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Partial-depth lock-release flows
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We extend the vorticity-based modeling concept for stratified flows introduced by Borden
and Meiburg [Z. Borden and E. Meiburg, J. Fluid Mech. 726, R1 (2013)] to unsteady flow
fields that cannot be rendered quasisteady by a change of reference frames. Towards this
end, we formulate a differential control volume balance for the conservation of mass and
vorticity in the fully unsteady parts of the flow, which we refer to as the differential vorticity
model. We furthermore show that with the additional assumptions of locally uniform parallel
flow within each layer, the unsteady vorticity modeling approach reproduces the familiar
two-layer shallow-water equations. To evaluate its accuracy, we then apply the vorticity
model approach to partial-depth lock-release flows. Consistent with the shallow water
analysis of Rottman and Simpson [J. W. Rottman and J. E. Simpson, J. Fluid Mech. 135,
95 (1983)], the vorticity model demonstrates the formation of a quasisteady gravity current
front, a fully unsteady expansion wave, and a propagating bore that is present only if the
lock depth exceeds half the channel height. When this bore forms, it travels with a velocity
that does not depend on the lock height and the interface behind it is always at half the
channel depth. We demonstrate that such a bore is energy conserving. The differential
vorticity model gives predictions for the height and velocity of the gravity current and
the bore, as well as for the propagation velocities of the edges of the expansion fan, as a
function of the lock height. All of these predictions are seen to be in good agreement with
the direct numerical simulation data and, where available, with experimental results. An
energy analysis shows lock-release flows to be energy conserving only for the case of a full
lock, whereas they are always dissipative for partial-depth locks.

DOI: 10.1103/PhysRevFluids.2.064802

I. INTRODUCTION

Gravity currents are predominantly horizontal flows driven by hydrostatic pressure differences
due to density gradients in a gravitational field [1–4]. The development of simplified models for
predicting the front velocity of such gravity currents has a long history, dating back to the pioneering
work of von Kármán three quarters of a century ago [5], as well as subsequent investigations by
Benjamin [6] and Shin et al. [7]. As a common feature, all of the above models are based on the
integral laws for the conservation of mass of the dense and light fluids, as well as the conservation
of overall horizontal momentum. An energy-related empirical argument is then employed along a
certain streamline in order to quantify the head loss across the gravity current front so that a closed
system of algebraic equations is obtained. The key difference among the individual models lies in
where this energy argument is invoked.

More recently, an alternative approach for modeling Boussinesq gravity currents was proposed
by Borden and Meiburg [8] (see Fig. 1). Starting from the Euler equations for the conservation of
horizontal and vertical momentum, the authors eliminate the pressure variable by focusing on the
vorticity form of the Euler equation, thereby avoiding the need for a head loss closure assumption.
They furthermore assume that the flow is steady in the reference frame moving with the current
front and that the gravity current fluid is at rest in this reference frame. In integral form, the authors
thus obtain, for the control volume BCDE,

∮
ωu · n dS =

∫∫
−g′ ∂ρ

∗

∂x
dA, (1)
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FIG. 1. Schematic of a gravity current of thickness h propagating with velocity U into a channel of depth
H , in a reference frame moving with the current front.

where ω and u represent the vorticity normal to the plane and the velocity vector, respectively;
g′ is the reduced gravity defined as g(ρg − ρa)/ρa; ρ∗ denotes the dimensionless density
(ρ − ρa)/(ρg − ρa); and dA, dS, and n indicate a differential area within the control volume, a
differential length along the boundaries of the control volume, and the unit outer normal vector to
the control volume boundaries. The equation hence states that for a steady solution to exist, the rate
at which vorticity is being convected out of the control volume across boundary BE has to equal the
rate at which it is being generated within the control volume by baroclinic production. The vorticity
outflux can be evaluated as the vortex sheet strength U2 times its principal velocity U2/2 [9]. Thus
the integral form of the inviscid vorticity conservation equation immediately leads to

1
2U 2

2 = g′h. (2)

When combined with the mass conservation equation for the ambient stream

UH = U2(H − h), (3)

we thus obtain the gravity current velocity as

U√
g′H

=
√

2α(1 − α), (4)

where α = h/H . This vorticity-based approach yields results that are different from but
quantitatively similar to those obtained with the model of Benjamin [6],

U√
g′H

=
√

2 − α

1 + α
(1 − α)α. (5)

In spite of their quantitatively similar predictions, there exist a few subtle differences between the
models of Benjamin [6] and Borden and Meiburg [8], on which we briefly comment in the following.

