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In a wide range of applications, microfluidic channels are implemented in soft substrates.
In such configurations, where fluidic inertia and compressibility are negligible, the
propagation of fluids in channels is governed by a balance between fluid viscosity
and elasticity of the surrounding solid. The viscous-elastic interactions between elastic
substrates and non-Newtonian fluids are particularly of interest due to the dependence of
viscosity on the state of the system. In this work, we study the fluid-structure interaction
dynamics between an incompressible non-Newtonian fluid and a slender linearly elastic
cylinder under the creeping flow regime. Considering power-law fluids and applying the
thin shell approximation for the elastic cylinder, we obtain a nonhomogeneous p-Laplacian
equation governing the viscous-elastic dynamics. We present exact solutions for the pressure
and deformation fields for various initial and boundary conditions for both shear-thinning
and shear-thickening fluids. We show that in contrast to Stokes’ problem where a compactly
supported front is obtained for shear-thickening fluids, here the role of viscosity is inversed
and such fronts are obtained for shear-thinning fluids. Furthermore, we demonstrate that
for the case of a step in inlet pressure, the propagation rate of the front has a t

n
n+1

dependence on time (t), suggesting the ability to indirectly measure the power-law index
(n) of shear-thinning liquids through measurements of elastic deformation.

DOI: 10.1103/PhysRevFluids.2.073301

I. INTRODUCTION

Viscous-elastic interaction (VEI) is a subfield of fluid-structure interaction focused on fluid
motion at low-Reynolds numbers [1]. VEI received considerable attention over recent years due to
its relevance to a wide spectrum of natural processes and applications. These include biological flows
[2,3], geophysical and geological flows [4], suppression of viscous fingering instabilities [5–10],
manufacturing of micro-electro-mechanical systems [11,12], development of flexible microfluidic
valves [13], and soft robotics [14–17].

In particular, the case of Newtonian viscous flow through elastic channels has been extensively
studied as a model problem for internal VEI flows such as those found in veins and arteries [18],
collapsible tubes (see Refs. [19,20] and [1], ch. 8, and references therein), and soft actuators
[21]. In the field of micro- and nano-fluidics, channels are often fabricated from flexible materials
(e.g., PDMS), which deform under internal or external pressures [22,23]. While many microfluidic
applications involve non-Newtonian fluids, very few studies examined the deformation field and
flow of non-Newtonian fluids within elastic configurations. In addition to an academic interest in
such systems, we believe they hold potential for novel applications, particularly in soft robotics and
soft lab-on-a-chip systems, where the choice of fluid properties could allow new modes of actuation
and flow control.

In this work, we extend the recent study of Elbaz and Gat [21] which focused on Newtonian
fluids, and analyze the viscous-elastic dynamics of non-Newtonian power-law fluids flowing through
a slender linearly elastic cylinder. In Sec. II we present the problem formulation as well as the key
assumptions we use in the derivation of the model. In Sec. III we apply the lubrication approximation
to the flow equations and the thin shell approximation to the elasticity equations and derive a
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FIG. 1. Schematic illustration of the examined configuration, showing the coordinate system and relevant
physical parameters. An elastic cylinder of inner radius r̃c and wall thickness h̃m is clamped at z̃ = 0 and contains
a non-Newtonian power-law fluid. Viscous-elastic interaction between the fluid and the elastic structure, induced
by externally applied pressures p̃inlet and p̃e at the inlet and the outer boundary respectively, leads to radial, d̃r ,
and axial, d̃z, displacement fields of the elastic cylinder.

nonlinear p-Laplacian governing equation for the viscous-elastic dynamics. We provide appropriate
scaling for physical variables and clarify the range of validity of the model. In Sec. IV we examine
the viscous-elastic dynamics of the system, subjected to various initial and boundary conditions,
and obtain both exact and numerical solutions for the pressure and deformation fields for both
shear-thinning and shear-thickening fluids. In Sec. V we demonstrate and discuss the inverse role of
viscosity in the p-Laplacian equation governing the viscous-elastic problem, as compared to Stokes’
problems [24–26]. We conclude with a discussion of the results in Sec. VI.

II. PROBLEM FORMULATION

We study the low-Reynolds number fluid-structure interaction dynamics of non-Newtonian,
incompressible, axisymmetric flow through a slender linearly elastic cylinder. Figure 1 presents a
schematic illustration of the configuration and coordinate system. We hereafter denote dimensional
variables by tildes, normalized variables without tildes, and characteristic values by an asterisk
superscript.

We employ a cylindrical coordinate system (r̃ ,θ̃ ,z̃) whose z̃ axes coincides with the symmetry
line of the cylinder. The elastic cylinder is clamped at z̃ = 0 and has an initial uniform radius r̃c,
constant wall thickness h̃m, Young’s modulus Ẽ, and Poisson’s ratio ν. The fluid’s density is ρ̃ and
is assumed to be constant, its velocity is ũ = (ũr ,ũz), and its pressure is p̃. The externally applied
pressures p̃inlet and p̃e at the inlet and the outer shell boundary result in viscous-elastic interaction
between the non-Newtonian fluid and the elastic cylinder, which in turn leads to both radial, d̃r , and
axial, d̃z, deformation fields. The characteristic length scale in the ẑ direction is denoted by l̃∗, while
d̃∗

r and d̃∗
z are the characteristic radial and axial deformations, respectively.

We further assume a slender geometry, thin walls, negligible fluidic inertia effects (small
Womersley number), and small deformations in both the radial and axial directions. These can
be summarized as

ε1 = r̃c

l̃∗
� 1, ε2 = h̃m

r̃c

� 1, Wo � 1, ε3 = d̃∗
r

r̃c

∼ d̃∗
z

l̃∗
� 1, (1)

allowing the use of lubrication and thin elastic shell approximations. The exact expression for the
Womersley number appearing in (1) depends on the viscosity model, which we will define in (12).
Furthermore, defining both ratios, d̃∗

r /r̃c and d̃∗
z /l̃∗, to be of scale ε3 emanates from mass conservation

of the fluid and the constitutive law of the elastic structure, as shown in the following section.

