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Two initially spherical bubbles rising in quiescent liquid
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A pair of bubbles starting from rest and rising side-by-side in a liquid have been shown
earlier to display spherical and ellipsoidal shapes. In contrast to earlier computational studies
on the two-dimensional dynamics of a pair of bubbles, we study the fully three-dimensional
motion of the bubbles in the inertial regime. We reveal the destabilizing nature of the inter-
action between the wakes of the bubbles, which causes them to rise in an oscillatory path.
Such three-dimensionality sets in earlier in time than for a single bubble and also at a lower
inertia. The interaction leads to a mirror symmetry in the trajectories of the two bubbles,
which persists for some time even in the high-inertia regime where each path is chaotic.
The effect of the inertia and initial separation on the mirror symmetry of the path, the vortex
shedding pattern, and the attraction and repulsion between the bubbles are examined. The
bubble rise has been interestingly observed to be symmetrical about the plane perpendicular
to the separation vector for all separation distances considered in the present study.
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I. INTRODUCTION

The phenomenon of gaseous bubbles rising together in liquid is not only encountered in many
chemical and petrochemical applications, such as bubble column reactors and heat exchangers [1,2],
but also in natural phenomena [3]. In industrial applications, gaseous bubbles are frequently used
to enhance heat and mass transfer, and this enhancement depends primarily on the interaction and
distribution of bubbles, apart from the flow characteristics. Thus the efficiency of these processes
can be hugely influenced by topological changes in the bubbles and the paths they follow. In this
context, a fundamental understanding of the flow dynamics of simplified systems, such as the rising
of a single bubble or two bubbles under the action of buoyancy, can be very useful to analyze
the above-mentioned complex flows involving many bubbles. Several researchers in the past have
investigated the dynamics of rising of a single bubble or two bubbles in confined and unconfined
media, which are briefly reviewed below.

The hydrodynamics of a single bubble in quiescent liquid has been studied both computationally
(see, e.g., Refs. [4–6]) and experimentally (see, e.g., Refs. [7,8]). The experimental investigation on
this subject provides a library of bubble shapes, including skirted, spherical cap, and oscillatory and
nonoscillatory oblate ellipsoidal. Recently Tripathi et al. [9] conducted three-dimensional numerical
simulations of an initially spherical gaseous bubble rising under buoyancy in a liquid and identified
five different regions (shown in Fig. 1), which agree well with the gross features obtained in the
experimental study of Bhaga and Weber [8]. It was shown in the computational study [9] that
in region I [which corresponds to low Eötvös number, Eo (≡ρogR2/σ ), and low Galilei number,
Ga (≡ρo

√
gRR/μo)] the bubble maintains azimuthal symmetry. The bubble shapes in this region

are either spherical, oblate, or dimpled. In region II (high Eo and low Ga), a bubble forms an
axisymmetrical cap with a thin skirt trailing from the main body of the bubble (known as a skirted
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FIG. 1. Different regions in the Ga-Eo plane. Region I: axisymmetric; region II: skirted, region III:
zigzagging or spiraling, region IV: peripheral break-up, and region V: central break-up. Also shown are
the points A, B, C, D,E, and F , which correspond to (Ga, Eo) = (22.4,4), (32,4), (60,4), (25,1), (100,2), and
(25,4), respectively. These sets of Ga and Eo are considered in the present study. This figure is a modified plot
taken from Tripathi et al. [9].

bubble). A bubble in region III (low Eo and high Ga) rises in a zigzag or a spiral path. A region III
bubble remains its integrity, but its shape changes with time due to the influence of relatively low
surface tension force but high inertial force as compared to an axisymmetric (region I) bubble. This
phenomenon is commonly known as path instability [10–12]. A bubble in regions IV and V undergoes
different types of break-ups, namely, peripheral break-up (region IV) and central break-up (region V).

The dynamics of multiple bubbles has also been a subject of research for a long time. Many
researchers [13–15] investigated the interactions between flow and many bubbles in the context of
bubble-column reactors, bioreactors, etc. However, in line with the context of the present study, we re-
view only the previous investigations conducted on a pair of bubbles rising side-by-side. The hydrody-
namics of two bubbles rising side-by-side not only gets affected by direct interactions of the bubbles
(which may result in coalescence for some parameter values), but also the interactions between the
wakes or boundary layer developed around these bubbles, which can influence the shape deformations
and paths of these bubbles. In the present study, we are mainly interested in the later phenomenon.

