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Plasma flows involve hundreds of species and thousands of reactions at different time
scales, resulting in a very large set of governing equations to solve. Simulating large reacting
systems in nonequilibrium plasma mixtures remains a challenge with the currently available
computational resources. Principal component analysis (PCA) offers a general and rather
simple and automated method to reduce large kinetic mechanisms by principal variable
selection. This work shows how to adapt and apply the PCA-scores technique, which has its
origin in the combustion field, to a collisional-radiative model. We have successfully applied
this technique to argon plasmas, reducing the set of governing equations by more than 90%,
leading to an important speed-up of the calculation and a reduction of computational cost.
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I. INTRODUCTION

Accurate predictive simulations are important to understand and solve many of today’s
technological challenges to nonequilibrium plasma applications, such as the optimization of electric
propulsion thrusters operating on electronegative plasmas [1,2], the reduction of the ignition delay
time and ignition temperature in plasma-assisted combustion [3,4], the design of lightweight
carbon-composite materials used as thermal protection systems for spacecraft during atmospheric
entries [5,6], as well as to understand intricate phenomena such as sunspot formation and magnetic
reconnection in solar physics [7,8]. Nonequilibrium effects in plasmas can be described by means
of physicochemical models of various complexity and fidelity levels. The most accurate description
lies in the state-to-state (STS) models which provide the populations of the internal energy levels
of all molecules and atoms of a plasma. The inner states of each species are solved separately by
means of a detailed kinetic mechanism for the electronic mode of atoms and for the rotational,
vibrational and electronic modes of molecules. Collisional-radiative (CR) models describe both
collisional and radiative elementary processes. Full STS models have been developed mostly for
atomic plasmas [9–11] for which hundreds of inner states can be involved. One ends up with
a massive system of governing equations which is very expensive to solve numerically. With
the current computational resources, the detailed chemistry of nonequilibrium mixtures is often
calculated through zero-dimensional or one-dimensional computational fluid dynamics solvers.

To perform three-dimensional simulations, the computational cost inherent to STS models must
be alleviated. For instance, the use of a simplified chemistry obtained by degrading its level of detail
while conserving some of the information about the internal energy level populations allows us to
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preserve the solution accuracy. For molecular plasmas, thousands of inner states are present. Many
reduction techniques have been developed in the literature. Multitemperature (MT) models rely
on the assumption of a Maxwell-Boltzmann distribution for the population of each internal energy
mode of the species, provided that the system is close to equilibrium. This most probable distribution
function, according to statistical mechanics, is described by means of specific rotational, vibrational,
and electronic temperatures. In strong nonequilibrium situations, this assumption is wrong and
the populations deviate from a Maxwell-Boltzmann distribution. Alternative descriptions, such as
hybrid models, combine both STS and MT approaches [12–17]. Coarse-grain models have also been
proposed based on a so-called binning approach: The inner energy states of the species are lumped
into several bins after some suitable averaging. After lumping the levels, the macroscopic rates
are extracted for each group [18–20]. However, many of these techniques require strong physical
insight to finely tune the reduced model. For instance, additional energy equations are used to close
the governing equations by providing the temperatures used in the distributions for the MT and
coarse-grain models [21–23].

Recently, a new generation of reduction techniques has been developed in the combustion
community using an empirical method called principal component analysis (PCA) [24]. The
advantage of this method lies in its simplicity as the main parameters for the reduction are selected
in an automated way after solving an eigenvalue problem [25,26]. In this contribution, accurate
physical models for plasmas are combined to PCA reduction techniques. In previous papers, we
have pioneered the development of PCA models for plasma applications [27,28]. Although the
results reported in previous work were very encouraging, the reduced model using the so-called
manifold generated principal component analysis (MG-PCA) technique remained expensive. The
goal of the present paper is to examine how an optimized PCA technique can perform in terms of
system reduction compared to MG-PCA. The paper focuses on the development of a global reduction
technique based on the PCA-score method. A score or principal component is a new variable which
is a linear combination of the original variables. The PCA-score technique is applied to reduce
the mass fractions of a 34-species argon model for the simulation of shock tube experiments. The
first argon test case chosen has been validated by Kapper and Cambier [11] based on experiments
performed at the University of Toronto’s Institute of Aerospace Studies (UTIAS) [29]. Anticipating
the application in a future work of the reduction technique to CR models for air, we propose to
verify the robustness of the reduced model by exploring a broader range of free-stream conditions
representative of re-entry flight.