III. VISCOUS-ELASTIC GOVERNING EQUATIONS FOR POWER-LAW FLUIDS

A. Fluidic problem

Description of the non-Newtonian fluid rheology requires the use of a specific constitutive model.
Of all models, the commonly used power-law model approximately describes the behavior of

073301-2



VISCOUS-ELASTIC DYNAMICS OF POWER-LAW FLUIDS . . .

shear-dependent non-Newtonian fluids over an intermediate range of shear rates, and at the same
time is sufficiently simple to allow analytical treatment. Therefore, throughout this work we consider
the following constitutive model for the viscosity η̃ [27]

η̃(γ̇ ) = μ̃eff γ̇
n−1, (2)

where n is the dimensionless power-law index, μ̃eff is the effective constant viscosity with units

Pa sn, and γ̇ is the shear rate defined as γ̇ =
√

2 D̃: D̃, where D̃ is the rate of deformation tensor
given by D̃ = (∇̃ũ + ∇̃ũ†)/2. The power-law index lies in the range 0 < n < 1 for shear-thinning
fluids, and n > 1 for shear-thickening fluids, while n = 1 represents the case of a Newtonian fluid.

Based on the assumptions mentioned above, the relevant governing equations and boundary
conditions are the continuity equation

1

r̃

∂

∂r̃
(r̃ ũr ) + ∂ũz

∂z̃
= 0, (3)

the momentum equation in the ẑ direction

ρ̃

(
∂ũz

∂t̃
+ ũr

∂ũz

∂r̃
+ ũz

∂ũz

∂z̃

)
= −∂p̃

∂z̃
+ ∂

∂z̃
(τ̃zz) + 1

r̃

∂

∂r̃
(r̃ τ̃rz), (4)

the momentum equation in the r̂ direction

ρ̃

(
∂ũr

∂t
+ ũr

∂ũr

∂r̃
+ ũz

∂ũr

∂z̃

)
= −∂p̃

∂r̃
+ 1

r̃

∂

∂r̃
(r̃ τ̃rr ) + ∂

∂z̃
(τ̃zr ) − τ̃θθ

r̃
, (5)

the constitutive equation for the stress tensor τ̃ of power-law fluid

τ̃ = 2μ̃eff γ̇
n−1 D̃, (6)

as well as the no-slip and the no-penetration conditions at the solid-liquid interface

ũz|r̃=r̃c+d̃r
= ∂d̃z

∂ t̃
, ũr |r̃=r̃c+d̃r

= ∂d̃r

∂ t̃
+ ũz|r̃=r̃c+d̃r

∂d̃r

∂z̃
, (7)

where t̃ is the time.
Scaling by the characteristic dimensions, we define the normalized coordinates, (r,z) =

(r̃/r̃c,z̃/l̃
∗), normalized velocity, (ur,uz) = (ũr/ũ

∗
r ,ũz/ũ

∗
z ), normalized pressure, p = p̃/p̃∗, and

normalized time, t = t̃/t̃∗, where t̃∗ is a characteristic time scale, p̃∗ is a characteristic pressure, and
ũ∗

r and ũ∗
r are radial and axial characteristic velocities, respectively.

Substituting the normalized parameters into the continuity equation (3), order of magnitude
analysis yields the balance between radial and axial velocities

ũ∗
r

ũ∗
z

∼ r̃c

l̃∗
= ε1, (8)

and suggests the scaling for shear rate, γ̇ ,

γ̇ ∼ ũ∗
z

r̃c

[∣∣∣∣∂uz

∂r

∣∣∣∣ + O
(
ε2

1

)]
. (9)

Order of magnitude analysis of the boundary conditions (7) yields the characteristic viscous-elastic
time scale

t̃∗ ∼ d̃∗
z

ũ∗
z

∼ d̃∗
r

ũ∗
r

. (10)
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Substituting (8) into (4) and performing order of magnitude analysis, we obtain the axial characteristic
velocity in terms of the characteristic pressure

ũ∗
z = ε

1+1/n

1 p̃∗1/nl̃∗

μ̃
1/n

eff

, (11)

as well as the condition for a negligible Womersley number in terms of relevant physical quantities

Wo = ρ̃r̃2
c

η̃(γ̇ )t̃∗
= ε1

ε3

ρ̃ũ∗2−n
z r̃n

c

μ̃eff
= ρ̃ũ∗2−n

z r̃n+1
c

μ̃eff d̃∗
z

� 1, (12)

representing the ratio between the inertial-viscous time scale ρ̃r̃2
c /η̃(γ̇ ) = ρ̃r̃2

c /μ̃eff(ũ∗
z/r̃c)n−1 and

the viscous-elastic time scale t̃∗ = d̃∗
z /ũ∗

z .

Substituting (8)–(12) into (3)–(7) and applying the lubrication approximation results in the
following set of normalized equations and boundary conditions,

1

r

∂

∂r
(rur ) + ∂uz

∂z
= 0, (13)

∂p

∂z
= 1

r

∂

∂r

(
r

∣∣∣∣∂uz

∂r

∣∣∣∣
n−1

∂uz

∂r

)
+ O

(
Wo,ε2

1

)
, (14)

∂p

∂r
= O

(
ε2

1Wo,ε2
1

)
, (15)

and

uz|r=1+ε3dr
= ∂dz

∂t
, ur |r=1+ε3dr

= ∂dr

∂t
+ ε3

∂dz

∂t

∂dr

∂z
. (16)

Integrating (14) with respect to r and applying the symmetry condition at r = 0 yields

∂uz

∂r
=

∣∣∣∣∂p∂z

∣∣∣∣
1
n
−1

∂p

∂z

(
r

2

) 1
n

. (17)

Integrating (17) again with respect to r and applying the no-slip boundary conditions (16) results in

uz = 1

2
1
n

n

n + 1

∣∣∣∣∂p∂z

∣∣∣∣
1
n
−1

∂p

∂z
(r1+ 1

n − [1 + ε3dr (z,t)]1+ 1
n ) + ∂dz

∂t
. (18)

Defining volume flux as q = 2π
∫ r=1+ε3 dr

r=0 ruz dr , from (18) it follows that

q

2π
=

∫ r=1+ε3 dr

r=0
ruz dr = − 1

2
1+n
n

n

3n + 1

∣∣∣∣∂p∂z

∣∣∣∣
1
n
−1

∂p

∂z
+ 1

2

∂dz

∂t
+ O(ε3). (19)

Utilizing (16) and (19), and then integrating (13) with respect to r , we relate the pressure and
deformation fields

∂dr

∂t
+ ∂

∂z

(
− 1

2
1+n
n

n

3n + 1

∣∣∣∣∂p∂z

∣∣∣∣
1
n
−1

∂p

∂z
+ 1

2

∂dz

∂t

)
= 0. (20)

B. Elastic problem

A similar elastic configuration was considered by Elbaz and Gat [21], who provided relations
between the pressure and deformation fields. For completeness, we here present the governing
equations and these key relations, adapted to our notation.