The interactions and trajectories of a pair of bubbles have been investigated analytically by Leal
[16] in the Stokes flow and by a few researchers [17,18] in the potential flow regimes. The analytical
solution in the Stokes flow limit predicts the sedimentation of drops and interaction between slowly
moving drops very well, whereas the trajectories of bubbles have been predicted well in the potential
flow limit by the solution proposed by Kok [17,19]. He also experimentally showed that the two
bubbles rising vertically in ultrapure water tend to rotate to align horizontally. By conducting
two-dimensional simulations, Chen et al. [20] found that two bubbles rising side-by-side coalesce,
and the resultant single bubble shows shape oscillations, which agrees with those observed in the
experiment of Duinevald [21], who experimentally found that the zigzagging pair of bubbles have a
higher amplitude of oscillation than a corresponding isolated bubble. He also noted that the potential
theory fails to predict such motion because of the boundary layer interactions in the experiments.
This has also been supported by the experiments and numerical simulations of Sanada et al. [22] and
Legendre et al. [18], respectively. Sanada et al. [22] also experimentally investigated the bouncing
and coalescence of a pair of bubbles rising side-by-side in an initially quiescent liquid. They found
that for higher Reynolds numbers and low Weber numbers the bubbles approach each other and
collide resulting in either coalescence or bouncing of the bubbles. They found that the Reynolds
number at which the bubbles approach each other and collide decreases with an increase in the
Morton number (Mo = Eo3/Ga4). However, they considered only a less viscous surrounding fluid
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(Mo < 1.14 × 10−5), and no information was given regarding the wake characteristics. Legendre
et al. [18] predicted that for every Reynolds number there exists a separation distance for which the
two effects, irrotational and wake effects due to viscosity, cancel each other and the drag of the two
bubbles becomes equal to that of an isolated bubble. Also, it is correlated with the existence of a
boundary in the separation distance and the Reynolds number phase plot which separates the regions
of attraction and repulsion between the bubbles. Recently a few researchers [23,25] also investigated
rising of a pair of bubbles in shear-thinning fluids and found that the attractive motion between the
bubbles was increased with the increase in the shear-thinning tendency of the surrounding fluid.

As the above literature review shows, very few studies have been conducted to investigate the
detailed three-dimensional flow physics of deformable bubbles rising in a pair. Although there exist
a few numerical studies (see, e.g., Ref. [26]) of two bubbles rising under buoyancy, their focus was
mainly on validating the solver against existing experimental data. A detailed numerical study of a
pair of nondeformable bubbles rising in a quiescent liquid was also conducted by Legendre et al.
[18]. They used boundary fitted grids and considered only a quarter of the domain to simulate flow
past fixed spherical bubbles. On the other hand, our study is fully three-dimensional, which allows
motion and deformation of bubbles in the three-dimensional space. In contrast to Legendre et al.
[18], we observe the zigzagging and spiraling motion of bubbles, whereas they always predicted a
steady force acting between the bubbles. In the present work, we have investigated the rise of a pair
of bubbles inside a quiescent liquid in the low-inertial (high-viscosity) regime and have compared it
with the dynamics observed in case of a single bubble.

The rest of the paper is organized as follows. The details of the problem formulation are provided
in Sec. II. The results are discussed in Sec. III, and concluding remarks are given in Sec. IV.

II. FORMULATION

A schematic diagram of flow configuration considered in this study is given in Fig. 2. Two air
bubbles (designated by 1 and 2 of fluid i) of equal radius R rise side-by-side under the action of buoy-
ancy inside a square channel of width L and height H filled with a liquid (designated by fluid o). A
Cartesian coordinate system (x,y,z) is used to model the flow dynamics. Gravity acts in the negative z

direction. At time t = 0, the two spherical air bubbles 1 and 2 are kept at (0,−q/2,10R) (0,q/2,10R),
respectively. Initially, the air bubbles and the surrounding fluid are stationary. Three-dimensional
numerical simulations are performed to understand the rising dynamics of the bubbles. The numerical
method used is similar to the one used in Ref. [9] and is described briefly below.