A. Commonalities and differences of Benjamin’s and the vorticity model

Both Benjamin [6] and Borden and Meiburg [8] aim to establish relationships between the flow
properties far up- and downstream of the gravity current front, by invoking integral conservation
laws. Towards this end, both models make certain assumptions such as steady, uniform parallel flow
far up- and downstream, slip top and bottom walls, a current that is at rest in the moving reference
frame, and a sharp interface. These are, of course, simplifications of the true experimental situation,
which is typically unsteady, dissipative, and with a diffusive interface. Both models satisfy the
integral form of the continuity equation for the ambient fluid and both models satisfy the integral
conservation equation for horizontal momentum, without viscous forces along the top and bottom
walls. Up to this point, the models are identical.

The difference arises in how a third equation is obtained. Benjamin [6] accomplishes this by
employing Bernoulli’s equation along the streamline upstream of the stagnation point, meaning that
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a local form of the inviscid horizontal momentum equation is employed simultaneously with the inte-
gral form of the horizontal momentum equation. By evaluating Bernoulli’s equation along the upper
wall, it is then shown that a head loss exists, unless h/H = 0.5. While the model assumes hydrostatic
pressure profiles far up- and downstream of the gravity current front, it makes no attempt to incorpo-
rate the conservation of vertical momentum across the gravity current front, where the flow is nonhy-
drostatic as the ambient fluid is accelerated upward near the front and subsequently turned back into
the horizontal direction by the upper wall, with implications for the pressure profile along this wall.

The vorticity model takes a different approach in order to obtain a third equation. It incorporates
the principle of vertical momentum conservation by writing the integral form of the inviscid
vorticity conservation equation between the up- and downstream boundaries, as discussed above.
By combining this integral vorticity equation with the integral continuity equation we are able to
determine the front velocity of the gravity current without any knowledge of the pressure field.
This finding is consistent with the well known fact that in two-dimensional numerical simulations,
the gravity current velocity can be determined from the stream-function–vorticity form of the
Navier-Stokes equations, without solving for the pressure [10]. The observation that the front
velocity is solely a function of the conservation of mass and vorticity demonstrates the importance
of incorporating vertical momentum conservation into the derivation. Once the front and ambient
velocities have been determined from the integral conservation laws for mass and vorticity alone,
the vorticity model evaluates the pressure variable directly from the integral conservation relation
for horizontal momentum, without invoking Bernoulli’s equation anywhere in the flow. We note that
by employing the integral form of the inviscid vorticity equation, the vorticity model neglects the
diffusive spreading of the interfacial vortex sheet, as well as any diffusive flux of vorticity across
the top and bottom walls. For gravity currents propagating into shear, Nasr-Azadani and Meiburg
[11] compared direct numerical simulation (DNS) results for the traditional slip condition along the
walls ∂u

∂y
= 0 with those for a no-flux condition ∂2u

∂y2 = 0 and found the differences to be negligible.
If one were to integrate Bernoulli’s equation around the closed curve BOCDEB, assuming

hydrostatic pressure along the in- and outflow boundaries, one recovers Eq. (2). However, this
does not imply that the vorticity model effectively employs Bernoulli’s equation. Rather, it merely
reflects the fact that the front and ambient velocities can be evaluated without any knowledge of
the pressure field and that they do not uniquely determine the pressure field, so different pressure
fields can be constructed that are compatible with these given front and ambient velocities. For
example, if identical head losses exist along the upper and lower walls, one still recovers Eq. (2).
Hence, the correct way of evaluating the pressure is not from Bernoulli’s law, but from the integral
horizontal momentum equation for the entire control volume. It is easily shown by substitution
that the pressure values obtained from integrating Bernoulli’s law violate the integral conservation
equation for horizontal momentum, except for the case of h/H = 0.5.

We can hence summarize the key commonalities and differences between the models by
Benjamin [6] and Borden and Meiburg [8] as follows: The vorticity model is based on the three
integral conservation laws for (i) mass of the ambient fluid, (ii) horizontal momentum, and (iii)
vorticity. It does not apply Bernoulli’s law anywhere, either explicitly or implicitly. The model of
Benjamin [6], on the other hand, is based on (i) the integral form of the continuity equation for
the ambient fluid, (ii) the integral conservation law for horizontal momentum, and (iii) Bernoulli’s
equation along the stagnation point streamline. As mentioned above, despite these subtle differences,
the quantitative predictions by the two models are quite close to each other and they can be viewed
as somewhat different approximations of the true experimental situation.

B. Problem setup

As described above, the work by Borden and Meiburg [8] had introduced the vorticity modeling
approach for a gravity current front in an integral form, for a flow field that can be rendered steady
by shifting to a reference frame moving with the front. Khodkar et al. [12] subsequently extended
this approach to unsteady flow fields composed of several fronts propagating at different velocities.
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FIG. 2. Schematic of a partial-depth lock-release flow. (a) Initially, the dense fluid is confined to a lock of
length Llock and height Hlock. (b) Upon removal of the gate, the heavy fluid of density ρg forms a gravity current
with quasisteady propagation velocity ug,r and height hg,r . The light ambient fluid of density ρa forms a return
flow. For Hlock < H/2, the quasisteady gravity current is connected to the lock fluid by an unsteady expansion
fan. (c) For Hlock > H/2, a quasisteady bore of height hl and velocity ub forms at the left edge of the expansion
fan. The thin gray rectangles in (b) and (c) indicate the differential control volumes employed to derive the
conservation laws.

