completely consistent with that of turbulent puffs in circular pipe flow
in Refs. [3,16,17]. This suggests, though it remains to be properly shown, that the transition in
an infinitely long pipe would be continuous, with the critical point Rec

τ for this value of η lying
around 48 ± 1.

Detailed visualization of the flow structures is achieved using the spatial fluctuations of the radial
velocity u′

r around its spatial average in a cylinder at arbitrary y. The fluctuating component is
defined as

u′
i = ui − ũi(r,t), (3)

ũi(r,t) = 1

Lx2π

∫∫
ui(x,r,θ,t)dxdθ. (4)

Note that ũi does not necessarily equal the laminar flow because of the presence of fully/localized
turbulent region in our case—in particular, an oblique turbulent region is also accompanied by a
large-scale flow also in the azimuthal direction, which may provide nonzero ũθ [13]. The flow
structures for Reτ = 56 and 52 are visualized in Fig. 3. These figures confirm the resemblance
with puffs from circular pipe flow (see, e.g., Ref. [17] for similar visualizations of puffs close to
the onset of puff splitting). In particular, each patch of turbulent fluctuations extends over the full
cross-section, i.e., they are rather homogeneous in the z direction with straight laminar-turbulent
interfaces.
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FIG. 3. Two-dimensional contours of instantaneous u′
r (blue, red) = (−0.75, 0.75) at midgap, for η = 0.1

at Reτ = (a) 56 and (b) 52. The mean flow direction is from left to right.

B. Occurrence of helical puffs for η = 0.2 and 0.3

Visualizations of the intermittent flow structures and their temporal dynamics for η = 0.2 are
shown in Figs. 4 and 5 using the same quantities as in Figs. 2 and 3 . The spatiotemporal diagrams for
Reτ = 56, 52, and 50 in Figs. 4(a)–4(c) do not differ much from those for η = 0.1, except perhaps at
Reτ = 56, where the turbulent flow exhibits a stronger tendency toward patterning (emergence of a
well-defined streamwise wavelength) than for lower η. For η = 0.2, the puff sustaining at Reτ = 52
may split and avoid collapse, while the puff at Reτ = 50 decays completely; see Figs. 4(b) and 4(c).
This suggests a critical point around Rec

τ = 51 ± 1. The spatial fluctuations of u′
r (x,z) at midgap

in Fig. 5 show a surprising property: some of the laminar-turbulent interfaces identified display
obliqueness with respect to the streamwise direction while other do not.

Similar data for η = 0.3 confirms the above-mentioned trends, with an even stronger patterning
property and a comparable critical value: Fig. 6(c) provides specific evidence that, for Reτ = 50,
three puffs separated by a comparable wavelength collapse in synchrony. The occurrence of oblique
laminar-turbulent interfaces appears also more pronounced, judging from the fluctuations of u′

r

shown in Fig. 7. The resulting intermittent regime for η = 0.2 and 0.3 appears hence as a mixture of
both classical straight puffs analogous to those found for η = 0.1 and helical puffs as identified in
Ref. [13] in shorter domains. We emphasize the coexistence in space as in time and for a given set of
parameters, of both types of structures. This immediately suggests that the transition from (straight)
puffs to (oblique/helical) stripes cannot be treated as deterministic but rather requires a statistical
treatment. The statistical analysis to be presented in Sec. IV C will be based on the probability
density function of large-scale azimuthal velocities that is related to the obliqueness of the pattern.
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FIG. 4. Same as Fig. 2, but for η = 0.2 : (〈ux/uτ 〉θ |tur, 〈ux/uτ 〉θ |lam) = (a) (18, 23), (b) (20, 25), and
(c) (20, 27).
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FIG. 5. Same as Fig. 3, but for η = 0.2 at Reτ = (a) 56 and (b) 52.

C. Occurrence of stripe patterns for η � 0.4

Finally, the same indicators have been computed for η = 0.4 and 0.5 at Reτ = 56 and 52,
both apparently above the corresponding value of Rec

τ . The associated spatiotemporal diagrams
demonstrate sustained patterning and are not shown. The spatial fluctuations shown for randomly
chosen snapshots in Figs. 8 and 9 show exclusively oblique laminar-turbulent interfaces for Reτ = 56
and apparently no puff-like structures, suggesting that this corresponds to the periodic stripe regime.
In contrast, Reτ = 52 shows a sequence of isolated spots less like a periodic pattern. A similar
dynamics was reported in planar cases (η → 1) where for marginally low values of Reτ the stripe
patterns break up into smaller structures [18], and this is a feature specific to the turbulent regimes
slightly above Rec

τ .