In order to minimize the boundary effect, the outer boundaries are kept far away from the bubbles.
Free-slip and no-penetration conditions are imposed on all the boundaries of the computational
domain. The governing equations are the equations of mass and momentum conservation, given by

∇ · u = 0, (1)

ρ

[
∂u
∂t

+ u · ∇u
]

= −∇p + ∇ · [μ(∇u + ∇uT )] + δσκn − ρgj, (2)

where u = (u,v,w) denotes the velocity field, in which u, v, and w represent the velocity components
in the x, y, and z directions, respectively. The interface separating the air and liquid phases is obtained
by solving an advection equation for the volume fraction of the liquid phase, c (c = 0 and 1 for the
air and liquid phases, respectively):

∂c

∂t
+ u · ∇c = 0, (3)

where p is the pressure field, t denotes time, j denotes the unit vector along the vertical direction, g

is the acceleration due to gravity, σ represents the (constant) interfacial tension, δ is the Dirac delta
function (given by |∇c|), and κ = ∇ · n is the interfacial curvature, in which n is the outward-pointing
unit normal to the interface.
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FIG. 2. Schematic diagram showing the initial configuration of the bubbles of equal radius R (designated
by “1” and “2”) rising under the action of buoyancy inside a square computational domain of width L and
height H . The gaseous and the liquid phases are designated by i and o, respectively. The two bubbles are
initially separated by a distance q along the y coordinate, and placed at z = 10R initially. The value of L, and
H are fixed at 40R and 120R, respectively. The acceleration due to gravity, g, acts in the negative z direction.

The density, ρ, and the viscosity, μ, are assumed to depend linearly on the liquid volume fraction
c as

ρ = cρo + (1 − c)ρi, (4)

μ = cμo + (1 − c)μi, (5)

where ρi, μi and ρo, μo are the density and dynamic viscosity of the air and the liquid phases,
respectively.

The following scaling is used to nondimensionalize the above governing equations:

[x,y,z,q] = R[̃x,̃y,̃z,̃q], t = R

V
t̃, u = V ũ, p = ρoV

2p̃,

μ = μoμ̃, ρ = ρoρ̃, δ = δ̃/R, (6)

where the velocity scale is V = √
gR, and the tildes designate dimensionless quantities. After

dropping tildes from all nondimensional variables, the governing dimensionless equations are given
by

∇ · u = 0, (7)

∂u
∂t

+ u · ∇u = −∇p + 1

Ga
· [μ(∇u + ∇uT )] + δ

∇ · n
Eo

n − ρj, (8)

∂c

∂t
+ u · ∇c = 0, (9)
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where the dimensionless density and dynamic viscosity are given by

ρ = c + (1 − c)ρr, (10)

μ = c + (1 − c)μr. (11)

Here ρr (≡ρi/ρo) and μr (≡μi/μo) are density and viscosity ratios, respectively. An open-source
fluid flow solver, Gerris, created by Popinet [27], is used in the present study. The present numerical
method uses the framework of a volume-of-fluid approach that incorporates the surface tension
term as a body force in the Navier-Stokes equations [28]. In order to minimize the problem of
spurious currents, which one encounters while dealing with large density and viscosity ratios, a
height function-based balanced-force continuum-surface-force formulation is used [29]. In order to
ensure the accuracy of the results, a dynamic adaptive grid refinement is incorporated based on the
vorticity magnitude and bubble interface. This solver was also validated extensively by comparing
with the previous numerical and experimental results [9]. Figure 15 (see the Appendix) also shows
a comparison of the terminal shapes of an air bubble rising in a liquid obtained from the present
solver with those of Ref. [8] for different values of the Galilei number. The results obtained from
the present study are discussed next.

III. RESULTS

The nondimensional parameters in this problem are the Galilei number, the Eötvös number, and
the initial horizontal separation q between the bubbles, expressed as a multiple of a bubble radius.
The first two, as mentioned above, are defined, respectively, by

Ga ≡ ρog
1/2R3/2

μo

and Eo ≡ ρogR2

σ
.

Ga is a ratio of the inertial to the viscous forces in the problem. It is effectively a Reynolds number,
with the velocity scale based on gravity (

√
gR). Eo is also known as the Bond number, giving the

ratio of gravitational to surface forces. Throughout this study, the values of the density and viscosity
ratios are kept fixed at 10−3 and 10−2, respectively. First, we study the effect of varying the Galilei
number and the initial separation in turn, for a fixed Eo = 4.