The paper has the following structure: The physical model for collisional-radiative argon
chemistry is presented in Sec. II. It describes the governing equations for modeling one-dimensional
shocks to simulate argon shock tube experiments. Section III shows how PCA scores are derived
from principal component analysis after applying some preprocessing techniques, such as outlier
removal, data centering, and scaling. The PCA-score technique is then applied to the argon shock
tube simulations for a large span of free-stream conditions in Sec. IV, followed by the conclusion.

II. PHYSICAL MODELING

In this section, one briefly describes the collisional-radiative model for argon plasmas before
applying the PCA-score technique to reduce it. The same chemical mechanism has already been
reduced in a previous work [28] based on the MG-PCA reduction method.

A. Detailed chemistry modeling

The electronic-specific CR model for argon used here has been originally developed by Vlcek
[30] and Bultel et al. [31], and later adapted and validated by Kapper and Cambier [10,11] against
experimental data acquired in the UTIAS shock tube facility. The gas mixture consists of Ar, and its
ionization products, Ar+ and e−. The influence of additional components, such as Ar++ and Ar+2 ,
has been neglected [31]. The number of electronic energy levels retained for Ar and Ar+ are 31 and
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TABLE I. Energy data for the electronic inner states of Ar.

i Ei [eV] ai jc,i i Ei [eV] ai jc,i

1 0 1 1.5 17 13.864 3 1.5
2 11.548 5 1.5 18 13.903 5 1.5
3 11.624 3 1.5 19 13.979 9 1.5
4 11.723 1 0.5 20 14.013 7 1.5
5 11.828 3 0.5 21 14.063 5 1.5
6 12.907 3 1.5 22 14.068 5 1.5
7 13.076 7 1.5 23 14.090 3 1.5
8 13.095 5 1.5 24 14.099 7 1.5
9 13.153 3 1.5 25 14.153 3 1.5
10 13.172 5 1.5 26 14.214 5 0.5
11 13.273 1 1.5 27 14.234 5 0.5
12 13.283 3 0.5 28 14.236 7 0.5
13 13.302 5 0.5 29 14.241 1 0.5
14 13.328 3 0.5 30 14.255 3 0.5
15 13.480 1 0.5 31 14.304 3 0.5
16 13.845 1 1.5

2, respectively. The mixture contains in total N = 34 species when adding up the free electrons.
Table I provides the excitation energy (Ei), degeneracy (gi), and core angular momentum (jc,i)
for the 31 electronic energy levels Ar(i) of argon. From this table, one can observe there are two
possible values for the angular momentum: 1/2 and 3/2. These correspond to two possible ionization
potentials when considering the ionization reactions starting from the excited states. For example,
Ar(2) will ionize to Ar+(1) and Ar(4) to Ar+(2). Table II shows the energy data for those two ionized
states. To account for thermal nonequilibrium between heavy particles and free electrons, separate
translational temperatures are denoted in what follows by symbols Th and Te, respectively.

The kinetic mechanism accounts for the following collisional and radiative processes:
(1) Excitation and de-excitation by electron and atom impact:

Ar(i) + e− Cij−−⇀↽−−
Fji

Ar(j ) + e−, (1)

Ar(i) + Ar(1)
Kij−−⇀↽−−
Lji

Ar(j ) + Ar(1), (2)

(2) Ionization and recombination by electron and atom impact:

Ar(i) + e− Si−⇀↽−
Oi

Ar+ + 2e−, (3)

Ar(i) + Ar(1)
V i−⇀↽−
Wi

Ar+ + e− + Ar(1), (4)

TABLE II. Energy data for the electronic inner states of Ar.

i Ei [eV] ai jc,i

1 15.760 4 1.5
2 15.937 2 0.5
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TABLE III. Collisional and radiative elementary processes for argon: forward rate coefficient kf , backward
rate coefficient kb, and collisional-radiative process.

kf kb Process

Cij Fij Excitation by electron impact
Kij Lij Excitation by impact with the ground electronic state
Si Oi Ionization by electron impact
Vi Wi Ionization by impact with the ground electronic state
(1-�)Aji �Aji Radiative excitation and de-excitation
(1-�)Ri �Ri Radiative ionization and recombination

(3) Spontaneous emission and absorption (bound-bound):

Ar(i) + hP ν
(1−�)Aji−−−−−⇀↽−−−−−

�Aji
Ar(j ), (5)

(4) Photo-ionization and radiative recombination (bound-free and free-bound)

Ar(i) + hP ν
(1−�)Ri−−−−⇀↽−−−−

�Ri
Ar+ + e−, (6)