IV. BIFURCATION ANALYSIS BASED ON LARGE-SCALE FLOWS

Bifurcations from one turbulent regime to another one are difficult to investigate because, unlike
bifurcations of exact steady/periodic states, the presence of turbulent fluctuations both in time
and space makes the choice of a well-defined bifurcation parameter nonobvious. We intend here
to characterize the bifurcation of the shape of coherent structures, where no particularly obvious
Eulerian indicator emerges to describe for instance the obliqueness of the interfaces. We suggest
to link the present study to the limiting planar case η → 1, which has been already discussed in
Ref. [19], and to generalize it to curved geometries corresponding to 0 < η < 1. This represents
an opportunity to test the limitations of the planar theory in the presence of finite curvature. In
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FIG. 6. Same as Fig. 2, but for η = 0.3 : (〈ux/uτ 〉θ |tur, 〈ux/uτ 〉θ |lam) = (a) (18, 22), (b) (19, 23), and
(c) (19, 26).
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FIG. 7. Same as Fig. 3, but for η = 0.3 at Reτ = (a) 56 and (b) 52.

addition, we keep in mind the observation that both types of structures, straight and helical, have
been detected for the same parameters at intermediate values of η. The relevant bifurcation parameter
chosen should hence be quantified in a probabilistic manner, with statistics carried out, for each set
of parameters η and Reτ , over both time and space.

A. Role of the large-scale flows

For planar flows, it was suggested in Ref. [19] that the obliqueness of interfaces could be
explained qualitatively by the existence of large-scale flows. In the presence of a sufficiently marked
scale separation between small scales (the turbulent fluctuations) and large scales, it was shown
analytically that large scales advect the small scales of weakest amplitude. Interfaces between
laminar and turbulent motion correspond precisely to the zones where the fluctuations decay from
their turbulent amplitude toward zero. It is thus expected that the planar orientation of the interface
corresponds precisely to the orientation of the large-scale flow advecting the small scales at the edges
of the turbulent patches. In particular, the global angle of the periodic stripe patterns corresponds
accurately to the angle of the large-scale flow (cf Fig. 2(c) in Ref. [19]): a nonzero angle is linked
to the existence of a spanwise component for the large scales. The small scales of interest consist
essentially of streaks and streamwise vortices of finite length, which form the minimal ingredients
of the self-sustaining process in all wall-bounded shear flows [20]. The origin of the transverse
large scale flow is kinematic rather than dynamic: it can be derived from the mass conservation
at the interfaces once streamwise localization is assumed. In particular, the role of the spanwise
large-scale component in the planar case is to compensate for the loss of streamwise flow rate inside
the turbulent patch (with respect to the reference flow rate inside the laminar zones).

We begin by defining the relevant quantities with notations adapted to the present cylindrical
geometries for any value of η. Independently of temporal considerations, large-scale flows U(x,r,θ )
can be obtained from any flow field u(x,r,θ ) by the application of a low-pass filter L that selects only
the lowest-order modes in θ and x directions. The spectral cutoff criterion in these two directions
is an intrinsic parameter of the filter. The exact choice of the kernel for the low-pass filter (here
Heaviside functions in both wave numbers kx and kθ ) matters little as long as the scale separation is
sufficiently well pronounced. Consider the continuity equation in cylindrical coordinates:

∂xux + 1

r
∂r (rur ) + 1

r
∂θuθ = 0. (5)

x/d

z/
d

x/d

z/
d

(a)
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FIG. 8. Same as Fig. 3, but for η = 0.4 at Reτ = (a) 56 and (b) 52.
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FIG. 9. Same as Fig. 3, but for η = 0.5 at Reτ = (a) 56 and (b) 52.