They accomplished this by analyzing each front separately in a reference frame that renders it steady
and by then matching the solutions in the different reference frames.

Within the present investigation, we will extend the vorticity modeling approach to fully unsteady
flows, i.e., to flow fields that cannot be constructed by superimposing and then matching a finite
number of quasisteady components. In order to develop the modeling framework, we will focus on
the canonical lock-release configuration (see Fig. 2). A tank of length L and height H is divided
into two compartments: A rectangular lock with length Llock and height Hlock initially contains the
heavy fluid of density ρg , while the remainder of the space is occupied by the light ambient fluid of
density ρa . Initially, these two immiscible fluids are separated by a gate. Upon removal of the gate,
the heavy fluid forms a gravity current with velocity ug,r and height hg,r that travels towards the
right along the bottom wall. This gravity current is connected to the lock fluid by a rarefaction or
expansion wave of height h(x,t), either directly, as in Fig. 2(b) or via a bore, as in Fig. 2(c). The left
and right edges of this expansion wave travel with speeds ul and ur , respectively. Note that positive
velocity values correspond to the directions of the arrows in Fig. 2. We aim to analyze the flow before
the left edge of the rarefaction wave or the bore interacts with the left wall. Within the rarefaction
wave, the dense fluid has a velocity ug(h). Concurrently, the ambient forms a left-propagating return
flow with velocity ua,r above the gravity current and ua(h) above the rarefaction wave. The velocity
u(h) with which the interface location of height h moves horizontally varies from −ul to ur within
the rarefaction wave. If the lock height Hlock equals the tank height H , we refer to the flow as a
full-depth lock-release current, while for Hlock �= H we obtain a partial-depth lock-release flow.

Based on the two-layer shallow-water equations, Rottman and Simpson [13] proposed a model for
partial-depth lock-release flows that includes the rarefaction wave behind the gravity current. Since
the shallow-water equations cannot directly model the gravity current front, its effect is accounted
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FIG. 3. Magnified form of the differential control volume in Fig. 2. The entire control volume DCEF

moves with the velocity u(h) of the steplike variation in interface height at location O, so the flow within
the control volume is quasisteady. We assume locally uniform flow within each layer at the in- and outflow
boundaries. Note that dh < 0.

for by an empirically modified front condition. For Hlock/H � 0.5, predictions by this model agree
closely with experimental observations. While the shallow-water model correctly predicts that a
left-propagating bore forms for Hlock/H > 0.5, this bore is not accounted for in the model, so the
agreement between the model and experiments deteriorates in this parameter range.

Shin et al. [7] proposed a model that accounts for the entire flow field, i.e., both for the rarefaction
wave and for the right- and left-propagating fronts. They employed a control volume approach that
conserves mass and horizontal momentum and also enforces the unsteady Bernoulli equation along
the top boundary. The authors furthermore assumed the interface height to be uniform along the
rarefaction wave and to change abruptly from hg,r to Hlock at the left edge. In this way, they obtained
for the gravity current speed in the Boussinesq limit

ug,r√
g′H

= 1

2

√
Hlock(2H − Hlock)

H 2
. (6)

The experiments by Shin et al. [7] furthermore confirmed that it is possible for gravity currents
with hg,r/H > 0.347 to form, whereas Benjamin [6] had suspected that such currents “would be
difficult, if not impossible, to produce experimentally.” The authors attributed this observation to
the momentum and energy transfer between the rarefaction wave and the current front, which is not
accounted for in Benjamin’s model.

The present study proposes a differential vorticity-based approach for analyzing the entire
unsteady flow field, including the gravity current, the rarefaction wave, and the internal bore.
Section II constructs the vorticity-based model and obtains predictions for the speed and height
of the gravity current, as well as for the velocities of the left and right edges of the expansion
fan. Section III presents DNSs and Sec. IV compares them to the model predictions as well as to
theoretical and experimental findings of earlier studies. Section V describes an a posteriori analysis
of the flow energetics, while Sec. VI summarizes the findings and gives some concluding remarks.