Focusing on viscous-elastic time scales which are typically significantly longer than elastic inertial
time scales, and further neglecting body forces, the deformation field of an axisymmetric linearly
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elastic material is described by the momentum equations in the r̂ and ẑ directions (see Refs. [28,29]),

∂

∂r̃
(r̃ σ̃rr ) + ∂

∂z̃
(r̃ σ̃rz) − σ̃θθ = 0,

∂

∂r̃
(r̃ σ̃rz) + ∂

∂z̃
(r̃ σ̃zz) = 0, (21)

the strain-displacement relations for small deformations,

ẽrr = ∂d̃r

∂r̃
, ẽθθ = d̃r

r̃
, ẽzz = ∂d̃z

∂z̃
, ẽrz = 1

2

(
∂d̃r

∂z̃
+ ∂d̃z

∂r̃

)
, (22)

and Hooke’s law,

ẽrr = 1

Ẽ
[σ̃rr − ν(σ̃zz + σ̃θθ )], ẽθθ = 1

Ẽ
[σ̃θθ − ν(σ̃zz + σ̃rr )], (23a)

ẽzz = 1

Ẽ
[σ̃zz − ν(σ̃θθ + σ̃rr )], ẽrz = 1 + ν

Ẽ
σ̃rz. (23b)

The governing equations (21) are subjected to the boundary conditions applied by the liquid

σ̃rr |r̃=r̃c+d̃r
= −p̃ + 2μ̃eff γ̇

n−1 ∂ũr

∂r̃
, σ̃rz|r̃=r̃c+d̃r

= μ̃eff γ̇
n−1

(
∂ũz

∂r̃
+ ∂ũr

∂z̃

)
, (24)

and the external stress

σ̃rr |r̃=r̃c+d̃r+h̃m
= −p̃e, σ̃rz|r̃=r̃c+d̃r+h̃m

= 0. (25)

We follow the derivation of Elbaz and Gat [21] and obtain the normalized governing equations for
the radial and axial deformations in terms of the pressure

dr (z,t) =
(

1 − ν

2

)
p(z,t) − pe, dz(z,t) =

∫ z

0

[(
1

2
− ν

)
p(z,t) + νpe

]
dz, (26)

as well as the characteristic radial deformation, d̃∗
r , in terms of characteristic pressure

d̃∗
r

r̃c

= p̃∗

ε2Ẽ
� 1. (27)

In the Supplemental Material [30], we show that early scaling of the radial differential, dr̃ , in (21)
by h̃m (instead of r̃c see Ref. [21]) is a more natural choice which leads to significant simplification
in the derivation of (26) and (27) in the current configuration.

C. p-Laplacian equation governing the pressure field and its asymptotic approximation

To combine the fluidic and elastic problems, we substitute elastic relation (26) into the fluidic
relation (20), resulting in a single equation in terms of the pressure

∂p

∂t
− ∂

∂z

(∣∣∣∣∂p∂z

∣∣∣∣
1
n
−1

∂p

∂z

)
= 4 − 2ν

5 − 4ν

∂pe

∂t
, (28)

subjected to the initial and boundary conditions

p(z,t = 0) = pinitial(z), p(z = 0,t) = pinlet(t), (29)

where, for convenience, we have rescaled the time, t , according to

t → t

α
, α � 1

5 − 4ν

1

2
1−n
n

n

3n + 1
. (30)

Equation (28) is a nonhomogeneous one dimensional p-Laplacian equation describing the pressure
in an elastic cylinder containing a power-law fluid subjected to external forcing.
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Similar p-Laplacian equations are encountered in other problems involving the use of non-
Newtonian power-law fluids. For example, the p-Laplacian equation represents balance between
compressibility and viscosity for the flow of a weakly compressible non-Newtonian fluid in a porous
medium [31–33], as well as a balance between viscosity and inertia in Stokes’ first [24,34] and
second problems [25,26], where the operator is applied to the fluid velocity. We here rely on the
previous mathematical analysis of the p-Laplacian equation to provide insight into our viscous-elastic
problem, such as self-similarity and compact support of the solutions for pressure and deformation
fields.

For the case of a non-Newtonian power-law fluid that exhibits a weak shear-thinning or shear-
thickening behavior, we follow Ross et al. [35] and define the auxiliary small parameter ε,

n = 1 − ε, (31)

and the asymptotic expansion

p = p(0) + εp(1) + O(ε2), (32)

where |ε| � 1 is a small parameter which is positive for shear-thinning and negative for shear-
thickening behaviors. Using (31) and (32) the expansion 1/n ∼ 1 + ε + O(ε2) yields∣∣∣∣∂p∂z

∣∣∣∣
1
n
−1

= 1 + ε ln

∣∣∣∣∂p(0)

∂z

∣∣∣∣ + O(ε2). (33)

We note that the expansion (33) is valid only provided the leading-order pressure gradient is nonzero
and bounded throughout the domain. Utilizing (31)–(33), we obtain the leading-order and first-order
corrections of the governing equation (28)

O(1) :
∂p(0)

∂t
− ∂2p(0)

∂z2
= 4 − 2ν

5 − 4ν

∂pe

∂t
, (34)

and

O(ε) :
∂p(1)

∂t
− ∂2p(1)

∂z2
= ∂

∂z

(
ln

∣∣∣∣∂p(0)

∂z

∣∣∣∣∂p(0)

∂z

)
. (35)

Both (34) and (35) are parabolic equations where the inhomogeneous part of (34) is related to
the external forcing (see Ref. [21]), and the inhomogeneous part of (35) emanates from the non-
Newtonian response of the fluid to the leading-order pressure gradients.

D. Characteristic physical parameters and model range of validity

We here summarize the characteristic values of relevant physical parameters and the range of
validity of the current model. From order of magnitude analysis, the characteristic length scale l̃∗,
the characteristic axial velocity ũ∗

z , and the characteristic deformations d̃∗
r and d̃∗

z are given by

l̃∗ =
(

α
Ẽh̃mt̃∗

p̃∗

) n
n+1

(
p̃∗r̃c

μ̃eff

) 1
n+1

, (36a)

ũ∗
z = r̃c

(
p̃∗

μ̃eff

r̃c

l̃∗

) 1
n

, (36b)

d̃∗
r = r̃c

r̃c

h̃m

p̃∗

Ẽ
, (36c)

and

d̃∗
z = l̃∗

r̃c

h̃m

p̃∗

Ẽ
. (36d)
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TABLE I. Characteristic values of physical parameters corresponding to the flow of Xanthan gum suspension
in a 500 μm radius PDMS channel, subjected to external pressure of 1 × 104 Pa. Resulting values for the
nondimensional parameters (in bold) indicate that the model holds well in this regime.