(5) Bremsstrahlung emission (free-free)

e− + Ar+ → e− + Ar+ + hP ν, (7)

where the indices i = {1, . . . ,31} and j > i denote the electronic energy levels of Ar involved in
the transitions. The indices for the two levels of Ar+ are omitted here for brevity of the notation.
Superelastic collisions have been neglected; i.e., only the ground state, Ar(1), participates in atomic
collisions, due to the low density of excited states in the regime where these dominate over electron-
impact collisions. Quantities hP and ν in Eqs. (5) and (6) stand for Planck’s constant and the radiation
frequency. Table III gives an overview of all the rate coefficients used for each chemical process.
In the model [10], radiation absorption is taken into account via the use of escape factors � that
can take values between 0 and 1, bounds which correspond, respectively, to optically thick and thin
plasmas. An optically thin plasma is considered here. The total number of elementary processes (both
collisional and radiative) taken into account in the CR model is equal to 962. Each of these processes
intervenes at a specific location after the shock wave. The initial production of electrons after the
shock front starts with atom-impact collisions. The lowest excited states of argon are populated and
then ionized to produce the very first electrons. Once enough electrons are produced, the chemistry
dynamics changes, and electron-impact processes take over to excite additional internal energy states
and produce more electrons.

B. Governing equations

The Euler equations for two-temperature plasmas represent the conservation of mass for the
N species, mixture momentum, mixture energy, and electron energy. For a one-dimensional (1D)
steady flow in the x direction, they take the general differential form:

d

dx
F = �̇. (8)
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In this expression, the vector F contains the fluxes, and the vector �̇ has the source terms:

F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ρuy1
...

ρuyN

ρu2 + p

ρu
(
h + 1

2u2
)

ρuyee
e

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, �̇ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ω1
...

ωN

0
−QradI

�ET + �Ch − pe
d
dx

u − QradII

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Quantity ρ is the total mass density; u, the hydrodynamic velocity; yi , the mass fraction of species i;
ωi , its chemical production term; p, the mixture pressure; and h, the mixture enthalpy. The variables
only related to free electrons are the electron specific energy ee, the electron energy production due
to thermal relaxation with heavy particles

�ET = 3

2
nekB(Th − Te)

1

τET
, (9)

the electron energy production due chemical reactions induced by electron impact �Ch, the electron
partial pressure pe, and the electron number density ne. The expression for the relaxation time is
obtained from kinetic theory

1

τET
=

∑
j �=e

8

3

me

mj

√
8kBTe

πme

nj Q̄
(1,1)
ej ,

where quantity mj stands for the mass of species j ; nj , its number density; kB , the Boltzmann
constant; and Q̄

(1,1)
ej , the reduced momentum collision integral.

Radiative source terms are added to the mixture and electron energy conservation equations [10],

QradI =
∑

(Ej − Ei)njAji, (10)

QradII =
∑

(EAr+ − Ei)njRji + QBrem, (11)

QBrem = −1.42 × 10−40Z2
eff

√
TenAr+ne[W/m3]. (12)

Quantity QradI represents the radiative power due to bound-bound transitions driven by the Einstein
transition coefficients, Aji [s−1]. Another radiative power term, QradII, has to be added for the
conservation of electron energy. It regroups the bound-free and free-free transitions. Quantity EAr+
stands for the energy of the ionized argon levels. For Bremsstrahlung emission, a value of 1.67 has
been taken for the effective charge Z2

eff to better match the experimental data, even though double
ionization is neglected in this work.

C. Detailing the shock structure

The shock is treated as a discontinuity located at the position x = 0. Starting from the free
stream velocity, pressure, and temperature, the postshock conditions are obtained based on the
Rankine-Hugoniot jump relations under the assumption of frozen kinetics within the shock. The
electron temperature is also assumed to be frozen across the shock and precursor ionization is
disregarded. Table IV reviews the free-stream parameters for the test cases considered in a velocity
and pressure grid. The first test case corresponds to one of the shock tube experiments of UTIAS [29].
For the other test cases, as shown in Fig. 1, the free-stream pressure and velocity have been changed
to more severe conditions to observe how the method can catch the complex system dynamics in the
nonequilibrium regime. For the intermediate cases 2 and 3, the pressure has been decreased while
conserving the same free-stream velocity and temperature. The free stream conditions of case 4
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TABLE IV. Shock-tube test cases considered in the present work. Case 1, UTIAS experiments; case 2,
intermediate nonequilibrium conditions; and case 3, free-stream conditions representative of flight.