The divergence operator commutes with L, which leads to the same equation for the large-scale
flow:

∂xUx + 1

r
∂r (rUr ) + 1

r
∂θUθ = 0. (6)

Multiplying Eq. (6) by r and integrating it from r = Ri to Ro leads to∫ Ro

Ri

∂θUθ dr = −
∫ Ro

Ri

∂xUxr dr. (7)

We now define radial integration

(·) =
∫ Ro

Ri
r(·) dr∫ Ro

Ri
r dr

. (8)

Since Ux does not vanish, then we can define an angle α � 0 with respect to the streamwise
direction by

tan α(x,θ,t) =
∣∣∣∣∣Uθ (x,θ,t)

Ux(x,θ,t)

∣∣∣∣∣. (9)

B. Spectral analysis

In order to evaluate which large-scale components are present here, time-averaged pre-multiplied
energy spectra evaluated at midgap are shown in Fig. 10 for Reτ = 56 (for which all flows are
spatially intermittent) and for different values of η from 0.1 to 0.8. Energy spectra are based on
the two-dimensional Fourier transform ûi(kx,y,kz) of u′

i(x,y,z) with respect to x and z, for all y.
The streamwise one-dimensional spectra associated with the streamwise and azimuthal velocity
fluctuations u′

x and u′
θ are defined, respectively, by

Exx(kx,y) = LxLz

(2π )2T

∫ t+T

t

∫ ∞

0

(ûx ûx

∗)dkzdt, Eθθ (kx,y) = LxLz

(2π )2T

∫ t+T

t

∫ ∞

0

(ûθ ûθ

∗)dkzdt.

(10)
The asterisk represents complex conjugation, T is the averaging time, and 
 denotes the real part.
The proportionality constant is chosen so that∫

Exx(kx)dkx =
∫

Exx(kz)dkz = 〈u′
xu

′
x〉,

∫
Eθθ (kx)dkx =

∫
Eθθ (kz)dkz = 〈u′

θu
′
θ 〉, (11)

as function of either kx or kθ , where averaging 〈·〉 is performed over x, θ , and t .
Careful analysis of Fig. 10 reveals robust features. Small scales associated with turbulent

fluctuations are present around λx/d ≈ 2–3 and λz/d ≈ 1 in all directions for all components.
The situation is different for large-scale velocity components: out of the four figures in Fig. 10, only
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FIG. 10. Premultiplied energy spectra for u′
x and u′

θ as a function of either wavelength λx/d or λz/d

at mid-gap: (a) streamwise spectra of u′
x , (b) spanwise spectra of u′

x , (c) streamwise spectra of u′
θ , and

(d) spanwise spectra of u′
θ . The streamwise and azimuthal wave numbers are defined as kx = 2π/λx and

kz = 2π/λz, respectively. The spectra are normalized by an ensemble-averaged value of u′
iu

′
i at midgap.

ux as a function of x displays large scales for all value of η. These large scales do not appear strongly
separated from the smaller ones and are located at λx/d ≈ 15–70. Neither uθ as a function of either
x or θ , nor ux as a function of θ , possesses such a robust large-scale component. Only as η exceeds
0.3 do well-separated peaks at similar large scales emerge in each spectrum. Important information
can be deduced from these spectra. First, should large scales be found, the corresponding cutoff
can be located safely in the intervals λc

x/d ≈ 10–20 and λc
z/d ≈ 2–5. Second, by construction the

wavelengths in the spectra are limited by the box dimensions Lx and Lz. A clear difference emerges
between Figs. 10(a) and 10(c) on one hand (showing the λx dependence) and Figs. 10(b) and 10(d)
on the other hand (showing the λz dependence): in the latter case the occurrence of an azimuthal
large-scale peak for both x and θ components is ruled out when Lz � λc

z. In other words, the
spanwise large-scale component is present only for sufficient azimuthal extent, whereas streamwise
large-scale modulations are always present as long as the flow features spatial intermittency. We
emphasize here that the azimuthal extent should be measured in units of d = Ro − Ri , since streaks
and streamwise vortices (forming the small scales) scale with the gap size d rather than with any
of the two radii Ro or Ri . Wall units are another candidate, but large-scale structures of interest
are generally considered to scale with outer units. Our hypothesis here is that the occurrence of
azimuthal large-scale flows depends directly on the azimuthal extent Lz/d, itself a function of η.

