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Intermittency of small-scale motions is an ubiquitous facet of turbulent flows, and
predicting this phenomenon based on reduced models derived from first principles remains
an important open problem. Here, a multiple-time-scale stochastic model is introduced
for the Lagrangian evolution of the full velocity gradient tensor in fluid turbulence
at arbitrarily high Reynolds numbers. Unlike previous phenomenological models of
intermittency, in the proposed model the dynamics driving the growth of intermittency
due to gradient self-stretching and rotation are derived directly from the Navier-Stokes
equations. Numerical solutions of the resulting set of stochastic differential equations show
that the model predicts anomalous scaling for moments of the velocity gradient components
and negative derivative skewness. It also predicts signature topological features of the
velocity gradient tensor such as vorticity alignment trends with the eigen directions of the
strain rate.
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The phenomenon of small-scale intermittency, universal across a wide range of turbulent flows
[1], represents a long-standing challenge to developing a theory for fluid turbulence that is based
on first principles, i.e., derivable from the Navier-Stokes equations [2–5]. The manifestation of
intermittency is that fluctuations in velocity gradients or increments become more extreme and
violent [6,7], exhibiting longer (fatter) tails in their probability distribution, with increasing Reynolds
number or shrinking observation length scale. Such extreme events can affect phenomena ranging
from flame extinction, droplet breakup, and heavy particle clustering in turbulent flows.

The refined similarity hypotheses [2,3] and the multifractal formalism [4,8,9] have provided
a conceptual framework for understanding intermittency, and various types of phenomenological
descriptions such as cascade models [4,9,10], shell models [11], and stochastic Markov processes
for velocity increments across scales [12] have been constructed to be consistent with the
energy cascading mechanism. Using adjustable parameters, these models can describe empirical
intermittency exponents. However, connecting these models and their intermittency exponents with
the incompressible Navier-Stokes equations through a systematic derivation has proved to be an
elusive goal. The only ab initio intermittency prediction is for the Kraichnan model for passive
scalars in a random (prescribed) velocity field [13].

Intermittency at the small scales of turbulence can be described using the scaling of velocity
gradient moments with Reynolds number, such as 〈|∂u/∂x|m〉 ∼ (〈ε〉/ν)m/2Reα(m)

λ , where Reλ =√
15u′2/

√
ν〈ε〉 is the Taylor-scale Reynolds number, u′ is the turbulent root-mean-square velocity

(turbulent kinetic energy is 3
2u′2), ν is the fluid’s kinematic viscosity, and 〈ε〉 is the flow’s mean

dissipation rate. Intermittency can be observed as deviations from α(m) = 0. We remark that Reλ

represents a ratio of time scales between the slowest and fastest motions of the turbulent flow, Reλ ∼
T/τK , where T ∼ u′2/〈ε〉 is the large-eddy turnover time and τK = √

ν/〈ε〉 is the Kolmogorov time
[14].
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The velocity gradient tensor, Aij = ∂ui/∂xj , encompasses both the strain rate (local deformation
rate) and vorticity (local rotation rate), providing a rich quantitative description of the local flow
conditions. The gradient of the Navier-Stokes equations for incompressible flow reads

d

dt
Aij = −

(
AikAkj − 1

3
ApqAqpδij

)
− P

(d)
ij + ν∇2Aij , (1)

where P
(d)
ij = ∂i∂jp − 1

3∇2pδij is the deviatoric part of the pressure Hessian tensor, p is the pressure

divided by density, and d
dt

represents the material time derivative following fluid particles in the flow.
Treating (1) as a nine-component dynamical system (eight degrees of freedom since Aii = 0, due
to incompressibility) greatly reduces the computational effort and complexity of the Navier-Stokes
system. This approach, however, requires a closure approximation for the pressure Hessian and
viscous Laplacian terms [15] since these are nonlocal; they cannot be expressed in terms of the local
values of Aij . Nonetheless, the closed term −AikAkj and the isotropic effect of pressure (∇2p =
−ApqAqp) in (1) contain much of the interesting physics contributing to turbulent dynamics, such
as the stretching and tilting of vorticity, ωi = εijkAkj , by the strain-rate tensor, Sij = 1

2 (Aij + Aji)
[16–18].