Case v [m/s] v [Ma] p [Pa] T [K]

1 5075 15.9 685.3 293.6
2 5075 15.9 300 293.6
3 5075 15.9 50 293.6
4 8000 25.1 50 293.6
5 8000 25.1 685.3 293.6

match typical re-entry velocity and pressure: 8 km/s and 50 Pa, respectively. Case 5 completes the
test grid simulating high pressures and speeds.

Following Refs. [32,33], the conservative form given in Eq. (8) is transformed into a system of
ordinary differential equations easily solved by means of the LSODE [34] package. The resulting
SHOCKING code has been verified against literature results [10] and validated by using the UTIAS
shock-tube experiments [29]. For instance, Figure 2(a) shows the evolution of the translational
temperature of the heavy species and free electrons after the shock. We recall briefly some results
obtained by means of the CR model [10] that will be reproduced in Sec. III based on the reduction
method. The free electron temperature describes a peak right after the shock, before decreasing and
rising again until thermal equilibrium is reached. This peak is triggered by heavy impact ionization
as it is the reaction that creates the first electrons. Chemistry changes afterwards, and electron impact
processes take over the dynamics of the system, as indicated by a dip in the electron temperature.
Experimental data have been plotted in Fig. 2(b) against the calculated electron number density and
total density. Fair agreement is found between the simulation results and experimental data. Kapper
and Cambier [11] have shown that the fluctuations of the shock structure observed experimentally
can be reproduced by means of unsteady numerical simulations and explained on the basis of the
coupling of the nonlinear kinetics of the CR model with wave propagation within the induction zone.
Steady simulations are selected here for their simplicity to develop the reduction method.

The temperature, electron density, and mixture density profiles after the shock are shown in
Fig. 3(a) for the cases 1, 2, and 4. The free-stream velocity drives the postshock heavy-species
temperature, as clearly observed for case 4 in Fig. 3(a). The thermal relaxation distance is inversely
proportional to the quantity nT

1/2
e . At constant free stream velocity, the relaxation distance for case

2 is thus larger for case 1 due to a lower free stream pressure. The higher free stream velocity of
case 2 has the opposite effect due to a higher postshock temperature in spite of a lower value of
pressure. In Fig. 3(b), the mixture density, proportional to p/Th, decreases from case 1 to case 4,
while the electron number density proportional to p/Te decreases from case 1 to case 2, and then
slightly increases from case 2 to case 4, due to the rise in electron temperature.

FIG. 1. Free stream velocity and pressure conditions.
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FIG. 2. Postshock simulation, case 1. (a) Translational temperatures: thick line, Th; thin line, Te. (b) Electron
number density ne: thin line, simulation; ∗, experimental data. Mixture density ρ: thick line, simulation; •,
experimental data.

The collisional-radiative model allows us to calculate the populations of the inner states of argon
in an accurate way through the full simulation domain. When plotting these populations over their
degeneracy, ni/gi , against their corresponding inner energy in a semilogarithmic scale, a Boltzmann
plot is obtained as shown in Fig. 4(a). For a Boltzmann population at equilibrium, the observations
fit to a straight line. To quantify the degree of nonequilibrium, the coefficient of determination
R(x) is introduced as follows, R2(x) = 1 − ∑

i[zi(x) − fi(x)]2/
∑

i[zi(x) − z̄(x)]2, based on the
populations zi(x) = log[ni(x)/gi] for the energy level i of argon and the value of a straight-line
approximation fi(x), where the average value is computed as z̄ = ∑

i zi . At a distance from the
shock larger than 0.001 m, the equilibrium condition is satisfied for the argon electronic energy level
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FIG. 3. Postshock simulation. Lines without symbols, case 1; lines with ◦, case 2; lines with +, case 4.
(a) Translational temperatures: thick line, Th; thin line, Te. (b) Electron number density ne, thin line. Mixture
density ρ, thick line.
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FIG. 4. Postshock simulation of case 1. (a) Argon inner-state populations in a Boltzmann plot at various

distances after the shock. (b) Comparison of the excitation temperature of the levels Tx (thin black lines) against
Te (red line) and Th (thick line).

populations. Another way to visualize the departure with respect to equilibrium of the various energy
level populations is to extract the excitation temperature of each excited level to the temperature of
the free electrons,

Tx(i) = E(1) − E(i)

kB ln n(1)g(i)
n(i)g(1)

, (13)

with the index 1 referring to the ground state of argon. These temperatures have been compared
for the first excited state Ar(2) and last excited state Ar(31) in Table V. The comparison can be
visualized in Fig. 4(b). The excitation temperatures are close to each other and clearly distinct from
the electron and heavy-particle temperatures, until thermal equilibrium is reached.