II. THEORY

Within the region of the rarefaction wave, the flow is unsteady and varies spatially, so it cannot
be rendered quasisteady by a change of reference frame. Hence we need to establish the governing
equations for a differential control volume in this region, as shown by the thin gray rectangles
in Figs. 2(b) and 2(c), rather than for an integral control volume as in the work of Borden and
Meiburg [8,14]. In order to formulate the governing system of equations for this differential control
volume, we represent the rarefaction wave as a series of infinitesimal steplike variations in interface
height of size dh. A detailed view of this differential control volume is shown in Fig. 3. It contains
the section over which the interface height varies from h − dh/2 at the left boundary to h + dh/2 at
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the right boundary, by means of a jump dh < 0 at the center of the control volume. The entire control
volume moves with the velocity u(h) of the jump. We assume the fluids to be inviscid and their
density difference to be sufficiently small for the Boussinesq approximation to be valid. Furthermore,
we consider the flow in each layer at the control volume boundaries to be purely horizontal and
independent of the vertical coordinate. With this assumption of locally unidirectional flow, we can
write the mass conservation equations for the lower and upper layers, i.e., for the control volumes
ABCD and ABEF , as[(

ug − dug

2

)
− u

](
h − dh

2

)
=

[(
ug + dug

2

)
− u

](
h + dh

2

)
, (7)

[(
ua + dua

2

)
+ u

](
H − h − dh

2

)
=

[(
ua − dua

2

)
+ u

](
H − h + dh

2

)
. (8)

By neglecting higher-order terms, Eqs. (7) and (8) simplify to

(ug − u)dh + hdug = 0, (9)

(ua + u)dh − (H − h)dua = 0. (10)

We now derive the conservation equation for the vorticity along the interfacial segment AB within
the differential control volume DCEF in Fig. 3. Towards that end, we start from the integral form
of the vorticity conservation law for inviscid variable-density flow

d

dt

∫∫
DCEF (t)

ω dA +
∮

CS(t)
ωVr · n dS = −

∫∫
DCEF (t)

g′ ∂ρ
∗

∂x
dA. (11)

Here CS(t) denotes the surface of the control volume DCEF and Vr represents the velocity of the
fluid relative to the moving control volume boundary. The temporal rate of change of the circulation
inside the control volume vanishes, because the control volume size and the interface shape within
do not change over time

d

dt

∫∫
DCEF (t)

ω dA = 0. (12)

Next, the flux of vorticity crossing the surface of the control volume can be formulated as∮
CS(t)

ωVr · n dS

= −
[(

ua − dua

2

)
+

(
ug − dug

2

)]
× 1

2

[(
ug − dug

2

)
−

(
ua − dua

2

)
− 2u

]

+
[(

ua + dua

2

)
+

(
ug + dug

2

)]
︸ ︷︷ ︸

vortex sheet strength

× 1

2

[(
ug + dug

2

)
−

(
ua + dua

2

)
− 2u

]
︸ ︷︷ ︸

vortex sheet principal velocity

. (13)

Simplifying Eq. (13) gives∮
CS(t)

ωVr · n dS = dug(ug − u) − dua(ua + u). (14)

To evaluate the baroclinic vorticity generation term on the right-hand side of Eq. (11), we remind
ourselves that the interface is sharp and that the dimensionless density ρ∗ = 1 everywhere below the
interface and ρ∗ = 0 everywhere above. Within the control volume DCEF , the interface consists
of the two horizontal segments to the left and the right and the vertical segment of length dh at
the center. Consequently, the only location within the control volume where ∂ρ∗/∂x �= 0 is along
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this vertical interface segment of length dh adjacent to point O. Integration along any horizontal
line that crosses this vertical interface segment gives

∫
∂ρ∗/∂x dx = −1. Consequently, we obtain∫∫

∂ρ∗/∂x dA = −dh, which results in∫∫
DCEF (t)

g′ ∂ρ
∗

∂x
dA = −g′dh, (15)

where dh < 0. Since ∂ρ∗/∂x �= 0 only along the vertical segment of the step, the horizontal interface
segments do not contribute to the area integral, so its value is independent of the horizontal extent
of the interval xr − xl . By substituting Eqs. (12), (14), and (15) into (11) we obtain

dug(u − ug) − dua(u + ua) = −g′dh. (16)

By combining the continuity equations (9) and (10) with the vorticity equation (16) we obtain the
system

dug

dh
= − 1

h
(ug − u), (17)

dua

dh
= 1

H − h
(ua + u), (18)

1

h/H
(u − ug)2 + 1

1 − h/H
(u + ua)2 = g′H. (19)

Note that while the dense and light fluid velocities are governed by first-order ordinary differential
equations (ODEs), the vorticity equation reduces to an algebraic relationship. We now choose
the channel height H and buoyancy velocity

√
g′H as reference scales to render Eqs. (17)–(19)

dimensionless:

du∗
g

dh∗ = − 1

h∗ (u∗
g − u∗), (20)

du∗
a

dh∗ = 1

1 − h∗ (u∗
a + u∗), (21)

1 = 1

h∗ (u∗ − u∗
g)2 + 1

1 − h∗ (u∗ + u∗
a)2, (22)

where the asterisk refers to dimensionless variables.
When the rarefaction wave is directly connected to the lock fluid, as shown in Fig. 2(b), both

fluids are at rest at the left edge of the rarefaction wave, so

u∗
g(H ∗

lock) = u∗
a(H ∗

lock) = 0. (23)