Property Symbol Value Units Based on

Wall thickness h̃m 50 μm Input
Inner radius r̃c 500 μm Input

Young’s modulus (PDMS) Ẽ 1 × 106 Pa Input
Poisson’s ratio ν 0.3 – Input
Power-law index (xanthan suspension) n 0.55 – Input
Effective viscosity (xanthan suspension) μ̃eff 0.57 Pa sn Input

Characteristic time scale t̃∗ 0.5 s Input
Characteristic pressure p̃∗ 1 × 104 Pa Input

Axial length scale l̃∗ 14 cm (36a)
Typical axial velocity ũ∗

z 0.91 m s−1 (36b)

Typical radial deformation d̃∗
r 50 μm (36c)

Typical axial deformation d̃∗
z 14 mm (36d)

Slenderness ε1 3.5 × 10−3 – (37a)
Wall thinness ε2 0.1 – (37b)
Smallness of deformations ε3 0.1 – (37c)
Womersley number Wo 2.5 × 10−2 – (37d)

Since in this work we focus on semi-infinite configuration, there is no inherent axial length scale
to the problem, and thus scaling analysis provides only a relation between l̃∗ and t̃∗. We define
the characteristic pressure p̃∗ and the characteristic time scale t̃∗ from the boundary condition
p̃(0,t̃) = p̃inlet(t̃) with characteristic amplitude p̃0 and time scale t̃0, by setting p̃∗ = p̃0 and t̃∗ = t̃0.

Substituting (36a)–(36d) into (1) provides formulation of the assumptions made in the model in
terms of known physical and geometrical parameters:

ε1 = r̃c

(
α

Ẽh̃mt̃0

p̃0

)− n
n+1

(
p̃0r̃c

μ̃eff

)− 1
n+1

� 1, (37a)

ε2 = h̃m

r̃c

� 1, (37b)

ε3 = d̃∗
r

r̃c

= d̃∗
z

l̃∗
= r̃c

h̃m

p̃0

Ẽ
� 1, (37c)

Wo = ρ̃r̃2
c

μ̃eff t̃0

(
α

h̃m

r̃c

Ẽ

p̃0

t̃0μ̃eff

p̃0

) n−1
n+1

� 1. (37d)

To illustrate the applicability of these assumptions in soft-robotic and lab-on-a-chip applications,
we examine a typical microconfiguration made of PDMS (polydimethylsiloxane, Ẽ = 106 Pa) [36]
and containing a suspension of Xanthan gum behaving as power-law viscous fluid (n = 0.55, μ̃eff =
0.57 Pa sn) [37]. Table I presents the characteristic values of physical and geometric parameters,
readily satisfying the assumptions used in the current analysis.

IV. RESULTS

In this section, we examine the viscous-elastic dynamics resulting from time-varying inlet
pressure. We first obtain the pressure field by solving the governing equation (28) for arbitrary
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values of n. Then, using (19) and (26), we provide the corresponding volume flux and deformation
field.

A. Instantaneous injection of mass at the inlet

We examine the viscous-elastic dynamics due to an initial localized pressure at z = 0, which may
be represented by

p(z,t = 0) = δ(z), (38)

where δ is Dirac’s delta function. We note that (38) physically results from instantaneous release of
a fluid mass, m̃, into the elastic cylinder at the inlet at t = 0 after which (t > 0), the inlet is sealed
and thus

∂p

∂z
(z = 0,t > 0) = 0. (39)

Mass is thus conserved globally according to∫ ∞

0
drdz = m̃

2πρ̃r̃cl̃∗d̃∗
r

, (40)

which using (26) can be rewritten as∫ ∞

0
pdz = m̃

π (2 − ν)ρ̃r̃c l̃∗d̃∗
r

. (41)

In the following, we assume that the fluid mass, m̃, is such that the right-hand side of (41) is
unity,

∫ ∞
0 p dz = 1. Note that the conservation law, (41), can be also derived by integrating (28)

with respect to z from 0 to ∞, using (38). Following Di Federico and Ciriello [33], who focused
on shear-thinning fluids and considered an instantaneous mass injection of a weakly compressible
power-law fluid into porous medium, we construct self-similar solutions by defining a similarity
variable ξ

ξ = zt−
n
2 , (42)

and self-similar profile f

p(z,t) = t−
n
2 f (ξ ). (43)

For a Newtonian fluid (n = 1) the solution is well known:

p(z,t) = 1√
πt

exp

(
−z2

4t

)
= t−1/2 1√

π
exp

(
−ξ 2

4

)
� t−

1
2 f (ξ ). (44)

For non-Newtonian fluids, substituting (43) into (28) and (41) yields an ordinary differential equation
for the self-similar profile and the corresponding conservation law,

d

dξ

[∣∣∣∣df (ξ )

dξ

∣∣∣∣
1
n
−1

df (ξ )

dξ
+ n

2
ξf (ξ )

]
= 0, (45)

and ∫ ∞

0
f (ξ ) dξ = 1. (46)

Integrating (45) with respect to ξ and applying the far-field condition of vanishing pressure and its
derivatives f = df/dξ → 0 as ξ → ∞ yield∣∣∣∣df (ξ )

dξ

∣∣∣∣
1
n
−1

df (ξ )

dξ
+ n

2
ξf (ξ ) = 0. (47)
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Since the pressure should be positive and the pressure gradient should be negative, i.e., f � 0 and
df/dξ � 0, we can drop the absolute value in (47) and obtain

df

dξ
= −

(
n

2

)n

ξnf (ξ )n < 0. (48)

Integrating (48) with respect to ξ leads to

f (ξ ) = ξ
1+n
1−n∗ |k| 1

1−n

(
1 ∓ ξn+1

ξn+1∗

) 1
1−n

+
, (49)

where the minus and plus signs stand for n < 1 and n > 1, respectively, k is defined as

k =
(

n

2

)n 1 − n

1 + n
, (50)

x+ = max {x,0}, and ξ∗ is a positive constant uniquely determined from (46) and given by