III. PRINCIPAL COMPONENT ANALYSIS FOR CHEMISTRY REDUCTION

Principal component analysis is a statistical method based on an orthogonal transformation
projecting the primitive variables of a system on its principal components or scores. These
components are the directions with the largest variance within the data sample and are a linear
combination of the original variables. The global idea is to reduce the system by eliminating the
less important variables and to build a new low-dimensional manifold based on those principal

TABLE V. Coefficient of determination for case 1.

Distance [m] R2 Te [K] T2 [K] T31 [K]

0 0.2295 293.6 5439.7 6880.2
10−9 0.2107 293.6 5439.7 6937.9
10−8 0.0375 293.7 5440.5 7195.5
10−7 0.0431 294.3 5480.2 7578.5
10−6 0.5764 300.4 6074.7 8078.9
10−5 0.9218 396.4 7673.4 9005.9
10−4 0.9921 10321.5 9963.4 10545.8
10−3 1.0000 9493.9 10334.0 10250.2
10−2 1.0000 12807.8 12807.8 12807.8
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components or scores. The computational cost decreases considerably as only a smaller number of
variables, the scores, are taken into account to solve the set of governing equations.

An eigenvalue problem is solved on a training data set made up of the mass fractions of the system.
This eigenvalue problem gives the base of principal components. By truncating the base with the
component corresponding to the highest eigenvalue, one can define a new, reduced, state-space. Two
main methods have been developed based on principal component analysis: PCA score by Sutherland
et al. [35] and manifold generated principal component analysis (MG-PCA) by Coussement et al.
[36]. The PCA-score method allows for transporting the principal components directly, as PCA is a
linear transformation of the original state space. If a set of governing equations exists in the original
space, a set of equations can be found in the space given by the scores or principal components.
The MG-PCA method, on the contrary, transports a set of variables of the original state space and
reconstructs the others at every iteration. The main difference between both methods lies in the
working space. When working with scores, the governing equations are rewritten accordingly in
terms of principal components, while MG-PCA uses the original equations in the original state
space. This section of the paper describes the PCA-score technique in more detail and shows how
it can be coupled to a rotation method, such as the VARIMAX method [37], for retrieving a more
stable formulation of the source terms and increasing the robustness of the code.

A. PCA

PCA starts with a training data set containing the value of all conserved variables for several
observations of the system state space. These conserved variables correspond to mass fractions,
temperatures, and velocity. However, previous work [38] has shown the reduction works best when
using only mass fractions when carrying out PCA assembled in a matrix Y,

Y =

⎡
⎢⎣

y11 . . . y1Q

...
. . .

...
yn1 . . . ynQ

⎤
⎥⎦, (14)

with n being the number of observations in the PCA sample and Q being the number of original
variables, in this case the 34 mass fractions of the argon system.

Preprocessing techniques are applied to prepare the data for PCA. These preprocessing techniques
consist in centering and scaling. Centering allows focusing on fluctuations around mean values.
Choosing a good scaling method is essential as it can affect the size and the accuracy of the PCA
reduction. An overview of different scaling techniques (variable stability, Pareto, max, etc.) are given
in the work of Parente and Sutherland [39]. In previous work on the reduction of collisional-radiative
chemistry, Pareto scaling has been determined as the best scaling method.

To find the weighting factors, we define the principal components as a linear combination of the
original variables with the covariance matrix S. The element (i,j ) of the covariance matrix is the
covariance between the original variables:

S = 1

(n − 1)
YT Y. (15)

Recalling the eigenvector decomposition of a symmetric, nonsingular matrix, S can be decomposed
as

S = AλAT , (16)

where λ is a (Q × Q) diagonal matrix containing the eigenvalues of S in descending order. The linear
transformation given in Eq. (16) simply recasts the original variables into a set of new uncorrelated
variables, whose coordinate axes are described by A. The projection of the original state-space, Y,
onto the matrix A defines a new set of variables Z referred to as principal component scores,

Z = YA. (17)
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The matrix A can be truncated to keep only the first q columns, associated to the q largest
eigenvalues to reduce the dimensionality of the state space. The corresponding (Q × q) matrix can
be used to obtain a reduced set of principal component scores, Zq , carrying most of the variance
originally contained in Y,

Zq = YAq . (18)

This equation can be inverted to obtain an approximation of the state space Y, based on the q most
energetic PCs,