This provides the two required conditions at the left boundary for ODEs (20) and (21). Corresponding
boundary conditions for the configuration with the left-propagating bore, shown in Fig. 2(c), will be
discussed in Sec. II A. Equation (22) then gives, for the propagation velocity of the left edge of the
expansion wave,

u∗
l = −u∗(H ∗

lock) =
√

H ∗
lock(1 − H ∗

lock). (24)

At the right edge O ′ of the expansion wave, the expansion fan flow has to match the gravity current,
so it needs to satisfy

u∗
g(h∗

g,r ) = u∗
g,r , (25)

u∗
a(h∗

g,r ) = u∗
a,r . (26)
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The gravity current height h∗
g,r is determined by the condition

h∗
g,r = 1

2 (u∗
g,r + u∗

a,r )2
, (27)

which arises from the vorticity conservation principle for the gravity current front (cf. [8] and Sec. II
of the present paper). Combining (25)–(27) yields the front condition

h∗
g,r = 1

2 [u∗
g(h∗

g,r ) + u∗
a(h∗

g,r )]2. (28)

Then u∗
r can be evaluated by substituting the gravity current properties into the vorticity balance

equation (22), which gives

u∗
r = (1 − h∗

g,r )u∗
g(h∗

g,r ) − h∗
g,ru

∗
a(h∗

g,r ) −
√

h∗
g,r (1 − h∗

g,r ){1 − [u∗
g(h∗

g,r ) + u∗
a(h∗

g,r )]2}, (29)

where h∗
g,r can be calculated from Eq. (28).

The above system of equations (20)–(22), together with the boundary conditions (23) and the
front condition (28), thus completely determines the combined expansion fan and gravity current
flow. This system can be solved numerically by integrating Eqs. (20) and (21) from H ∗

lock to the h∗
value that satisfies the condition (28). We also update the interfacial velocity u∗ from Eq. (22) in
each integration step. The interface height at which we terminate the integration process is then the
gravity current height. In this study, we employ the standard fourth-order Runge-Kutta scheme to
carry out the integration.

Equations (20)–(22) can be recast in terms of a single ODE for u∗
g(h∗). Towards this end, Eqs. (20)

and (21) are combined and integrated with respect to h∗, which results in

u∗
gh

∗ = u∗
a(1 − h∗), (30)

which simply states that the volume flux to the left above the interface has to equal the volume flux
to the right below the interface. We can hence eliminate u∗

a from Eq. (22), so we obtain for u∗, as a
function of h∗ and u∗

g ,

u∗ = 1 − 2h∗

1 − h∗ u∗
g ±

√
h∗

1 − h∗
[
(1 − h∗)2 − u∗

g
2
]
. (31)

Substituting Eq. (31) into (20) then yields

h∗ du∗
g

dh∗ + h∗

1 − h∗ u∗
g ±

√
h∗

1 − h∗
[
(1 − h∗)2 − u∗

g
2
] = 0 (32)

for the velocity of the dense fluid within the expansion fan as a function of the local interface
height h∗. Interestingly, Eq. (32) is identical to the one obtained by Rottman and Simpson [13] via
a two-layer shallow-water analysis, as will be discussed below in further detail.

A. Formation of the left-propagating bore

The earlier investigations by Rottman and Simpson [13] and Shin et al. [7] demonstrated that the
expansion fan is not always directly connected to the lock fluid, as sketched in Fig. 2(b). Rather,
beyond a critical value of the lock height Hlock a bore or hydraulic drop forms that connects the left
edge of the rarefaction wave to the stationary fluid in the lock, as shown in Fig. 2(c). This is also
confirmed by the DNSs to be discussed below. We now proceed to analyze the formation of the bore
and its interaction with the left edge of the expansion wave, based on the vorticity approach.

As long as the interfacial wave speed u∗ varies monotonically with h∗ throughout the expansion
fan region, the slope of the fan’s interface will decrease everywhere with time, so a bore does
not form. If, on the other hand, u∗ reaches an extremum u∗

min for an intermediate value of h∗, the
interfacial segment with this minimum velocity travels leftward faster than the left edge of the wave
and catches up with it. The interface hence steepens locally and a bore forms where the expansion
fan meets the lock fluid, as sketched in Fig. 2(c). This situation corresponds to the observation by

064802-8



PARTIAL-DEPTH LOCK-RELEASE FLOWS

FIG. 4. Schematic of the control volume around the hydraulic drop of the configuration in Fig. 2(c).

Rottman and Simpson [13] of a multivalued solution for the interfacial height when H ∗
lock > 0.5.