ξ∗ =

⎧⎪⎪⎨
⎪⎪⎩

ξfront = [
1

|k| 1
1−n

�

(
3−n2

1−n2

)
�

(
2−n
1−n

)
�

(
2+n
1+n

) ] 1−n
2 n < 1

ξno front = [
1

|k| 1
1−n

�

(
1

n−1

)
�

(
2

n2−1

)
�

(
2+n
1+n

) ] 1−n
2 n > 1

, (51)

where � is the Gamma function [38].
For a shear-thinning fluid, n < 1, the self-similar profile f (ξ ) becomes uniformly zero for ξ >

ξfront thus indicating the existence of a front which moves according to zfront(t) = ξfrontt
n
2 . The

condition f = df/dξ → 0 holds now at ξ = ξfront. In contrast to the shear-thinning fluid, the
self-similar profile f (ξ ) of the shear-thickening fluid, n > 1, approaches zero only as ξ → ∞,
similarly to the case of a Newtonian fluid.

The closed-form solutions, (49), provide the associated radial deformation

dr (z,t) =
(

1 − ν

2

)
p(z,t) =

(
1 − ν

2

)
t−

n
2 f (ξ ), (52)

which admits the same self-similar profile f . Substituting (44) and (49) into (26), we obtain
the corresponding self-similar axial deformation in the form dz(z,t) = (0.5 − ν)

∫ z

0 p(z,t)dz =
(0.5 − ν)Dz(ξ ), where Dz(ξ ) is expressed in terms of generalized hypergeometric functions

Dz(ξ ) =
{

ξ
1+n
1−n∗ |k| 1

1−n ξ 2F1
(

1
n−1 , 1

n+1 ; n+2
n+1 ; ± ξn+1

ξn+1∗

)
n 	= 1

erf
(

ξ

2

)
n = 1

, (53)

where 2F1(a,b; c; z) is the Gaussian hypergeometric function [38,39]. The plus and minus signs
correspond to n < 1 and n > 1, respectively. Rescaling the time in the expression for the volume
flux, (19), according to (30), we find

q = n

3n + 1

π

2
1
n

(
−

∣∣∣∣∂p∂z

∣∣∣∣
1
n
−1

∂p

∂z
+ 2

5 − 4ν

∂dz

∂t

)
. (54)

Expressing (54) in terms of the similarity variable ξ yields

q = n2

3n + 1

π

2
1
n

2 − ν

5 − 4ν
t−1ξf (ξ ) = n2

3n + 1

π

2
1
n

2 − ν

5 − 4ν
t−1Q(ξ ), (55)

where f (ξ ) is given in (44) and in (49) for the Newtonian fluid and the non-Newtonian fluid,
respectively, and Q(ξ ) = ξf (ξ ).

Figure 2 summarizes the results of viscous-elastic interaction due to a pressure impulse applied
at the inlet for n = 0.5,1,1.5. All solutions corresponding to shear-thinning fluids are compactly
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FIG. 2. Propagation of a power-law fluid in an elastic cylinder due to instantaneous injection of mass at
z = 0. (a, b) The pressure distribution and radial deformation, respectively, as a function of the axial coordinate,
both of which are characterized by the decay rate of t−n/2. (c, d) The axial deformation and volume flux,
respectively, as a function of the axial coordinate, both of which have a decay rate that is independent of n.
Black and gray lines correspond to t = 0.1 and t = 1.0, respectively. Dotted lines represent a shear-thickening
fluid (n = 1.5), dashed lines represent a Newtonian fluid (n = 1), and solid lines represent a shear-thinning fluid
(n = 0.5). At early times the shear-thickening fluid is more localized (but not compactly supported) than the
Newtonian and shear-thinning fluids, while for longer times the shear-thinning fluid has the lowest propagation
rate remaining compactly supported. Black and gray dots indicate the location of the front of shear-thinning
fluid, zfront(t) = 2.99t1/4.

supported, in contrast to solutions of Newtonian and shear-thickening fluids. Figures 2(a) and 2(b)
present the pressure distribution and the radial deformation versus the axial coordinate z, for different
times. From (43) and (52), the decay rate in this case scales as t−n/2, thus indicating that for long times
the pressure and the radial deformation of shear-thickening fluids decay (and propagate) faster than
in the case of Newtonian and shear-thinning fluids, consistent with the results of Figs. 2(a) and 2(b).
Figures 2(c) and 2(d) show the axial deformation and volume flux versus axial coordinate. In this
case, the decay rate is similar for Newtonian and non-Newtonian fluids (i.e., it is independent of n).

It worth to note that at early times, t � 1, the shear-thickening fluids have the lowest propagation
rate and are thus more localized (but not compactly supported) than the Newtonian and shear-thinning
fluids. This is inverted at longer times as propagation rate of the shear-thickening fluids increases,
and they are least localized.

Furthermore, we note that the current analysis is limited to an intermediate range of shear rates
in accordance the validity range of the power-law model. For sufficiently long times, as ∂p/∂z

diminishes, the shear rate will also diminish, driving the effective viscosity outside the validity range
of the power-law model. Thus, the current analysis will become invalid at long times. In practice,
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in such cases the effective viscosity would approach a constant value, and the dynamics could be
described by a linear diffusion equation.

B. Sudden change of inlet pressure

We here examine the viscous-elastic dynamics associated with a sudden change of inlet pressure

p(z = 0,t) = p0H (t), (56)

from an initially uniform pressure within the cylinder, p(z,t = 0) = pi . Here H stands for the
Heaviside function, whereas pi and p0 are the magnitudes of the initial and the applied pressure,
respectively. The pressure gradient is positive for pi > p0 and negative for pi < p0, corresponding
to filling or discharging of the elastic tube, respectively.