Various closure models have been developed, e.g., based on prescribing log normality of
pseudodissipation [19], the tetrad inertia tensor evolution [20], fluid deformation approximations
[21–23], and Gaussian field statistics [24,25]. So far, however, such closures have only been
successful for low-to-moderate Reynolds numbers (Reλ � 150) and fail to reproduce realistic
buildup of intermittency at arbitrarily high Reλ [26]. A velocity gradient shell model [27] was
a first attempt to extend this type of modeling to high Reynolds numbers, but it was based on a
generic nonlinear energy-preserving intershell coupling term without clear basis in the underlying
dynamical equations. Here, we propose a low-dimensional model of turbulence that can describe
intermittency growth at arbitrarily high Reynolds numbers. In the following paragraph, we review
the modeling approach of Ref. [25], which applies to relatively low Reλ dynamics and provides the
background for developing the new model for arbitrarily high Reλ explained afterward.

The dynamics of (1) can be modeled by the stochastic differential equation [24],

dAij = [ − (
AikAkj − 1

3ApqAqpδij

) + hij

]
dt + dFij , (2)

where hij = −〈P (d)
ij |A〉 + ν〈∇2Aij |A〉 is unclosed and dFij = bijk
dWk
 is the stochastic forcing

built on the tensorial Wiener process with 〈dWij 〉 = 0 and 〈dWijdWk
〉 = δikδj
. Here, boldface
indicates tensor quantities and 〈c1|c2〉 denotes the average of c1 conditioned on c2. Modeling is
required to specify hij and bijk
 in terms of known local quantities. The physically motivated closure
we use is based on the recent deformation of Gaussian fields (RDGF) approach [25] for representing
the conditional averages of the pressure Hessian and viscous Laplacian needed for hij in (2). The
model assumes that pressure p and A are slowly varying along Lagrangian fluid trajectories (i.e.,
constant for a short time τ ) while their spatial gradients (Hessians and Laplacian) can be related to
the deformation of the surrounding fluid, itself determined by the velocity gradient tensor. Further,
Gaussian field statistics are assumed for the initial ensemble on which the deformation during a short
time τ is performed. With these assumptions, the conditional averages can be evaluated analytically,
resulting in expressions which depend only on the deformation time scale τ and the dissipation
time scale τK . Furthermore, prescribing the stochastic forcing dFij requires specification of two
diffusion coefficients Ds and Da , for the symmetric and antisymmetric parts, respectively. Three
basic constraints are enforced. The first is the consistency of the model, requiring 〈|S|2〉 = τ−2

K

(where |S|2 = 2SijSij ). Also, homogeneous turbulence must satisfy 〈Q〉 = 0 and 〈R〉 = 0 [28]
(where Q = − 1

2 trA2 and R = − 1
3 trA3). These conditions determine the three parameters (found

numerically) as follows: τ = 0.1302τK , Ds = 0.1014τ−3
K , and Da = 0.0505τ−3

K . More details on
this model (that works well for moderate Reλ) can be found in Ref. [25] and the Supplementary
Material [29].
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To reach higher Reλ, we interpret the results of the RDGF model described above as if it
represented a filtered velocity gradient 〈A〉filt = Ã at a higher Reynolds number (〈..〉filt and the tilde
denote spatial filtering at some length scale that need not now be specified). The similarity between
velocity gradients at a low Reλ and filtered gradients at a larger Reλ can be motivated by considering
the gradient of the filtered Navier-Stokes equations,

d̃

dt
Ãij = −

(
ÃikÃkj − 1

3
ÃpqÃqpδij

)
− P̃

(d)
ij + ν∇2Ãij − �ij ,

where �ij = ∂j ∂kσik represents the effect of the subscale stress σik = ũiuk − ũi ũk typically modeled

in large-eddy simulations and d̃
dt

represents rate of change along trajectories following the coarse-
grained velocity field. With a constant eddy viscosity model for the subscale stresses, the filtered
gradient dynamics reduce to (1) with an enhanced viscosity. Similar modeling steps lead to the
original RDGF model but for coarse-grained velocity gradients and with a (larger) time scale βτK ,
where β =