The quantity Lz, however, depends on the value of r . It is simpler to focus on the inner and outer
azimuthal extents Lzi and Lzo, given, respectively, by

Lzi = 2πd
η

1 − η
, (12)

Lzo = 2πd
1

1 − η
. (13)
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FIG. 11. Azimuthal length as a function of radius ratio.

Both quantities (expressed in units of d) are plotted as functions of the radius ratio η in
Fig. 11.

Let us fix rather arbitrarily a cutoff value λc
z. The intersection of the horizontal line Lz = λc

z with
the curves Lzo(η) and Lzi(η) in Fig. 11 defines two values of η, respectively, η1 and η2. This leads
to three distinct ranges of values for η:

(1) for 0 < η � η1, there is no space for large scales in the azimuthal direction, neither at the
inner not at the outer wall. As a consequence, Uθ = 0 for all r , and ∂xUx = 0.

(2) for η2 � η � 1, azimuthal large scales can form at both inner and outer walls: ∂θUθ = −∂xUx

with Uθ = 0. The situation is then analogous to the planar case.
(3) for η1 � η � η2, the situation is mixed: azimuthal large scale flows cannot be accommodated

at all locations in the cross-section. A probabilistic approach is required.
For instance, choosing λc

z/d = 3π leads to η1 = 1/3 and η2 = 3/5, which is consistent with
our observations. While the classification above is not useful in practice to predict accurately the
transition thresholds η1 and η2 [mainly because of the difficulty to define a unique cutoff value
λc

z(Reτ )], it captures the main physical idea: the presence of confinement in the azimuthal direction
defines the two extreme regimes of straight interfaces (associated with puffs) or oblique interfaces
(associated with oblique stripes). In addition, there is a range of value of η for which there is a
probability of observing both types of interfaces (and hence both puffs and stripes) in the same flow
at different times and/or different positions.

It can be useful to investigate cross-sections of the flow in the different regime to understand the
implications of the previous hypothesis. The two-dimensional contours of u′

x and u′
θ in arbitrary

chosen (r-θ ) cross-sections are shown in Figs. 12 and 13, respectively, for different values of η.
The isocontours of u′

x in Fig. 12 allow one to count the numbers of streaks present in the vicinity
of each wall. Each of these streaks has a radial and azimuthal extent ≈d/2, and the analysis of the
spectra in Fig. 10 also suggests that their streamwise extent is approximatively 2d. In principle,
one would expect the streak size to scale in inner units ν/uτ ; however, the range of values of Reτ

investigated here is relatively narrow and we prefer to report the dimensions of the streaks in (outer)
units of d, as the relation λz ≈ d emphasizes their quasicircular cross-section. In the case of the
straight puffs found for η = 0.1, u′

x shows no large-scale azimuthal modulation, while high-order
modulations (streaks) can be easily noted. With increasing η, the number of streaks increases as
the azimuthal extent increases, a supplementary confirmation that the relevant lengthscale here is d

rather than Ro or Ri . For η = 0.5 and 0.8 [Figs. 12(d) and 12(e)], the low-order nonaxisymmetric
modulation of u′

x is the direct signature of the helix-shaped turbulence. To a lesser degree, such
a modulation can also be visually detected for η = 0.2 and 0.3 [Figs. 12(b) and 12(c)]. Similar
conclusions can be drawn from the isocontours of u′

θ in Fig. 13 as well.

C. Statistics of transverse large-scale flows

This section is now devoted to a quantitative investigation of the orientation of the large-scale flow
near the interfaces for varying radius ratio η. We begin by describing in more detail how data from
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(a) (b) (c)

(d) (e) (f)

FIG. 12. Two-dimensional cross-sections (r,θ ) of instantaneous u′
x for η = (a) 0.1, (b) 0.2, (c) 0.3, (d) 0.4,

(e) 0.5, and (f) 0.8 at Reτ = 52. Color map from −3uτ (blue) to +3uτ (red).