For convenience, we define β = sgn(pi − p0) and rewrite (28) as

∂p

∂t
− ∂

∂z

[(
β

∂p

∂z

) 1
n
−1

∂p

∂z

]
= 0. (57)

Following Pascal and Pascal [31], we define a similarity variable ξ

ξ = zt−
n

n+1 , (58)

and require

p(z,t) = p(ξ ). (59)

The corresponding solution for a Newtonian fluid solution is

p(z,t) = p0 + (pi − p0)erf

(
z

2
√

t

)
, p(ξ ) = p0 + (pi − p0)erf

(
ξ

2

)
. (60)

For the non-Newtonian case, we substitute (58) and (59) into (57), obtaining an ordinary differential
equation for the pressure

d2p(ξ )

dξ 2
+ β

n2

n + 1
ξ

[
β

dp(ξ )

dξ

] 2n−1
n

= 0, (61)

with boundary conditions for t > 0

p(ξ = 0) = p0, p(ξ → ∞) = pi,
dp

dξ
(ξ → ∞) = 0. (62)

Integrating once (61) with respect to ξ yields

dp

dξ
= βξ

2n
1−n∗ |k| n

1−n

(
1 ∓ ξ 2

ξ 2∗

) n
1−n

+
, (63)

where the upper and lower signs correspond to n < 1 and n > 1, respectively. The parameter k is
defined as

k = n

2

1 − n

1 + n
, (64)

and ξ∗ is a constant to be determined from boundary conditions on the pressure, in contrast to
Sec. IV A where a similar constant is found from conservation of mass.

Integrating (63) with respect to ξ and applying the boundary condition (62) at ξ = 0, leads to

p(ξ ) = p0 + βξ
2n

1−n∗ |k| n
1−n ξ 2F1

(
1

2
,

n

n − 1
;

3

2
; ±ξ 2

ξ 2∗

)
. (65)
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FIG. 3. Viscous-elastic dynamics of power-law fluids within an elastic cylinder due to a step increase
in inlet pressure. (a, b, c) The pressure distribution and the radial and axial deformations, respectively, as a
function of the axial coordinate. While for sufficiently long times, t → ∞, the radial deformation approaches
a constant value, dr → 0.85, the axial deformation is a linear function of z with the slope of 0.2, dz/z → 0.2,
independently of n. (d) Volume flux versus axial coordinate, characterized by the decay rate of t−1/(n+1). Black
and gray lines correspond to t = 0.1 and t = 1.0, respectively. Dotted lines represent a shear-thickening fluid
(n = 1.5), dashed lines represent a Newtonian fluid (n = 1), and solid lines represent a shear-thinning fluid
(n = 0.5). Notably, self-similar solutions exhibit a compactly supported propagation front (black and gray dots),
zfront(t) = 2.62t1/3, solely for shear-thinning fluids. All calculations were performed using p0 = 1, pi = 0, and
ν = 0.3.

To determine the constant ξ∗ for different values of n, we utilize the boundary condition p(ξ →
∞) = 0, yielding

ξ∗ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ξfront = { 2|pi−p0|√
π |k| n

1−n

�

[
n−3

2(n−1)

]
�

(
1

1−n

) } 1−n
1+n n < 1

ξno front = { 2|pi−p0|√
π |k| n

1−n

�

[
n

(n−1)

]
�

[
n+1

2(n−1)

]} 1−n
1+n n > 1

. (66)

From (63) we obtain that for shear-thinning fluids dp/dξ = 0 at ξ = ξ∗ = ξfront, thus indicating
the existence of a front moving according to zfront(t) = ξfrontt

n/(n+1). On the other hand, for shear-
thickening fluids it follows that dp/dξ = 0 only as ξ → ∞, and therefore no front exists.

Figures 3(a) and 3(b) present the resulting pressure distribution, (65), and the radial deformation,
dr (z,t) = (1 − 0.5ν)p(z,t) = (1 − 0.5ν)p(ξ ), corresponding to the case of p0 = 1, pi = 0, β =
−1, for different times. Figure 3(c) shows the axial deformation, dz(z,t), given as dz(z,t) =
(0.5 − ν)

∫ z

0 p(z,t) dz = (0.5 − ν)zDz(ξ )/ξ , where for the Newtonian fluid (n = 1) Dz(ξ ) is the
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self-similar profile

Dz(ξ ) = p0ξ + (pi − p0)

[
2√
π

(−1 + e−ξ 2/4) + ξerf

(
ξ

2

)]
, (67)

and for a non-Newtonian fluid is given by

Dz(ξ ) = p0ξ + βξ
2n

1−n∗ |k| n
1−n

[
ξ 2

2F1

(
1

2
,

n

n − 1
;

3

2
; ±ξ 2

ξ 2∗

)

+ 1

2
(n − 1)ξ 2

∗ (∓ξ 2 + ξ 2
∗ )

n
1−n

[
ξ 2ξ

2
n−1∗ ∓ ξ

2n
n−1∗ ± (∓ξ 2 + ξ 2

∗ )
n

n−1
]]

, (68)

where the upper signs in (68) correspond to n < 1 and the lower signs correspond to n > 1,
respectively. The solution for volume flux is presented in Fig. 3(d) and is obtained using (54),

q = n

3n + 1

π

2
1
n

t−
1

n+1

[(
β

dp

dξ

) 1
n

+ n

n + 1

1 − 2ν

5 − 4ν

[
Dz(ξ ) − ξ

dDz(ξ )

dξ

]]
, (69)

where the expressions of p(ξ ) and Dz(ξ ) are given in (60) and (67) for the Newtonian fluid, and in
(65) and (68) for the non-Newtonian fluid.

While the Newtonian and non-Newtonian fluids have the same decay rate in pressure and radial
deformation, the shear-thinning fluids exhibit the fastest decay in volume flux, and the shear-
thickening fluids exhibit the fastest growth in axial deformation.

C. Steady-state dynamics due to an oscillatory inlet pressure

In this section, we examine the steady non-Newtonian viscous-elastic interaction resulting from
an oscillatory pressure at the inlet

p(z = 0,t) = Re{eiωt }, (70)

where ω is the nondimensional magnitude of the base frequency 1/t̃∗, and the far-field boundary
conditions is p(z → ∞,t) = 0.