√
〈|S|2〉/〈|S̃|2〉 � 1 is a model parameter specifying the extent of the coarse graining.

In other words, at the large scales one solves Eq. (2) but the model uses as time scale τ1 = βτK .
This model for Ãij provides crucial information for modeling the unfiltered velocity gradient

tensor at high Reλ, namely, the local rate at which energy is passed to smaller scales, � = −σij S̃ij ≈
νe|S̃|2, where νe is the effective eddy viscosity for the filtered dynamics. The rate � must be matched
by the locally averaged rate at which energy is dissipated by the unfiltered velocity gradients within
a region of scale comparable to the filter scale, i.e., νe|S̃|2 = ε̃ = ν〈|S|2〉filt. Matching these rates
for each trajectory and assuming a constant νe leads to 〈|S|2〉filt = (νe/ν)|S̃|2. This step shows that
the local variance of the inverse time scale of the small-scale motions is slaved locally to that of the
larger scale motions. Thus, the characteristic time scale for the small scales should not be a single
constant value, τK , but should be modulated by the characteristic time scales of the larger scale
motions. Specifically, a fluctuating time scale τ2(t) = β−1|S̃|−1 should be used for the full velocity
gradient dynamics (1). Therefore, the time-dependent τ2(t) replaces the constant τK in the RDGF
closure for the unfiltered dynamics (2) for this two-time scale model. Here, β is a fixed ratio of
time scales, which can be thought of as ensuring global balance of energy dissipation rates if β2 is
interpreted as a chosen ratio of viscosities between the scales. Consistency with the model’s weak
coupling of small-scale A with coarse-grained Ã requires β � 1, i.e., a large separation between
time scales.

To reach even higher values of Reλ, this second level (n = 2) can itself be thought of as a
coarse-grained velocity gradient with the introduction of a third level evolving at even smaller and
faster scales still to be described. In this way, the procedure outlined above can be iterated an arbitrary
number of times to construct a multiple-time-scale model with N levels and Reλ ≈ Reλ,0β

N−1,
where Reλ,0 represents the effective Reynolds number of the single-level model (Reλ,0 ≈ 60 and
β = 10 will be seen to describe the data well). Therefore, the adjustable parameters β and Reλ,0

determine the Reynolds number represented by a given number of levels by setting how quickly
the effective Reynolds number grows with each additional level. The general multiple-time-scale
model thus consists of a series of 3 × 3 tensors A(n) with time scales τn(t) for n = 1, . . . ,N . The first
level evolves with the modeling and forcing using a constant time scale of τ1 = βN−1τK ∼ β−1T ,
where T is the time scale of eddies at the integral scale of turbulence. All faster levels obtain their
instantaneous, trajectory-specific time scale from the next coarser level using τn(t) = β−1|S(n−1)|−1.