Ỹq = ZqAT
q . (19)

The implementation of the PC-score approach requires the solution of transport equations which
are formally very similar to the ones of classic nonconserved scalars, i.e., reacting species. More
generally, if a set of transport equations exists under the following conservative form,

∂

∂t
ρy + ∇ · (ρu ⊗ y) = ωy, (20)

then it can be rewritten in the score space as follows [39]:

∂

∂t
ρz + ∇ · (ρu ⊗ z) = ωz. (21)

In these relations, y is a mass fraction for a single species and z is a single principal component,
which are each individual realizations of the vectors Y and Z respectively. The species source terms
should be transformed by using the truncated matrix of eigenvectors Aq ,

ωZ = ωY Aq . (22)

Notice that the transformed source terms can be nonlinear in the Z variables, since they are calculated
by projecting the matrix of eigenvectors Aq onto the original source terms that can be nonlinear
functions in the reconstructed variables.

B. Rotated scores

The objective of using a rotation method with PCA is to maximize the variance expressed by the
eigenvectors. Using such a rotation method simplifies the interpretation of the PCA results as the
score loadings after rotation will be either very large or close to zero. Consequently, it clearly shows
which variables are expressed the most by the scores, and thus which are the dominating ones, for a
given size. It is important to note that the total expressed variance does not change before and after
rotation. Besides a better interpretation of the PCA results, a rotation method also ensures additional
stability within the CFD code. After rotation, the data flatten out and contain fewer peaks, which is
beneficial for the computation of the source terms, for example, as stated by Coussement et al. [40].
It ensures robustness within the code.

The VARIMAX rotation developed by Kaiser [37] has generally been accepted as the most
accurate orthogonal rotation and has been used widely in combination with PCA [41]. The
VARIMAX rotation criterion maximizes the sum of the variances of the squared coefficients within
each eigenvector. The axes in the new system are rotated to maximize the rotation criterion given by
the following expression:

V = Q
∑Q

i=1

(
b2

ij

)2 − (∑Q
i=1 b2

ij

)2

Q2
. (23)

In this expression, b stands for the principal component loadings and Q stands for the number of
variables, with i ∈ {1, . . . ,Q} and j ∈ {1, . . . ,q} with q being the number of scores or principal
components.
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A normalized variant of this criterion exists. The bij terms in expression (23) should be normalized
by the square root of the communalities hi . The communalities are defined as the sum of the squares
of the ith row of the loading matrix. This normalized variant has been used in the present work:

Vscaled = Q
∑Q

i=1

(
b2

ij /h2
i

)2 − γ
( ∑Q

i=1 b2
ij /h2

i

)2

Q2
. (24)

For working with rotated scores, the rotation matrix T should be taken into account when
transforming the conserved variables and source terms to the new score space:

Zq = YTAq, (25)

ωZ = ωY TAq . (26)

IV. RESULTS

The set of three free-stream conditions presented in Table IV will allow us to demonstrate the
applicability of the PCA-score technique to plasma flows. The SHOCKING code has been modified
to solve the equations in the score space. Only the species transport equations need to be projected
onto the eigenvector space:

∂

∂x
[ρuZi] = ωZi, (27)

with i ∈ {1, . . . ,q}. It is important to notice we need all species mass fractions to calculate the
thermodynamic and chemical production terms of the plasma. After each iteration of the solver, the
scores are reverted to mass fractions by using Eq. (19).

A. PCA scores for re-entry conditions

In a next step, the necessary amount of scores is determined for each test case. Case 1 corresponds
to the validating UTIAS shock tube experiments. Case 2 uses half a lower pressure, and test case 4
approaches re-entry conditions. Ideally, the case should run using only one score. The main criterion
for retaining the right amount of scores is the following: They should represent the original manifold
in a perfect way; i.e., all the populations should be reconstructed with high accuracy. This can be
important for reproducing radiative spectra. The ideal number of scores required to reconstruct with
sufficient accuracy the original state space can be determined with an a priori study comparing the
reconstruction error of each variable after PCA. Of course, this is not a sufficient condition as the
actual solution of the score transport equations in a CFD code leads to error propagation, resulting
in a higher number of scores needed. Figure 5 presents the results of the PCA-score reduction for
case 1. The left picture shows the temperature evolution after the shock. The results based on three
scores show major differences in the shape of the electron temperature profile and in the relaxation
time. Moreover, the equilibrium temperature is wrong because the composition is not accurately
computed. The discrepancies are less pronounced when using four scores. The results obtained
with five scores or more are in excellent agreement with the full CR model. Figure 5(b) shows the
ionization degree of the plasma. A very good agreement is also observed starting with five scores.
The dimensionality reduction is impressive as the species equations have been reduced from 34 to
only five.