The corresponding steady-state solution for a Newtonian fluid is

p(z,t) = e−√
ω/2zRe{ei(ωt−√

ω/2z)} = e−√
ω/2z cos(ωt −

√
ω/2z). (71)

For a non-Newtonian fluid, an exact solution of (28) together with the boundary condition (70) is
difficult to obtain. In the Supplemental Material [30] we present an asymptotic solution in terms
of Green’s functions, but it is difficult to obtain direct insight from this solution as some of the
resulting expressions can be evaluated only numerically. Nevertheless, some physical insight on this
problem can be obtained by relying on the first-order asymptotic correction without the need for an
exact solution. As opposed to Newtonian fluids where the resulting pressure oscillates only with the
imposed frequency ω [see (71)], we expect non-Newtonian fluids to respond at various frequencies
due to the nonlinearity of (28). To explore these active frequencies ωai , we examine the source term
of the first-order equation (35) that reflects the non-Newtonian response of the fluid

∂p(1)

∂t
− ∂2p(1)

∂z2
= −1

2
ωe−√

ω/2z sin

(√
ω

2
z − ωt

)[
2 + ln

ω

2
−

√
2ωz

+ ln[1 + sin(
√

2ωz − 2ωt)]

]
. (72)
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FIG. 4. FFT analysis results showing active frequencies due to imposed frequency ω = 2π . (a) Resulting
frequencies from FFT analysis applied directly to the source term of (72). (b, c) Resulting frequencies from FFT
analysis applied on the numerical solution of (28) and corresponding to shear-thinning and shear-thickening
fluids, respectively. Clearly, the source term itself predicts well the governing frequencies of the solution, though
of course cannot predict the amplitudes.

By decomposing the right-hand side of (72) into three contributions:

S1(z,t) = −1

2
ω

(
2 + ln

ω

2

)
e−√

ω/2z sin

(√
ω

2
z − ωt

)
, (73a)

S2(z,t) =
√

ω3

2
ze−√

ω/2z sin

(√
ω

2
z − ωt

)
, (73b)

S3(z,t) = −1

2
ωe−√

ω/2z ln[1 + sin(
√

2ωz − 2ωt)] sin

(√
ω

2
z − ωt

)
, (73c)

and adopting for convenience the following notations

sin

[
m

(√
ω

2
z − ωt

)]
= s(mω), cos

[
m

(√
ω

2
z − ωt

)]
= c(mω), (74)

where m = 1,2,3, . . ., it is evident that the first two contributions (73a) and (73b) act with the
imposed frequency ω.

Expanding the logarithmic term in (73c) in a Taylor series yields

ln[1 + s(2ω)]s(ω) ≈
[

1 − s(2ω)

2
+ · · ·

]
s(ω)s(2ω)

= 1

2

[
1 − s(2ω)

2
+ · · ·

]
[c(ω) − c(3ω)]

= 1

2

[
c(ω) − c(3ω) − 1

4
[2s(ω) + s(3ω) − s(5ω)] + · · ·

]
, (75)

and thus we conclude that the third contribution (73c) adds additional forcing frequencies which are
the multiplication of the imposed frequency with odd natural numbers (3ω, 5ω, . . .).

To validate the Taylor-expansion approximation made in (75), we performed fast Fourier
transform (FFT) analysis on a numerical calculation for the source term of (72). The results presented
in Fig. 4(a) show full agreement with analytically predicted frequencies of the first-order source term.
To further explore the viscous-elastic dynamics of the problem, we solved the governing equation
(28) numerically on a fixed domain (0,L) using a second-order explicit finite-difference scheme.
The detailed description of the numerical scheme is presented in the Supplemental Material [30]. In
all simulations we used values of L = 10 and ω = 2π .
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FIG. 5. Numerical results showing the steady-state pressure distribution resulting from viscous-elastic
interaction induced by oscillating inlet pressure with ω = 2π . (a, b, c) Pressure versus axial coordinate for one
time period, corresponding to shear thinning, Newtonian, and shear-thickening fluids, respectively. Dotted lines
represent the envelope of the pressure decay, and indicate the most rapid decay for the shear-thinning fluid.
(d) Comparison of numerical results (solid lines) and approximate solutions (dashed lines), (77), for pressure
distributions at z = 1.4 as a function of time and corresponding to n = 0.5,1,1.5. While Newtonian fluid (dark
gray line) is characterized by a sinusoidal waveform, shear-thinning (light gray lines) and shear-thickening
(black lines) fluids exhibit nonsinusoidal “saw-tooth” and “shark-tooth” waveforms, respectively.

In Figs. 4(b) and 4(c) we present the resulting frequencies of FFT analysis applied on the
results of numerical simulations for shear-thinning and shear-thickening fluids, showing excellent
agreement with the analytically predicted frequencies obtained from the first-order source term.
From Figs. 4(b) and 4(c) we obtain that for actuation at the viscous-elastic time scale (ω ∼ O(1)),
the dominant frequencies are

ωa1 = ω = 2π, ωa2 = 3ω = 3 · 2π, ωa3 = 5ω = 5 · 2π, (76)

and therefore the steady-state time variation of the pressure at any location z can be approximately
described by the superposition of only three sinusoidal waveforms

p(z,t) = A1(z)eiωωa1 t + A2(z)eiωωa2 t + A3(z)eiωωa3 t + c.c., (77)

where A1(z), A2(z) and A3(z) are complex functions solely depending on z and “c.c.” represents the
complex conjugate of preceding terms.

Figure 5 summarizes the steady-state results of viscous-elastic interaction due to an oscillatory
pressure (70). Figures 5(a), 5(b), and 5(c) present the steady-state pressure distribution versus axial
coordinate for one period of oscillations, obtained from numerical solution of (28) and corresponding
to shear-thinning, Newtonian and shear thickening fluids, respectively. Clearly, the shear-thinning
fluid is characterized by the most rapid pressure decay rate similarly to the results in previous sections,
thus suggesting the existence of a propagation front (which we however did not prove for this case).

In Fig. 5(d), we compare the numerical solutions (solid lines) and approximate solutions (dashed
lines), (77), for the pressure variation as a function of time at z = 1.4, showing good agreement. As
can be inferred from Fig. 5(d), in the steady-state the shear-thinning fluid exhibits a nonsinusoidal
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“saw-tooth” waveform, whereas the shear thickening is characterized by a nonsinusoidal “shark-
tooth” waveform.

V. THE INVERSE ROLE OF VISCOSITY BETWEEN VISCOUS-ELASTIC
AND STOKES’ PROBLEMS

In Secs. IV B and IV C, we studied analytically and numerically the viscous-elastic interaction
of power-law fluids through an elastic cylinder resulting from a constant or an oscillating pressure
at the inlet. Specifically, we solved a homogeneous p-Laplacian equation that can be written in
dimensional form as

∂p̃

∂t̃
= n

3n + 1

Ẽh̃mr̃c

5 − 4ν

∂

∂z̃

[
1

η̃(γ̇ )

∂p̃

∂z̃

]
; η̃(γ̇ ) = 2

1−n
n

(
μ̃eff

r̃c

) 1
n

r̃c

∣∣∣∣∂p̃

∂z̃

∣∣∣∣
n−1
n

. (78)

We note that for n = 1 (78) reduces to an unforced version of equation (2.53) derived by Elbaz and
Gat [21].