A. Effect of bubble inertia (Ga)

The dynamics of two bubbles rising side-by-side are shown for different inertia, i.e., for Ga =
22.4, 32, and 60 in Figs. 3(a)–3(c), respectively. The Eötvös number is kept fixed at Eo = 4, and
initially the bubbles are separated by a distance q = 3 in the y coordinate. These values of Ga are
chosen because they represent qualitatively distinct regimes of the behavior of a single bubble rising
in an initially quiescent liquid. This can be seen in Fig. 1, where these parameters are denoted by
small circles termed as A,B, and C. In the context of a single bubble, point A lies well within region
I, where the bubble would adopt an axisymmetric shape and, after some initial transience, attain
a terminal velocity. Point C lies in region III, where a single bubble would execute zigzagging or
spiraling motion. Point B lies in the latter region, but very close to the border between regions I and
III. We now wish to examine how the behavior of the bubble gets modified by the presence of another
bubble of the same size rising simultaneously. The horizontal location of the center of gravity of
each bubble is denoted by yCG and xCG in the y and x coordinates, respectively. These positions of
the center of gravity of the bubbles are presented in the top and bottom panels of Figs. 3(a)–3(c),
respectively as the bubbles rise, as functions of the height z. The path of bubble 2 has been mirrored
about the x axis, so that one may easily examine whether the dynamics is symmetric. In order to
compare the rise dynamics with the single bubble behavior, the variations of yCG and xCG obtained
for a single bubble rising in the same liquid are plotted by black dot-dashed lines.
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FIG. 3. Variation of yCG (top panels) and xCG (bottom panels) along the vertical path of the two bubbles
released side by side. The Galilei numbers in each case are (a), (d) Ga = 22.4, (b), (e) Ga = 32, and (c), (f)
Ga = 60. The rest of the parameter values are Eo = 4, q = 3, ρr = 10−3, and μr = 10−2. The position of the
bubble initially placed at positive y (bubble 2) has been mirrored about the x axis in order to compare its
path with that of the other bubble. The black dot-dashed lines represent the path a single bubble released at
(x,y,z) = (0,0,10R) would follow.

The effect that is immediately evident is that the bubbles move away from each other progressively,
i.e., their horizontal separation in y shows an overall tendency to increase. This increase is modulated
by oscillations. At low inertia, where a single bubble would merely have traveled vertically upwards
at constant velocity, the two bubbles show small amplitude oscillations in the y-z plane as they move
away from each other [Fig. 3(a)], and their motion in the x axis is negligible, so the dynamics remains
two-dimensional. For Ga = 32 and 60 [Figs. 3(b) and 3(c)], the frequency of pitch of the spiraling
motion of the bubbles in the y-z plane is 0.12. In the case of single bubble, as well, it is nearly the
same (0.118). For Ga = 22.4, the two bubbles oscillate at a frequency 0.11 [Fig. 3(a)], but the single
bubble does not oscillates but merely migrates vertically along the axis of symmetry. The bubbles for
Ga = 22.4 migrate away from each other achieving a terminal vertical velocity and a small spreading
angle (made with the z axis) of radians. This migration is modulated by small-amplitude oscillations.
Thus the transition to oscillatory behavior sets in at a lower Galilei number than in the single bubble
case. In other words, the dynamics of a single bubble for Ga = 22.4 and Eo = 4 lies completely in the
axisymmetric region (region I in Fig. 1), i.e., the bubble rises along a vertical line, whereas the two
bubbles display an increasing separation modulated by small amplitude oscillations. The bubbles for
Ga = 32 also move away from each other at a spreading angle (with the z axis) of 0.017 radians, but
modulated now by high amplitude oscillations. In contrast, the dynamics of the bubbles for Ga = 60
appears to be chaotic. For two bubbles, the amplitude of oscillations at later times are 0.175, 0.708,
and 1.2 for Ga = 22.4, 32, and 60, respectively. In the case of a single bubble, the amplitude of
oscillations are much smaller, at 0.0317 and 0.157 for Ga = 32 and 60, respectively. Inspection also
reveals that for Ga = 32 and 60, a single bubble rises in a straight vertical path initially and then
oscillates later. However, it can be seen that the oscillations start from t = 0 in the case of two
bubbles rising simultaneously. Thus the presence of the second bubble significantly increases the
amplitude of oscillations and decreases the time of onset of oscillations as well as decreases the Ga
at which the transition from steady to oscillatory motion occurs. These changes due to the presence
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(a) (b) (c)