The reduction of case 2 shown in Fig. 6 is very similar to the previous one as only the pressure
has been lowered. Notice that equilibrium temperature is already reached with only three scores,
as opposed to case 1. The results for case 4 are shown in Fig. 7. In the case, the speed has
been increased and the pressure lowered to match typical atmospheric re-entry situations. As the
free-stream conditions are more severe, the solver requires more scores to retrieve an accurate
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FIG. 5. Postshock simulation case 1: −−, 3 scores; − · ·−, 4 scores; , 5 scores; ×, full simulation.
(a) Temperatures: thick lines Th, thin lines Te. (b) Ionization degree.

solution. The PCA-scores solution is identical to the full CR model with six scores for the temperature
field and 13 scores for the ionization degree.

B. PCA scores with VARIMAX rotation

A VARIMAX rotation on the eigenvectors of the data has been carried on all the cases as it
increases the robustness of the code. Moreover, rotated eigenvectors and loadings are easier to
interpret as the variance expressed by them has been maximized. To illustrate this, the loadings for
the first two scores have been compared against their rotated ones for case 2 in Fig. 8 for score 1 and
in Fig. 9 for score 2. As a reminder, the loadings correspond to the weights of the original variables
expressed by the principal components or scores. Figure 8 shows that score 1 is mainly composed
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FIG. 6. Postshock simulation case 2: −−, 3 scores; − · ·−, 4 scores; , 5 scores; ×, full simulation.
(a) Temperatures: thick lines, Th; thin lines, Te. (b) Ionization degree.
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FIG. 7. Postshock simulation case 4: −−, 4 scores; − · ·−, 6 scores; , 13 scores; ×, full simulation.
(a) Temperatures: thick lines, Th; thin lines, Te. (b) Ionization degree.

of the ground state of argon and the ionized species. This information was concealed within the
unrotated scores. Figure 9 shows that all the species contribute to score 2.

As mentioned in Sec. III B, the rotation operation flattens the new source terms for calculating
the mass conservation of the scores. Figure 10 represents the source terms for score 1 before and
after rotation. The red curve, corresponding to the rotated scores, shows a significantly less noisy
behavior than the nonrotated ones. This is an important results as it shows how VARIMAX rotation
can improve the stability of the method within CFD codes.

C. Manifold sensitivity study

Previous tests only covered test cases 1, 2, and 4. To complete the testing grid, two additional
cases have been reduced in the (p,v) parameter study: test case 3 and test case 5, as shown in
Table IV. The preshock settings of case 3 match those of case 2. The results are similar. The best
reduced model uses only four scores out of 34, which corresponds to a model reduction of 88%.
Test case 5 has a free-stream velocity of 8 km/s combined with a high pressure of 685 Pa (matching
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FIG. 8. Score 1 loadings for the original variables before and after VARIMAX rotation, case 2. Light blue
bars, original loadings. Dark blue bars, rotated loadings.
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FIG. 9. Score 2 loadings for the original variables before and after VARIMAX rotation, case 2. Light blue
bars, original loadings. Dark blue bars, rotated loadings.

UTIAS cases). Also in this case, six scores were needed to represent the full model, corresponding
to a model reduction of 82%.

The reduction potential of the PC-score approach has been demonstrated. In a next step, we want
to investigate the applicability of a reduced model in different free-stream conditions. The reduced
model is built on sample data form a 1D calculation. This simulation was performed using certain
free-stream conditions. The objective is to change these preshock conditions and to assess if the
PCA-based model still converges with high accuracy. The limits of the manifold are represented in
Fig. 1, where the pressure varies from 50 to 700 Pa and the velocity varies from 5 to 8 km/s. The
objective of this study is to investigate if a reduced model, based on particular training data given by
the cases 1, 2, or 4, is still accurate using other free-stream parameters. To this purpose, the coefficient
of determination R is evaluated between the mass fractions obtained with the full CR model and the
reduced model. For R2 = 1, the reduced model is in perfect accordance with the full one.
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FIG. 10. Comparison of mass production source term for the first score with and without VARIMAX
rotation. Black dots, original loadings; red dots, rotated loadings.
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TABLE VI. Coefficient of determination for comparing the reduced models for cases 1, 2, and 4 in the
(p,v) parameter space.