Now the boundary conditions at the left edge of the expansion fan take the form

u∗
g(h′

l

∗) = u∗
g,l, (33)

u∗
a(h′

l

∗) = u∗
a,l . (34)

In order to determine the value of H ∗
lock at which the bore first appears, we need to determine the

value of H ∗
lock for which the u∗ profile first exhibits an extremum. Taking the derivative of Eq. (22)

with respect to h∗ yields

(
2(u∗ − u∗

g)

h∗ + 2(u∗ + u∗
a)

1 − h∗

)
du∗

dh∗ − 3(u∗ − u∗
g)2

h∗2 + 3(u∗ + u∗
a)2

(1 − h∗)2
= 0, (35)

where du∗
g/dh∗ and du∗

a/dh∗ have been replaced based on Eqs. (20) and (21). A local minimum for
the interfacial velocity (du∗/dh∗ = 0) exists when

u∗ − u∗
g

h∗ = u∗ + u∗
a

1 − h∗ . (36)

As we will see in Sec. II B, a u∗ minimum first appears for the largest value of h∗, i.e., at the left edge
of the rarefaction wave [location O in Fig. 2(b)] where u∗

g = u∗
a = 0. For these conditions, Eq. (36)

gives H ∗
lock = 0.5, which agrees with the findings of Rottman and Simpson [13].

For flows with bores we have to match the left edge of the expansion fan to the bore at the interface
height h′

l [cf. Fig. 2(c)]. To obtain the velocities of the upper and lower fluid layers between the bore
and the expansion fan, we first investigate the left-propagating bore in isolation from the rest of the
flow, as sketched in Fig. 4. In the reference frame moving with the bore, the continuity equations for
both layers and the vorticity conservation equation for the control volume ABCD in Fig. 4 read

u∗
bH

∗
lock = (u∗

b + u∗
g,l)h

′
l

∗
, (37)

u∗
b(1 − H ∗

lock) = (u∗
b − u∗

a,l)(1 − h′
l

∗), (38)

1
2 (u∗

g,l + u∗
a,l)(2u∗

b + u∗
a,l − u∗

g,l) = h∗
l (39)

(cf. [14]). If the interface height h′
l to the right of the bore is known, these equations fully determine

the fluid and bore velocities. In order to understand how the flow selects this interface height, it is
instructive to analyze the energetics of the bore region. Towards this end, we determine the pressure
difference along the top wall pA − pB from the horizontal momentum conservation equation for
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ABCD, ∫ A

D

[ρrefui(y)2 + pi(y)]dy =
∫ B

C

[ρrefuo(y)2 + po(y)]dy, (40)

where pi(y) and po(y) indicate the pressure functions from A to D and B to C, respectively, and ui(y)
and uo(y) represent the piecewise constant fluid velocities across the in- and outflow boundaries,
respectively. The reference density is also ρref = ρa . The pressure can be considered hydrostatic far
up- and downstream of the bore, so pi(y) and po(y) take the forms

pi(y) =
{
pA + ρag(H − y), y � Hlock

pA + ρag(H − Hlock) + ρgg(Hlock − y), y < Hlock,
(41)

po(y) =
{
pB + ρag(H − y), y � h′

l

pB + ρag(H − h′
l) + ρgg(h′

l − y), y < h′
l .

(42)

Nondimensionalizing these relations and substituting them into Eq. (40) yields

p∗
A − p∗

B = h′
l

∗(u∗
b + u∗

g,l)
2 + (1 − h′

l

∗)(u∗
b − u∗

a,l)
2 − u∗

b
2 − 1

2

(
H ∗

lock
2 − h′

l

∗2)
, (43)

where the dimensional pressures have been divided by ρag
′H to obtain the dimensionless ones. The

rate of dissipation of energy �E for the entire control volume, in the reference frame of the bore,
can be calculated as

�Ė =
∫ A

D

(
1

2
ρau

2
i + pi + ρigy

)
uidy −

∫ B

C

(
1

2
ρau

2
i + po + ρogy

)
uody, (44)

where ρi and ρo denote the fluid densities at the in- and outlet of ABCD, respectively. After
nondimensionalization and simplification, Eq. (44) reads

�Ė∗ = (p∗
A − p∗

B)u∗
b + H ∗

lock(H ∗
lock − h′

l

∗)u∗
b + 1

2u∗
b

3 − 1
2h′

l

∗(u∗
b + u∗

g,l)
3

− 1
2 (1 − h′

l

∗)(u∗
b − u∗

a,l)
3. (45)

Note that �Ė has been scaled by ρag
′3/2H 5/2 to be rendered dimensionless.