(a) (b) (c)

(d) (e) (f)

FIG. 13. Two-dimensional cross-sections (r,θ ) of instantaneous ru′
θ for η = (a) 0.1, (b) 0.2, (c) 0.3, (d)

0.4, (e) 0.5, and (f) 0.8 at Reτ = 52. Color map from −1uτ (blue) to +1uτ (red): the positive direction of θ is
clockwise in the plots.
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Uvc = 4.0

dx/

x/d

(a)

(b)

(c)

(d)

x d/

x/d

FIG. 14. Two-dimensional contours of instantaneous u′
r (blue, red) = (−1.0,1.0) and large-scale flow

(Ux,rUθ ) as vectors at y/d = (a) 0.19, (b) 0.5, and (c) 0.81, for η = 0.5 and Reτ = 56. Wall-normal-averaged
large-scale flow (Ux,Uθ ) with contours of u′

r at midgap is shown in (d). The reference-vector length UVC is
shown in the top right of (a).

the previous direct numerical simulations is post-processed. Based on the apparent scale separation
in the spectra from Fig. 10, we consider a low-pass filter L whose kernel in spectral (kx,kz) space is
non-zero only for

|kx | � 2π

20d
, |kz| � 2π

2d
. (14)

The original velocity fields u(x,r,θ,t) are transformed via L into filtered fields U(x,r,θ,t). The
two-dimensional wall-integrated large-scale flow (Ux,Uθ ) is then computed using the definitions in
Eq. (8).

An instantaneous snapshot of the large-scale flow U(x,r,θ,t) is plotted for several values of
r together with its wall-integrated counterpart, namely, Ux(x,θ,t) and Uθ (x,θ,t). The cases η =
0.5 and η = 0.1 are, respectively, shown in Figs. 14 and 15. These plots highlight the genuinely
three-dimensional structure of the velocity field U. For η = 0.5, where turbulence clearly takes a
helical shape, it can be verified that the local orientation of U does not necessarily match that of
the laminar-turbulent interface. The two-dimensional counterpart (Ux,Uθ ), however, does point in
a direction parallel to the interface, which confirms the previous hypothesis about the role of the
large-scale flows. The situation is less clear in the puff case in Fig. 15. Unlike for higher η no robust
oblique large-scale flow can be found, neither on arbitrary-r cylinders nor for the wall-integrated
field (Ux,Uθ ).

Let us focus also on the local angle α of the large-scale flow defined by Eq. (9), in addition
to the azimuthal velocity component Uθ alone. Both quantities are functions of (x,θ ) position and
time. Statistics of Uθ and α have been gathered for all parameters over the numerical grid (xi,zj )
and over different times. Since we are mainly interested in the values of Uθ at the laminar-turbulent
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U = 4.0

x/d

x/d

x/d

x/d

vc

(a)

(b)

(c)

(d)

FIG. 15. Same as Fig. 14, but at y/d = (a) 0.25, (b) 0.5, and (c) 0.75, for η = 0.1 and Reτ = 56.

interfaces, we exclude from the statistics fully laminar portions of the flow which would overestimate
the statistical weight of the Uθ ≈ 0 contribution. This is achieved by conditioning all statistics by
the additional constraint |u′

r |/uτ > 0.2 (which is never fulfilled in laminar zones where u′
r ≈ 0).

Probability distribution functions (PDFs) for |Uθ | and α are obtained by considering bins of width
�Uθ = 0.025 and �α = 0.25.

We first describe the PDFs of |Uθ | (normalized by uτ ) obtained for several values of η and
parametrized by Reτ , and shown in Fig. 16(a). For η = 0.1, 0.2, and 0.3, the PDF looks reasonably
Gaussian. This excludes statistically significant nonzero values of the azimuthal component. Note
that we are here only considering the radially integrated azimuthal large-scale velocity component,
which in principle does not exclude local weak “zonal” flows [21] with an almost vanishing radial
average. For increasing values of η � 0.3, the tendency for the PDF to flatten away from zero
becomes stronger, thereby enlarging the range of values of |Uθ |. For η = 0.4, a new peak emerges
in the PDF from the former tail in the range Uθ = 0.2–0.3uτ , and this peak overweighs clearly the
Uθ = 0 contribution for η � 0.5. This shows how increasing η beyond 0.3 leads with increasing
probability to the emergence of a transverse large-scale flow component, interpreted as responsible
for the oblique interfaces observed. Focusing on the lowest values of Reτ = 52 and 56, where
intermittency has been observed, we next analyze more quantitatively the PDFs of both |Uθ |/uτ and
α, parametrized by η in the range 0.1–0.8, cf. Figs. 16(a) and 16(b), with the aim of extracting a
comprehensive bifurcation diagram as a function of η.