Case 1 Case 2 Case 4

p [Pa] 5 [km/s] 5 [km/s] 6 [km/s] 7 [km/s] 8 [km/s] 5 [km/s] 6 [km/s] 7 [km/s] 8 [km/s]

150 0.999 0.999 0.995 0.999 0.998 0.957
200 0.869 0.991 0.999 0.999 0.969 0.981 0.999 0.997 0.869
250 0.976 0.851 0.991 0.999 0.999 0.920 0.996 0.999 0.975
300 0.990 0.532 0.950 0.999 0.999 0.877 0.981 0.999 0.990
350 0.986 0.212 0.855 0.998 0.999 0.961 0.999 0.986
400 0.991 0.720 0.992 0.999 0.941 0.999 0.991
450 0.994 0.569 0.981 0.999 0.924 0.997 0.994
500 0.996 0.423 0.960 0.999 0.910 0.993 0.996
550 0.997 0.290 0.931 0.999 0.898 0.989 0.997
600 0.998 0.172 0.893 0.999 0.984 0.998
650 0.998 0.0689 0.849 0.999 0.979 0.998
700 0.999 0.800 0.999 0.973 0.999

Table VI represents the R2 error for all the cases in the (p,v) space. The general trend is that a
reduced model can be used outside its training conditions, as long as the new free-stream parameters
are less severe than the original ones. For instance, the reduced model derived from case 4 with
8 km/s preshock velocity can be used for all pressures up to 200 Pa with high accuracy. This accuracy
also applies for conditions with similar preshock speeds.

Next, we investigate the possibility of generating reduced models from a finite number of cases
spanning the complete domain of interest, in terms of speed and pressure, and to use them for
conditions not originally included in the training dataset. Cases 1 and 3 are used to generate a
reduced model that is later used to simulate the conditions of case 2. The PCA-score method has
been applied to the combined data sets for cases 1 and 3 to find a global reduced model. The approach
is found to be very effective, as it provides excellent results for case 2 as shown in Fig. 11. This is
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FIG. 11. Translational temperatures for case 2. Thick lines, Th; thin lines, Te; +, CR results for case 2;
, interpolated score model based on the cases 1 and 3.
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a good strategy for generating reduced models for CFD applications, since the operating conditions
might vary in terms of pressure and velocity within a single simulation, and therefore a case built
from a span of conditions is needed.

V. CONCLUSIONS

The present work shows how principal component analysis can be used to reduce large and
complex chemistry models, such as this 34-species collisional-radiative argon plasma model.
Moreover, it shows how the reduction techniques developed for combustion applications can easily
be transferred to the plasma community. PCA score is able to provide a reduced model reproducing
complex postshock properties such as the temperatures, populations, and ionization fraction in
an accurate way. This is not always the case when using alternative reduction techniques which
are based on coarse-grain models and multitemperature approximations or on time-scale-based
reductions. PCA does not require in-depth knowledge of the physics of the reacting system to
be able to find a reduced model. The technique is straightforward and automatic, and therefore
user-friendly. PCA can also be used as a tool to study the physics of the problem, as it gives insight
into the dynamics of the reacting system. A summary of the important conclusions drawn in this
paper are presented:

(1) The 34 original variables representing the mass fractions of the species could be reduced to
three scores using PCA. These three scores represent a linear combination of the original variables
and maximize the variance in the system. This is an encouraging result as the set of governing
species equations has been reduced by more than 90%, which leads to an important speed-up of
the calculation and a reduction of computational cost. When changing the free-stream conditions
to more severe parameters, i.e., low pressures and high speeds, the number of scores to represent
detailed physics increases.

(2) PCA score has proven to be robust and more stable in combination with a rotation technique,
such as the VARIMAX criterion. Another advantage of rotating the transformation matrix is the
simplification of the interpretation of the principal components or scores.

(3) The sensitivity study has shown that a given reduced model can be used in a large frame of
free-stream conditions outside the initial ones while conserving good accuracy. This means only one
training data sample is needed for building a reduced model valid in a various free-stream conditions.

(4) Besides extrapolating the model, it can also be built by interpolating data. By combining
two data sets, one can build an interpolated model for intermediate conditions. This property is very
useful when dealing with CFD.

(5) As a concluding remark, we would like to point out PCA can also be used for more complex
reacting schemes which include a higher level of nonlinearity. As only one linear system may not be
sufficient to represent the entire manifold, the method can be applied locally in clusters to combine
several linear representations. Each cluster has its local linear representation in an individual PCA
reduced model.
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