Figure 5 displays the net rate of energy loss �Ė for the bore sketched in Fig. 4, as a function
of h′

l
∗ and for several values of H ∗

lock. The results show that, independent of the lock height, the
interface height h′

l
∗ = 0.5 corresponds to energy-conserving flow. An interface height of less than half

the channel height would require an energy gain, so it cannot be physically realized. As we will
see in the DNSs to be discussed below, for all lock heights the flow develops a nearly-energy-
conserving bore with an interface height h′

l
∗ ≈ 0.5, corresponding to the familiar observation of an

energy-conserving half-depth current for a full-depth lock release [6,8].
Substituting h′

l
∗ = 0.5 into Eqs. (37)–(39) then gives u∗

b = 0.5 and u∗
g,l = u∗

a,l = H ∗
lock − 0.5. In

Sec. IV we will compare these results to DNS simulations. These flow velocities u∗
g,l and u∗

a,l to
the right of the bore can now serve as boundary conditions at the left edge of the expansion fan.
Substitution into Eq. (22) yields the propagation velocity of the left edge of the rarefaction wave

u∗
l =

√
H ∗

lock(1 − H ∗
lock). (46)

This result is identical to Eq. (24), which represents the velocity of left edge of the expansion fan
for the configuration in Fig. 2(b) without a bore. For any lock height H ∗

lock > 0.5, we can now solve
Eqs. (20)–(22) in the interval h∗

g,r � h∗ � h′
l
∗ = 0.5, subject to these boundary conditions and the

front condition (28).

B. Predictions by the vorticity-based model

We employ a standard fourth-order Runge-Kutta method to solve Eqs. (20) and (21), along with
the algebraic equation (22), for the configuration sketched in Fig. 2(b). For now, we apply boundary
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FIG. 5. Variation of the rate of dissipation of energy �Ė∗ as a function of the interface height after the
hydraulic drop h′

l
∗, computed for an isolated bore traveling along the interface of a two-layer flow for various lock

heights H ∗
lock. For all lock heights, an interface height h′

l
∗ = 0.5 after the bore corresponds to energy-conserving

flow.

conditions (23) at h∗ = H ∗
lock and the condition (28) at the front. The validity of the conditions (23)

will then have to be established a posteriori, based on whether or not they result in a multivalued
solution, as discussed in Sec. II A. Figure 6(a) displays the dense and light fluid velocities as
functions of the local interface height for the specific lock height value H ∗

lock = 0.5. The lower layer
fluid continually speeds up from the lock towards the gravity current, while the upper layer velocity
is seen to reach a local maximum close to where the expansion fan transitions to the gravity current.

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.2 0.4 0.6 0.8 1
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FIG. 6. (a) Variation of the lower layer velocity u∗
g (solid line) and the upper layer velocity u∗

a (dotted line),
as a function of the local interface height h∗, for H ∗

lock = 0.5. (b) Interfacial velocity u∗ as a function of h∗

along the rarefaction wave, for various values of the lock height H ∗
lock. These solutions were obtained based on

the configuration in Fig. 2(b), with boundary conditions (23).
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FIG. 7. Variation of the interfacial velocity u∗ as a function of h∗ along the expansion fan, for various
values of H ∗

lock > 0.5. These solutions were obtained based on the configuration in Fig. 2(c) and boundary
conditions (33) and (34). As discussed in the text, in these cases the left edge of the rarefaction wave is located
at h∗ = h′

l
∗ = 0.5 and the solution for u∗ exists only for the range h∗

g,r � h∗ � 0.5.

Figure 6(b) shows the interfacial velocity u∗ as a function of the interface height h∗ for several
different lock heights. As we anticipated based on the analysis in Sec. II A, for H ∗

lock = 0.4 and
0.5 the interfacial velocity u∗ increases monotonically from negative values at the lock to positive
values in the vicinity of the gravity current, which indicates that the left edge of the expansion fan
travels to the left, while its right edge travels to the right. For H ∗

lock = 0.6, 0.8, and 0.9, on the
other hand, we find that solutions based on the configuration shown in Fig. 2(b), with boundary
conditions (23), yield a local minimum for an intermediate interface height near the lock, which
indicates that a left-propagating bore will form, so that boundary conditions (23) are invalid, and
interfacial velocities below −0.5 will not emerge in the flow. Figure 6(b) confirms that a bore first
appears for H ∗

lock = 0.5, since for this value the slope of u∗(h∗) first vanishes at the left edge of the
expansion fan. These results are consistent with the analysis of Sec. II A and with the findings of
Rottman and Simpson [13].

The analysis in Sec. II A, along with the observations of multivalued solutions for the interfacial
velocity when H ∗

lock > 0.5, suggests that in this regime boundary conditions (33) and (34) need to be
enforced, which results in the interfacial velocities shown in Fig. 7. Now u∗ decreases monotonically
with h∗ and the expansion fan is confined to the range h∗

g,r � h∗ � 0.5.

C. Relationship between the vorticity-based model and the two-layer shallow-water equations

Rottman and Simpson [13] derive Eq. (32) from the two-layer shallow-water equations, after
employing the method of characteristics. In the following, we will show that in the limit of locally
unidirectional flow and when the velocity does not vary across the thickness of each layer, the
vorticity model is consistent with the shallow-water equations. This discussion is merely intended
to clarify the relationship between the two approaches and to establish under what conditions they
are equivalent to each other. The two-layer shallow water equations have clearly proved to be highly
useful and we do not mean to imply any shortcomings of this approach.