FIG. 4. The top view of the trajectories of the two bubbles for (a) Ga = 22.4, (b) Ga = 32, and (c) Ga = 60.
The top view of the trajectories of the single bubble is also shown by black dot-dashed lines. The other parameter
values are the same as in Fig. 3.

of the second bubble can be directly correlated with the changes in vortex shedding, as will be seen
later. In the case shown, the paths of the two bubbles are perfect mirror images of each other about
the x axis. When we examine the top view shown in Fig. 4(a), the systematic increase in separation
between the bubbles is apparent, and it is clear that the motion is confined to the y-z plane.

At a higher Galilei number [Fig. 3(b)] a single bubble begins to display spiraling motion. The two
bubbles execute spiraling motion too, while each increases its distance from the other. A breaking
of mirror symmetry is already in evidence. Note that the scale for xCG is exaggerated compared to
the one for yCG, but it is clear that the motion is three-dimensional now. The top view in Fig. 4(b)
shows how an initial rapid repulsion is followed by a slowly widening spiral motion. For purposes
of illustration, the three-dimensional trajectories in this case are shown in Fig. 5. Superimposed on
the moving apart of the two bubbles, a spiraling motion is seen whose pitch is comparable to its
radius, and whose amplitude at later times is smaller than that of a single bubble. At an even higher
Galilei number [Figs. 3(c) and 4(c)] the dynamics is fully three-dimensional, and the asymmetry
in the tracks of the two bubbles is very noticeable, as is the irregularity in the spiraling motion.
Oscillations set in sooner for the two bubbles case than for a single bubble.

The trajectories we have seen lead us to expect oscillations in the horizontal velocity components
as well, and these are shown as functions of time for the three Galilei numbers in Figs. 6(a) and
6(b). The temporal variations of vertical velocity component of the bubble, vbz, are also shown in
Fig. 6(c) for different values of Ga. Interestingly, for the higher Galilei numbers, the vertical velocity
shows oscillations [Fig. 6(c)] as well, with the bubbles alternatingly rising slower and faster. The

FIG. 5. Three-dimensional trajectories of single bubble (shown in black) and bubble pair (shown in indigo
and red) for Ga = 32. The rest of the parameter values are the same as in Fig. 3.
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FIG. 6. Temporal variations of the velocity, vb of the left bubble (bubble 1) for different values of Ga in
the (a) x, (b) y, and (c) z directions. The components vb in the x, y, and z directions are vbx, vby , and vbz,
respectively. (d) Phase portrait (vby versus vbz plot). The other parameter values are the same as in Fig. 3.

frequency of this variation is twice than that of the horizontal components. The in-plane velocities in
the phase portrait of Fig. 6(d) are therefore seen to follow figures of “eight.” This oscillation in the
vertical velocity is caused by the breaking of left-right symmetry in the two-bubble configuration
and is absent in the single bubble velocity pattern. It can also be seen in Figs. 6(b) and 6(c) that
only for low Galilei number (Ga = 22.4) does the left bubble achieve a terminal velocity in the z

direction (vbz is approximately equal to 1.05), and the variations in other components of bubble
velocity, vbx and vby , are very small. The average values of vbx and vby for Ga = 22.4 are about 0
and −0.02, respectively. The motions of the right and left bubbles are symmetrical about the x axis.
Thus, the bubbles for low Ga move away from each other very slowly in the y-z plane at x = 0. In
other words, for Ga = 22.4 and Eo = 4, a single bubble rises along a vertical line, whereas the two
bubbles display an increasing separation modulated by small amplitude oscillations. The dynamics
of the bubbles at high Ga values is three-dimensional. The transition from two-dimensional motion
to three-dimensional motion occurs at Ga ≈ 30 for Eo = 4. The mechanism of this transition was
studied by Cano-Lozano et al. [30,31] via a stability analysis. Their study consisted of perturbations
on an axisymmetric bubble shape, whereas the presence of another bubbles breaks the axisymmetry
of the flow around a given bubble at all Ga. We have seen that this promotes three-dimensionality.
For Ga = 60, the motion appears to be chaotic. The dimensionless force of attraction and repulsion
acting on bubbles 1 and 2, which are defined as mba1 and mba2, are plotted in Fig. 7. Here mb

represents the mass of each bubble, and a1 and a2 represent the accelerations of bubbles 1 and 2 in
the y direction, respectively. Kok [17] derived the equations of motion for a spherical bubble in the
Lagrangian framework using a potential flow approximation, which was later used by De Vries et al.
[24] after taking into account the dipole interactions between a vertical wall and a bubble. Additional
physics was accounted for in these equations by the authors to obtain the repeated bouncing, sliding,
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FIG. 7. Temporal variations of lateral force (in the y direction) acting on bubbles 1 and 2 for different values
of Ga. The other parameter values are the same as in Fig. 3.