An additional drift term must be added to the equation to account for the fact that the single-level
model was calibrated for an imposed constant time scale τK . Because each n � 2 level has a
fluctuating time scale, τn(t), which takes the place of τK , we must ensure that the consistency
constraint 〈|S(n)|2〉 = τ−2

n = β−2|S(n−1)|2 holds. The single-level RDGF system with constant-in-
time τK can be written in the dimensionless form:

d

dt∗
A∗

ij = f ∗(A∗), where A∗
ij = Aij τK, dt∗ = dt/τK, (3)
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FIG. 1. (a) A sample A11 signal from three adjacent levels of the same trajectory in a three-level model. Top:
coarsest level, n = 1; middle: next-coarsest level, n = 2. Bottom: fully resolved velocity gradient, n = N = 3.
Panels (b) and (c): Probability density functions of A11 (b) and A12 (c) for N = 1, 2, 3, 4, and 5 (colored solid
lines) compared with DNS data at Reλ = 430 (dotted line). Also shown is a model with Neff = 1.85 (dashed
line).

and

f ∗(A∗) = −(
A∗

ikA
∗
kj − 1

3A∗
k
A

∗

k

) + h∗
ij (A∗) + dF ∗

ij /dt∗. (4)

This dimensionless system satisfies 〈|S∗|2〉 = 1 by design. By replacing τK with τn(t), using the
product rule to expand d

dt∗ (A∗
ij ) = τn

d
dt

(Aij τn) = τ 2
n

d
dt

Aij + Aij τn
dτn

dt
, and substituting for the time

derivatives, it is straightforward to obtain

f (A,τn) = 1

τ 2
n

f ∗(A∗) − 1

τn

dτn

dt
A. (5)

Thus, the RDGF model follows an imposed arbitrary τn(t) signal by introducing the unsteady
constraint term − 1

τn

dτn

dt
A in the equation. Finally, the proposed multiple-time-scale Lagrangian

RDGF model for the velocity gradient tensor reads

dA
(n)
ij =

[
−

(
A

(n)
ik A

(n)
kj −1

3
A(n)

pqA
(n)
qp δij

)
− 1

τn

dτn

dt
A

(n)
ij +h

(n)
ij (A(n),τn)

]
dt+dF

(n)
ij (τn),

n = 1,2,3 . . . N (6)

with τn(t) = β−1|S(n−1)|−1 for n � 2 and τ1 = βN−1τK . The full expressions for h
(n)
ij and dF

(n)
ij can be

found in the Supplementary Material [29] and are based on the single-time-scale model of Ref. [25].
Equation (6) is a system of stochastic differential equations, representing the dynamics of coarse-
grained (1 � n < N) and fully resolved (n = N ) velocity gradients, with only 9N components yet
having its roots in the Navier-Stokes dynamics.

For the numerical results shown in the paper, the stochastic differential equations are advanced
numerically for 104 Kolmogorov times using a second-order predictor-corrector method with
adaptive time step set by a tolerance of 10−3 relative difference between first- and second-order
schemes at each time step. Each level of each trajectory is advanced with its own unique time step
size. Linear temporal interpolation and central differencing in time was used to compute τn(t) and
dτn/dt information passed between levels, respectively.

We begin by showing results from a three-level simulation with β = 10. Figure 1(a) shows
sample time signals for A

(n)
11 for n = 1,2,3. This tensor component is the longitudinal gradient

∂u/∂x commonly studied experimentally. The coarse-grained velocity gradients vary on longer time
scales and act to modulate the amplitude of the finer scale ones which change rapidly. This generates
more extreme events in the faster levels. Next, we evaluate statistical and scaling properties of the

072601-4



RAPID COMMUNICATIONS

TURBULENCE INTERMITTENCY IN A MULTIPLE-TIME- . . .

2 3 4 5 6 7 8 9 10

m

0.0

0.5

1.0

1.5

2.0

2.5

3.0

α
(m

)

lognormal

p-model

She-Leveque

(c)
β = 6

β = 10

β = 20

101 102 103 104 105 106

Reλ

101

102

F
la

tn
es

s

(b)
Model A11

Model A12

101 102 103 104 105 106

Reλ

10−1

100

-S
ke

w
ne

ss

(a)