The transition from a unimodal distribution of both (unsigned) Uθ and α cannot be well analysed
using standard statistical moments such as the mean and the variance. Instead we can extract, for
both distributions, the statistical mode M , i.e., the global maximum of each PDF. They are reported
in Figs. 17(a) and 17(b), respectively. In both cases the maximum is at 0 for η � 0.3 and jumps to
a nonzero value for the next investigated value, i.e., for η � 0.4. The mode initially increases as η

increases, however, we note a decrease of both M(Uθ/uτ ) and M(α) for the largest value of η = 0.8.
This is due to the flattening of the PDF observed in Fig. 16 due to a wider range of possible angles
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(a)

0 0.2 0.4 0.6 0.8 10
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τ|)  Reτ = 56
 Reτ = 52

η = 0.8
η = 0.5
η = 0.4
η = 0.3
η = 0.2
η = 0.1

(b)
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 Reτ = 56
 Reτ = 52
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η = 0.3
η = 0.2
η = 0.1

FIG. 16. PDFs of quantities that characterize the azimuthal large-scale flow and laminar-turbulent interface:
(a) |Uθ |/uτ and (b) α, for Reτ = 52 and 56, η = 0.1–0.8.

(not shown). The statistical mode analysis allows to read directly the typical angles of the oblique
stripes of Fig. 17(b). However, it does not yield an accurate value of the critical value ηc(Reτ ) of η at
which stripes emerge: all that can be deduced is that ηc lies in the range [0.3 : 0.4]. An alternative,
specific to the case of unimodal-bimodal transitions, is to measure the convexity of the PDF near the

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5
 Reτ = 80
 Reτ = 64
 Reτ = 56

η

M
(|U

θ/u
τ|)

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

10

20
 Reτ = 80
 Reτ = 64
 Reτ = 56

η

M
( α

)

FIG. 17. Statistical mode extracted from the PDFs in Fig. 16 of: (a) |Uθ |/uτ and (b) α, for Reτ = 52 and
56, η = 0.1–0.8. The data suggests a critical value of η = ηc between 0.3 and 0.4.
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

-0.0004
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0

0.0002

0.0004

 Reτ = 64
 Reτ = 56

η

a

FIG. 18. Coefficient a in Eq. (15) extracted from the PDF of the angle α.

origin. Suppose that the PDFs in Fig. 16 are even functions and can be fitted near the origin x = 0 as

p(x,η,Reτ ) = ax2 + c, (15)

with a = a(η,Reτ ) and c = p(0,η, Reτ ). The coefficient a(η,Reτ ) is negative for a unimodal
distribution centered at x = 0 and positive for a bimodal distribution whose maximum lies away
from x = 0. As a consequence, a(η, Reτ ) = 0 can be used to define ηc(Reτ ). The values of a(η,Reτ )
are plotted in Fig. 18 as functions of η parametrized by Reτ after the PDF of α has been approximated
by a quadratic function using a least squares algorithm. Consistently with the mode analysis, ηc lies
in the interval [0.3 : 0.4] for both Reτ = 64 and 56 (the value Reτ = 80 has been omitted as it is too
high to sustain oblique stripes). The present data suggests even a slight decrease of ηc with Reτ , but
this remains to be verified for a larger number of values of Reτ .

V. DISCUSSION

The present results have confirmed that annular pipe flow (aPf), parametrized by both its radius
ratio η and the friction Reynolds number Reτ , is a relevant candidate to track the transition from puffs
to oblique stripes. The main physical mechanism responsible for this transition is the relaxation of
the azimuthal confinement (measured in units of the gap d) as η increases, allowing for more freedom
in the orientation of the large-scale flow occurring at the laminar-turbulent interfaces, should such
interfaces exist. Beyond a critical azimuthal extent, a neater selection of orientations occurs, ruled by
the mass conservation at the interfaces. As η increases from 0 to 1, the following turbulent regimes
are encountered:

(1) spatiotemporal intermittency as in circular pipe flow for 0 < η � 0.2.
(2) mixed distribution of straight and helical puffs for 0.2 � η � 0.4.
(3) regular patterns of oblique stripes, so-called helical turbulence, for η � 0.5.
(4) disordered patterns of oblique stripes for 0.5 � η � 1.
The last item has not been verified here but is expected to match all observations in extended planar

shear flows (with additional effects due to the small wall curvature). This apparent disorganisation
occurs when the transverse extent is sufficiently larger than the correlation length of the intermittent
regime, at least sufficiently above the critical point Rec