and lift effects in the model. The dimensionless lift force derived by Ref. [24] for their experiments is
given by L ≈ πU 2

T /13, which in dimensionless form is 0.24. Our bubbles are not restricted to a plane
and are seen to undergo spiraling motion. The main force of one bubble on the other is thus in the
azimuthal (horizontal component along the spiral) rather than the radial direction (y). Accordingly
the lift forces obtained in the present study (Fig. 7) are two orders of magnitude smaller as compared
to the magnitudes suggested by these authors. Also, the lift forces obtained in Ref. [32] were on the
order of 0.05 for Ga ≈ 100 and q = 1, which too is an order of magnitude larger than the results
of the present study. It is to be noted that in the case of Refs. [17,24,32] the bubbles were spherical
with no motion in the x direction. Our study displays the importance of a three-dimensional study
of bubbles in the flow regime considered in our investigation.

In order to understand the associated shape deformation, while the two bubbles are moving away
(for Ga = 22.4) or spiraling (for Ga = 60), the spatio-temporal evolutions of shape of the bubbles
are shown for these Galilei numbers in Figs. 8 and 9, respectively. Two views, tilted-side and top
views, are shown. The shape evolutions of the corresponding case of a single bubble rising are also
shown in the right panel of each figure. It can be seen in Fig. 8(a) that the two bubbles deform to

FIG. 8. Spatio-temporal variation of the shape of the bubble in (a) tilted-side view and (b) top view for
Ga = 22.4. From bottom to top: t = 10, 20, 30, 40, and 50. The remaining parameter values are the same as in
Fig. 3.
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FIG. 9. Spatio-temporal evaluations of shape of the bubble for (a) tilted-side and (b) top view for Ga = 60.
From bottom to top: t = 10, 20, 30, 40, and 50. The rest of the parameter values are the same as in Fig. 3.

steady oblate shapes, which look similar to that observed for the single-bubble case. The bubbles
remain circular when viewed from the top [Fig. 8(b)] as they move away from each other. Unlike for
Ga = 22.4, in the high Galilei number case (Ga = 60), it can be seen in Figs. 9(a) and 9(b) that the
bubbles undergo unsteady large asymmetrical deformations, which are evident in both the tilted-side
and top views. The deformations are similar to those displayed by a single bubble but set in sooner
than for a single bubble; this difference is visible at t = 10 in the figure.

The effect of one bubble on the other is most apparent in the vortex-shedding patterns, as shown
for different Galilei numbers in Figs. 10(a)–10(c) at t = 15 and in Figs. 10(d)–10(f) at t = 30. The
positive and negative values are shown by red and green, respectively, for ωz = ±0.3. At the low
Galilei number [Ga = 22.4; see Figs. 10(a) and 10(d)] of regime I motion, there is no visible vorticity
in the case of a single bubble, but vorticity is developed in the equatorial plane when two bubbles rise
side-by-side. Further, the wake of each is distorted from a straight path by the presence of the other
wake, with the oppositely signed vortices being drawn to each other. This leads to an asymmetry in
the pressure distribution on each bubble, resulting in repulsive motion rather than a solely vertical
rise. With the increase in the Galilei number [for Ga = 32; see Figs. 10(b) and 10(e)], vortex shedding
occurs in the wake regions in case of two bubbles. It is to be noted that when we plot the vorticity
contours for ωz = ±0.05 or less, we observe vortex shedding even in case of a single bubble at
Ga = 32, but vortex shedding does not appear for both the single and two bubbles at Ga = 22.4.
This is a strong evidence that vortex shedding is the mechanism behind the oscillatory motion of the
bubbles. The vortex shedding becomes more intense for high Galilei number (Ga = 60) as shown
in Figs. 10(c) and 10(f). For Ga = 60, a smaller tail (less intense) of vortex shedding appears for the
single-bubble case. For the intermediate and high Galilei numbers, the shed vortex from each bubble
alternates in sign with time. This results in oscillatory and spiraling behavior. The shedding from
one bubble moreover is out of phase with the shedding from the other bubble, and again there is a
distortion in the shed pattern, resulting in overall increase in bubble separation, as was seen in Fig. 3.