FIG. 2. Panels (a) and (b): Skewness (a) and flatness (b) factors of velocity gradient components as a
function of Reλ compared with DNS and experimental data. Filled circles (A11 skewness and flatness) and
squares (A12 flatness) represent the results of the multi-level model. DNS data from Ref. [25] (�,◦); Ref. [32]
(�); and a compilation of experimental data from Ref. [6] (+). Smaller filled symbols represent the multilevel
model with noninteger Neff. (c) Scaling exponents α(m) from the multiple-time-scale RDGF model with ratio
β = 10 (filled red circles with error bars), compared with log-normal μ = 0.2 (dashed magenta line) and
μ = 0.25 (dot-dashed green line), She-Leveque [10] (continuous blue line), p-model [9] with p1 = 0.7 (black
dotted line), and DNS data from Refs. [32] (�), [1] (�), and [33] (�), as well as experimental data from Ref. [34]
(�). The RDGF model with β = 6 and β = 20 is also shown as well, illustrating the effect of changing β on
the predicted scaling exponents.

model and integrate up to N = 5 levels. The PDFs for A11 and A12 are shown in Figs. 1(b) and
1(c) for number of levels from N = 1 to N = 5. The distributions become increasingly heavy-tailed
as more levels are added. The probability density function (PDF) from direct numerical simulation
(DNS) data [30] with Reλ = 430 is also shown, with its level of intermittency falling between the
results for N = 1 and N = 2.

The skewness factor of the longitudinal component, defined as Sk = 〈A(N)
11

3〉/〈A(N)
11

2〉3/2, and

flatness factors F1 = 〈A(N)
11

4〉/〉/〈A(N)
11

2〉2 (and similarly for A
(N)
12 ) of the longitudinal and transverse

components are evaluated from numerical integration of the model for various N . Results are shown
and compared against DNS and experimental results in Fig. 2 using Reλ = 60βN−1, where β = 10
is chosen empirically by matching the ratio of flatness of A11 between the first and second levels
obtained from the model to data (see first two large blue circles in Fig. 2(b)). Thus, Reλ ≈ 6 × 105 is
reached with only 5 levels. Note that in Fig. 2(a) the negative of the skewness is shown, proving that
the model predicts negative skewness consistent with the energy cascade. Values near Sk ≈ −0.5
are obtained for moderate Reλ ∼ 102 and rise in magnitude at higher Reλ.

To use the model for any desired value of Reλ in between those given by integer N , one may
construct a model for a noninteger effective number of levels Neff, which can be obtained by shrinking
the effective ratio of time scales between the first and second levels. This is accomplished by writing
τ2(t) as a mixture with fraction γ from the fluctuations of the first level, while a fraction 1 − γ is
contributed by a nonfluctuating time scale:

τ2(t) = [
γβ2|S(1)|2 + (1 − γ )β−2(N−2)τ−2

K

]−1/2
. (7)

Note that this mixing of time scales is only done between the first and second levels, while subsequent
levels proceed as normal with τn(t) = β−1|S(n−1)|−1 for n = 3, . . . ,N . To relate the mixture fraction
0 < γ � 1 to Neff, we have found the following scaling to work well: γ = [Neff − (N − 1)]2/3. Thus,
for a given Reλ, one may obtain an effective (noninteger) number of levels Neff = 1 + logβ(Reλ/60).
Then, using 
Neff� levels (
· · · � is the ceiling function), one can effectively shrink the time-scale ratio
between the first and second levels. The appropriateness of this correspondence between Reynolds
number and levels in the multiple-time-scale description is verified by running the model for a desired
Reλ = 430 to compare with DNS. For this case, we find Neff = 1 + log10(430/60) = 1.85 and thus
must choose N = 
Neff� = 2 levels and γ = 0.852/3 = 0.90. The dashed line PDF in Figs. 1(b) and
1(c) shows excellent agreement with the DNS data at that Reynolds number.
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FIG. 3. Panels (a) and (b): Probability density functions of alignment of vorticity vector with the j th
strain-rate eigenvector ordered by decreasing eigenvalues (a): �1, circles; �2, triangles; �3, squares; and of
s∗ (b). Dashed lines indicate DNS results from Ref. [30] at Reλ = 430 and solid lines indicate model results
that are the same for any N . Panels (c) and (d): Joint PDFs in RQ invariant space from the multilevel RDGF
stochastic model with β = 10 and Neff = 1.85 (c) and from DNS of Ref. [30] at Reλ = 430 (d). Logarithmically
spaced isocontours shown are 101, 100, 10−1, 10−2, and 10−3.