τ (η). The parameter space may also contain
new regimes so far unexplored. A statistical analysis has been carried out by focusing entirely on
the local structure and orientation of the large-scale flow. Note that other approaches are possible
to handle bifurcations from one turbulent regime to another one. When the two regimes of interest
are characterized by symmetry breaking (as is the case here where each oblique stripe violates the
Uθ = 0 symmetry), other order parameters can be considered (see, e.g., Ref. [22]). In the spirit
of pattern formation, the statistics of some well-chosen spectral coefficient characteristics of the
structures under study can be helpful. The transition from full turbulence to stripe patterns or to
puffs has been considered precisely in this manner for various shear flows [16,23,24]. Orientation
reversals of turbulent stripes in pCf were also monitored by considering the competition between
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two or more Fourier coefficients corresponding to different wave vectors [25]. Modal approaches,
however, show the strong disadvantage of being domain-dependent. We believe that the current
statistical approach, more local than modal, is more adapted to the spatiotemporally intermittent
flow regimes encountered here, especially for low η.

While an experimental verification of such flow regimes is called for, it is instructive to discuss
whether other shear flow geometries lend themselves easily to bifurcations between intermittently
turbulent regimes. The transition from puffs to stripes corresponds essentially, as previously shown, to
a transition from one-dimensional to two-dimensional coexistence, via the occurrence of quasi-one-
dimensional stripe patterns. Other homotopies can be suggested by similarly tuning the confinement
in the direction transverse to the mean flow. Imposing confinement by sidewalls in an otherwise
Cartesian geometry is a possible option. A rectangular duct flow driven by a pressure gradient, with
a cross-section of dimensions Ly × Lz, can be parametrized both by a Reynolds number and an
aspect ratio A = Lz/Ly (A � 1 by convention). The geometry of A = 1 corresponds to a square
duct whereas A → ∞ is equivalent to plane Poiseuille flow. The laminar profile is known to be
linearly stable for all values of Reτ of interest here. This parametric problem has been considered
numerically in Ref. [26]. Again straight puffs have been identified for A � 3, whereas spots with
somewhat oblique interfaces have been visualized for A � 4. The authors have reported a peculiarity
of the confinement by solid sidewalls: permanent local relaminarization at the sidewalls affecting the
localization of the turbulent structure. This is consistent with the recent experimental observations
of spots in a duct flow with aspect ratio A = 7.5 [27]. While this system has the advantage of
dealing with flat walls only, the local relaminarization at the sidewalls is interpreted as an additional
complication obscuring the transition from puffs to oblique stripes.

Other examples closer to the present case of aPf share a common geometry but differ in the
way energy is injected into the flow. The Taylor-Couette system, where the two coaxial cylinders
rotate with different frequencies �i and �o in the absence of an axial pressure gradient, is such
an example. It is known that for η → 1, the case of exact counter-rotation μ = �o/�i = −1
corresponds to plane Couette flow, which has a linearly stable base flow. It has been experimentally
verified for η slightly below 1 that low-Re regimes with μ ≈ −1 feature two-dimensional intermittent
arrangements of oblique stripes with both positive and negative angles [6,28,29]. Reducing η with
fixed μ, however, leads to changes in the stability of the base flow. Other regimes such as those
featuring interpenetrating spirals [30] enter the bifurcation diagram and make the continuation from
stripes to puffs unlikely. It is an open question whether other paths in an enlarged parameter space
could lead to such a transition.

Finally, an interesting candidate for the continuation from stripes to puffs is the sliding Couette
flow (sCf), where the outer cylinder is fixed and the inner one moves axially with a constant velocity
(see, e.g., Ref. [31]). This flow is thought to be equivalent to pCf in the η → 1 limit and again to
pipe flow in the vanishing η limit. It has been verified numerically [32] that this system bridges
puffs to spots in a way apparently similar to the present system. Whether and how the homotopies
in sCf and aPf really differ remains an open question. However, aPf shows the important advantage
of being easier to achieve experimentally as it does not include any motion of the solid walls, only
a pressure gradient imposed on a fixed geometry.
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