B. Effect of initial separation, q

We now examine the effect of initial separation between the bubbles, for a fixed Galilei number of
32. The trajectories are shown in the y-z and x-z planes in Fig. 11. Two features are noteworthy. The
first is that the initial increase in bubble separation is stronger when the bubbles are nearer to each
other, while at later times they settle into a trajectory which, in the y-z plane alone, does not depend
on the initial separation. The frequencies of oscillations for q = 2.2, 3, and 4 are found to be 0.1, 0.12,
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FIG. 10. Isosurfaces for z vorticity at t = 15 (a)–(c) and t = 30 (d)–(f) for (a), (d) Ga = 22.4, (b), (e),
Ga = 32, and (c, f) Ga = 60. The positive and negative values are shown by red and green, respectively;
ωz = ±0.3. The top and bottom panels in each subfigure are for two bubbles and a single bubble, respectively.
The rest of the parameter values are the same as in Fig. 3.

and 0.12, respectively. The amplitude and frequency of oscillations appear to be insensitive to q for
the parameter values considered in this study. The speed of the bubbles along the line of separation
is shown in Fig. 12, and it is seen that barring a phase, all three initial separations settle into the same
oscillation in the speed along the y direction. Thus, for initial separations below a threshold, the dy-
namics, in the y-z plane alone, at this Galilei number follows a common pattern except at early times.

The second striking feature of this dynamics is that the three-dimensional nature of the trajectories
is highly dependent on the initial separation. Bubbles which start life close to each other remain
tightly bound in their futures, displaying trajectories that are mere mirror images of each other, as
seen in Fig. 11(a), top and bottom panels. However, this symmetry is broken when bubbles start
life farther apart. One of the bubbles oscillates gently into the third dimension, whereas the other
displays large forays in the x (cross) direction. While the dynamics remains out-of-phase in the
y-z plane, the phase in the x-z plane of one bubble is not tied to the other. The resulting complete
trajectories are seen in Fig. 13. For q � 3, one of the bubbles has a significantly lower spiraling
radius than the other. At all initial separations, both bubbles have smaller spiraling amplitudes than
a single bubble does under the same conditions.
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FIG. 11. Variation of yCG (top panels) and xCG (bottom panels) along the vertical path of the two bubbles
released side by side for different values of q: (a), (d) q = 2.2, (b), (e) q = 3, and (c), (f) q = 4. Here Ga = 32
and Eo = 4 (Point B). The position of the bubble initially placed at positive y (bubble 2) has been mirrored
about the x axis in order to compare its path with that of the other bubble.

C. Some other cases

In order to understand how the dynamics changes if we slightly vary the parameters, we investigate
motion of bubbles for some other sets of (Ga,Eo), designated by points D (Ga = 25, Eo = 1), E

(Ga = 100, Eo = 2), and F (Ga = 25, Eo = 4) in Fig. 1. In Fig. 14(a) the variations of yCG and
xCG in the z directions are plotted for bubbles 1 and 2 (mirrored about the x axis) for Ga = 25 and
Eo = 1 (point D). This point is slightly closer to the boundary separating regions I and II, i.e., with
slightly higher inertia than the bubbles at point A, whose dynamics is investigated in Fig. 3(a). It can
be seen in Fig. 14(a) that bubbles 1 and 2 migrate away from each other with some path oscillations
at the earlier times. The wavelength of these initial oscillations are larger than that of the bubbles
at point A [Fig. 3(a)]. However, the higher surface tension (low Eo) suppresses asymmetrical shape

0 10 20 30 40 50
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FIG. 12. Variation of vby (velocity of the left bubble, bubble 1 in the y direction) with time for different
values of q. The rest of the parameter values are the same as in Fig. 11.
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FIG. 13. The top view of the trajectories of the bubble for (a) q = 2.2, (b) q = 3, and (c) q = 4. The top
view of the trajectory of the single bubble is also shown by black dot-dashed lines. The rest of the parameter
values are the same as in Fig. 11.

deformations of the bubbles as compared to those associated with point A. This in turn minimizes
the path oscillations of the bubbles at later times. In Fig. 14(a) the bubbles are initially separated by
a distance q = 3 in the y coordinate.