The anomalous scaling properties of the model results can be explored via the higher order
standardized moments, μm = 〈|A11|m〉/〈A2

11〉m/2 ∼ Reα(m)
λ . These moments are evaluated from the

model up to m = 10, yielding log-log plots with excellent scaling, as those shown in Figs. 2(a)
and 2(b) (that correspond to m = 3 and 4, respectively). The slopes can be measured, leading to
α(m) shown in Fig. 2(c) as filled circles. Results clearly deviate from the nonintermittent case
α(m) = 0. In order to compare with earlier cascade models, α(m) can be related to existing velocity
increment scaling exponents, ζp, using Nelkin’s transformation [4,31], i.e., α(m) = 2p(m) − 3m,
where p(m) is the unique solution to ζp + p = 2m. The measured α(m) up to m = 10 corresponds
to about p ≈ 16. For β = 10, the multiple-time-scale RDGF model gives similar scaling exponents
as those of the She-Leveque model [10], the p-model [9], and the log-normal model with μ = 0.2
for smaller m. Choosing a lower ratio of time scales, β = 6, effectively increases the intermittency in
the model closer to the μ = 0.25 log-normal curve for m � 6, although still within the variations in
scaling exponents from the various DNS studies that are observed, especially at the higher moments.
Increasing the ratio of time scales, e.g., β = 20, has the opposite effect in decreasing the level of
intermittency. The model parameter β controls the intermittency [anomalous scaling exponents,
α(m)] in the results by changing the effective increase in Reλ corresponding to adding one level.
The increase in moments, μm, when adding one level is insensitive to β.

In extending the models to higher Reλ by adding more levels, the statistical properties of local
topology are maintained from the original (single-level) model. For instance, Fig. 3(a) shows
the PDFs for alignment between the vorticity vector and the strain-rate eigenvectors ordered
by decreasing eigenvalue, �i . The vorticity’s preferential alignment parallel to the intermediate
strain-rate eigenvalue direction and orthogonal to the minimal eigenvalue direction is reproduced. In
Fig. 3(b), the PDF of s∗ = −3

√
6�1�2�3/(�2

1 + �2
2 + �2

3)3/2 [35] is shown. The model produces
these same PDFs for any arbitrary number of levels. Furthermore, Figs. 3(c) and 3(d) compare the
joint PDF of Q and R for Neff = 1.85 with DNS at Reλ = 430. The model predicts this joint PDF
well. As the number of levels increases, the outer isocontours expand as rare events become more
likely, while the signature teardrop shape is maintained.

In summary, a low-dimensional model for Lagrangian time evolution of the velocity gradient
tensor in fluid turbulence has been proposed. It differs fundamentally from prior shell models
and other empirically motivated models of intermittency because the gradient self-stretching and
rotation A2 term vital to the energy cascade and intermittency development is derived directly from
Navier-Stokes. In this approach, each level effectively contains a wide band of dynamical frequencies
(β = 10 compared to 22/3 in Ref. [27] and typical of other shell models). The exact representation
of the nonlinear term captures local-in-scale interactions naturally within each level, eliminating
the need for strong, ad hoc coupling between levels. The model yields realistic predictions of
intermittency dependence on Reλ and describes the full tensorial structure of the velocity gradient,
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reflecting unique signatures and geometric alignments of velocity gradients in Navier-Stokes
turbulence.

Data are publicly available through the Gulf of Mexico Research Initiative Information and Data
Cooperative (GRIIDC) [36].
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