This p-Laplacian equation is found in various fluid mechanics problems including Stokes’ first
and second problems for power-law fluids, which involve the solution of the following p-Laplacian
equation for ũz

ρ̃
∂ũz

∂ t̃
= ∂

∂z̃

[
η̃(γ̇ )

∂ũz

∂z̃

]
; η̃(γ̇ ) = μ̃eff

∣∣∣∣∂ũz

∂z̃

∣∣∣∣
n−1

, (79)

subjected to a constant or an oscillatory velocity at z̃ = 0. The Stokes’ first problem was considered
by Pascal [24], who showed that the velocity profile is compactly supported for shear-thickening
fluids. Pritchard et al. [26] presented semi-analytical, self-similar, and periodic solutions for the
flow of a power-law fluid driven by a nonsinusoidal oscillating waveform at the wall and showed
that in this case these solutions predict a finite penetration length l̃p for shear-thickening fluids,
beyond which the fluid is essentially unaffected by external forcing and is motionless. To confirm
these solutions, Pritchard et al. [26] studied numerically the Stokes’ second problem (on a finite
numerical domain) with the sinusoidal boundary condition and the numerical results corresponding
to shear-thickening fluids decay rapidly with the distance from the wall thus suggesting the existence
of a finite penetration length. In addition, Pritchard et al. [26] obtained that the velocity of shear-
thickening fluids adopt a “saw-tooth” oscillating form, while shear-thinning fluids have a “shark-
tooth” oscillating form.

Clearly, the results we obtained in Secs. IV B and IV C are opposite to the results of Pascal [24]
and Pritchard et al. [26]. To explain this difference we should examine the effect of viscosity in
the p-Laplacian equations, (78) and (79), on the fluid penetration. While in Stokes’ equation, (79),
viscosity contributes to diffusivity and thus to fluid penetration, in the viscous-elastic equation, (78),
viscosity reduces the diffusivity and fluid penetration. This can be observed more clearly from the
expressions of the penetration length, l̃p, which can be obtained from scaling arguments as

l̃p,V E ∼
√

Ẽh̃mr̃ct̃∗/η̃(γ̇ ) ∼
√

Ẽh̃mt̃∗
(r̃c/μ̃eff)

1
2n

|∂p̃/∂z̃| n−1
2n

, (80)

l̃p,S ∼
√

t̃∗η̃(γ̇ )/ρ̃ ∼
√

t̃∗μ̃eff/ρ̃|∂ũz

∂z̃
| n−1

2 , (81)

where subscript VE indicates a viscous-elastic problem parameter, S indicates a Stokes’ problem
parameter. Noting that for shear-thickening fluids (n > 1), both viscosities (S) and (VE) tend to zero
as the gradient of the velocity (or pressure) goes to zero, it follows from (80) and (81) that while for
the Stokes’ problem the penetration length, l̃p,S , goes to zero, for the viscous-elastic problem the
penetration length tends to infinity, l̃p,V E → ∞, as η̃(γ̇ ) → 0.
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On the other hand, for shear-thinning fluids, both viscosities (S) and (VE) diverge as the gradient
of the velocity (or pressure) goes to zero, and thus Stokes’ problem yields an infinite penetration
length, l̃p,S → ∞, whereas the viscous-elastic problem exhibits a finite penetration length indicating
the existence of the front in this case.

These conclusions are fully consistent with our results from Secs. IV B and IV C and with the
results of Pascal [24] and Pritchard et al. [26]. Shear-thinning and shear-thickening fluids play
opposite roles in the Stokes’ and the viscous-elastic problems.

VI. DISCUSSION AND CONCLUDING REMARKS

In this work, we studied the viscous-elastic interaction and the flow of power-law fluids through
an elastic cylinder. Applying the lubrication and the elastic shell approximations, we derived a
p-Laplacian governing equation relating the fluidic pressure and the external forces acting on the
cylinder. We showed that in this equation viscosity acts as an inverse diffusion coefficient, such that
the familiar roles of shear thickening and shear thickening are inversed relative to similar equations
that appear in Stokes’ problems. For example, for instantaneous mass injection and a step pressure
applied at the inlet, our analysis revealed that a compactly supported propagation front exists solely
for shear-thinning fluids, in contrast to Stokes’ problem where a compactly supported front is
obtained for shear-thickening fluids. Furthermore, the scaling for penetration length, (80), based on
a power-law viscosity model, further suggests that any Dirichlet-type boundary condition imposed
at z = 0, would result in compactly supported propagation for shear-thinning fluids, consistent with
our numerical observations in Sec. IV C.

Throughout this work we have mainly considered the viscous-elastic dynamics due to imposed
pressure at the inlet. However, we note that the solutions obtained in Sec. IV can be used to
construct new solutions resulting from an external pressure distribution pe(z,t). Applying the Laplace
transform on (28) we obtain that the solution for the pressure in Sec. IV A for impulse pressure
applied at the inlet of a semi-infinite cylinder also holds for the case of a sudden localized pressure,
pe = peH (t)δ(z), applied to an infinitely long cylinder. Similarly, the solution for the pressure
in the case of a discharging elastic tube [(65) with β > 0, p0 = 0] also holds for discharge due
to suddenly applied constant pressure pe = peH (t). While the solutions for the pressure in these
case are identical, the solutions for the corresponding deformation fields and the volume fluxes are
different and can be obtained from (26) and (54).

For weakly non-Newtonian fluids, we obtained the leading- and first-order asymptotic approxi-
mations, and showed (see Sec. IV C) that the source term in first-order equation, (35), is important
as it enables physical insight on the non-Newtonian behavior without a direct solution.

The regime of an incompressible fluid with negligible inertia is commonly encountered in
laboratory-on-chip and soft robotics applications. For the former, controlling the propagation of
mass flux within microfluidic channels could be a mechanism the timing of simple delivery on chip,
or controlling the extent of mixing between reagents. For soft robotics, control with non-Newtonian
liquids holds to potential for additional degrees of freedom in modulation, and particularly with
the use of compactly supported deformations where part of the structure can be guaranteed to stay
stationary while another is translating. Furthermore, we believe that the dependence of the front
on time and on specific value of n, can be used to indirectly measure the rheological properties of
power-law shear-thinning liquids through measurements of deformation and front location.
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