Then we investigate the rising dynamics of the bubbles at point F for two values of q, i.e., q = 4
and 2.2. The value of Eo for point F is the same as that of point A, but Ga is slightly higher than that
of point A. In Fig. 14(b) (q = 4, point F), it can be seen that both bubbles move away for each other
progressively, and this increasing separation is modulated by oscillations. The oscillations in the top
panel of Fig. 14(b) are larger than those observed in Fig. 3(a). In Fig. 14(c) (q = 2.2, point F), the
top panel shows that when we increase the initial distance between the bubbles, the lateral motion of
the bubble decreases. This can be visualized by comparing the top panels of Figs. 14(b) and 14(c).
It can be seen in the bottom panels of Figs. 14(b) and 14(c) that their motion in the x-z plane is
negligible. Close inspection also reveals that the amplitude of oscillations increases progressively
for Eo = 4 [see Figs. 14(b) and 14(c)], while it decreases for Eo = 1 [see Fig. 14(a)]. The increase
in the amplitude of oscillations observed for Eo = 4 can be attributed to the larger deformation of
the bubbles (due to lower surface tension) as compared to that for Eo = 1.

Next, we investigate the dynamics at point E in Fig. 14(d). This point is located in the central part
of region III and corresponds to a set of parameters in the high inertial regime. It can be seen in the top
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FIG. 14. Variation of yCG (top panels) and xCG (bottom panels) along the vertical path of the two bubbles
released side by side: (a), (e) Ga = 25, Eo = 1, q = 3 (Point D), (b), (f) Ga = 25, Eo = 4, q = 4 (Point F), (c),
(g) Ga = 25, Eo = 4, q = 2.2 (Point F), and (d), (h) Ga = 100, Eo = 2, q = 3 (Point E). The position of the
bubble initially placed at positive y (bubble 2) has been mirrored about the x axis in order to compare its path
with that of the other bubble.
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panel of Fig. 14(d) that the motion of the bubbles in the y-z plane is chaotic, although the paths of the
two bubbles are perfect mirror images of each other about the x axis till they reach up to z ≈ 40, after
which they deviate slightly from each other. The bottom panel of Fig. 14(d) presenting the motion
of the bubbles in the x-z plane shows that there is some foray into the third dimension as they rise.

IV. CONCLUDING REMARKS

Two spherical objects rising through a heavier fluid in the Stokes flow regime would maintain
their spacing. In particular, if the two objects are initially in the same horizontal plane, they would
rise in straight vertical paths and the line separating them would be horizontal and of constant length.
We ask how two identical inertial bubbles rising under gravity would respond to each other. We
focus our attention on two regimes, termed regimes I and III in Tripathi et al. [9], in which a single
bubble would display vertical rise in a straight line and oscillatory or zig-zag motion, respectively.
We find that in both regimes, the vortices shed by the two bubbles interact strongly with each other,
and the bubbles tend to move apart from each other as they rise. Further, the propensity to go to
a spiraling or oscillatory state is increased by the presence of the second bubble. The interaction
between the shed vortices organizes the phase of the oscillations such that the motion of the bubbles
tend to be mirror images of each other, except at significant inertia and high initial separation, where
the motion is three-dimensional and departures from mirror symmetry are observed particularly in
the plane perpendicular to the separation vector. While the presence of the second bubble causes a
drift along the separation line, it reduces the spiraling amplitude of each bubble. Increasing inertia
has the effect of destabilising the steady trajectories, and chaotic motion is observed at high inertia,
in a regime where a single bubble would display periodic oscillations. Interestingly, however, the
mirror symmetry is preserved in the chaotic regime as well, which speaks of a phase locking in the
vortex shedding of the two bubbles. A stability analysis of this flow will confirm our findings.
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APPENDIX: VALIDATION OF THE NUMERICAL SOLVER

FIG. 15. Comparison of terminal shapes of an air bubble in water (large viscosity and density ratios)
obtained from the present numerical solver with those of Bhaga and Weber [8] for Eo = 29 and three values of
Ga: (a) Ga = 2.316, (b) Ga = 3.094, and (c) Ga = 4.935.
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