Figure 8 displays an arbitrary two-layer stratified flow, with the gray rectangular area indicating
a fixed control volume of length �x. For a two-dimensional inviscid flow in the Boussinesq
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FIG. 8. Control volume employed for the purpose of discussing the relationship between the vorticity-based
model and the shallow water equations (see the discussion in the text).

approximation, the vorticity equation reads

∂ω

∂t
+ u · ∇ω = −g′ ∂ρ

∗

∂x
. (47)

Integration over control volume ABCD yields∫∫
ABCD

∂ω

∂t
dA︸ ︷︷ ︸

I1

+
∮

CS

ωu · n dS︸ ︷︷ ︸
I2

=
∫∫

ABCD

−g′ ∂ρ
∗

∂x
dA︸ ︷︷ ︸

I3

, (48)

where CS denotes the surface of the control volume ABCD. We now consider the flow to be locally
unidirectional at the in- and outflow boundaries and assume that u1 and u2 do not vary with y. The
integrals in Eq. (49) can then be evaluated individually. Integral I1, which accounts for the temporal
rate of change of vorticity within ABCD, yields

I1 = ∂

∂t

∫ x+�x

x

dx

∫ H

0
−∂u

∂y
dy = ∂

∂t

∫ x+�x

x

−(u2 − u1)dx. (49)

Here I2 accounts for the convective flux of vorticity into and out of the control volume, which can
be obtained by multiplying the strength of the vortex sheet with its principal velocity. Consequently,

I2 = u2
1(x + �x) − u2

1(x)

2
− u2

2(x + �x) − u2
2(x)

2
. (50)

Finally, the baroclinic vorticity generation can be evaluated as

I3 =
∫ H

0
dy

∫ x+�x

x

−g′ ∂ρ
∗

∂x
dx =

∫ H

0
−g′[ρ∗(x + �x) − ρ∗(x)]dy

= −g′[h(x + �x) − h(x)]. (51)

In the limit of �x → 0, we thus obtain

∂u2

∂t
− ∂u1

∂t
+ u2

∂u2

∂x
− u1

∂u1

∂x
= g′ ∂h

∂x
. (52)

This is identical to what one obtains in the Boussinesq limit from the shallow-water equations when
subtracting the lower layer momentum equation (3.3) from the upper layer one (3.4) in [13]. We
thus conclude that, perhaps not unexpectedly, for locally unidirectional flow with constant velocity
across the height of each layer, the vorticity-based model and shallow-water theory are equivalent
to each other. When the velocity is not approximately unidirectional, such as in the vicinity of
a gravity current front or an internal bore, shallow-water theory is no longer applicable, whereas
vorticity-based models are still able to capture the physics correctly.
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III. THE DNS RESULTS

In the following, we compare predictions by the vorticity model with DNS results, as well
as with earlier experimental data and model predictions by other authors. The DNS data were
obtained with our code TURBINS, which has been described and validated in detail by Nasr-Azadani
and Meiburg [15,16]. TURBINS is a finite-difference solver based on a fractional step projection
method, along with total variation diminishing Runge-Kutta time integration. It solves the unsteady,
incompressible Navier-Stokes equations in the Boussinesq limit

∇ · V∗ = 0, (53)

∂V∗

∂t∗
+ V∗ · ∇V∗ = −∇p∗ + 1

Re
∇2V∗ + ρ∗eg, (54)

∂ρ∗

∂t∗
+ V∗ · ∇ρ∗ = 1

Pe
∇2ρ∗, (55)

where V∗ and eg represent the velocity vector and unit vector in the direction of gravity, respectively.
The dimensionless time is defined as t∗ = t/

√
H/g′. The governing dimensionless parameters have

the form of a Reynolds number Re = √
g′HlockHlock/ν and a Péclet number Pe = √

g′HlockHlock/D.
Here ν indicates the kinematic viscosity and D denotes the diffusivity of the density field. We apply
free-slip conditions for the velocity, along with vanishing normal flux conditions for the density field,
along all solid boundaries. Re and Pe are set to 8000 and 40 000 in the simulations, respectively, to
minimize the effects of diffusion. Initially the fluids are at rest and the density field is as sketched in
Fig. 2(a). The computational domain has the dimensionless size 70 × 1 and the lock length is set to
35. The domain is discretized uniformly with �x∗ = 0.01 and �y∗ = 0.004, which is sufficiently
fine to yield converged results.

Figure 9 shows the temporal evolution of a partial lock-release flow for various values of the lock
height H ∗

lock. All values of H ∗
lock give rise to a right-propagating gravity current ahead of a rarefaction

wave. On the other hand, the left-propagating flow varies qualitatively with H ∗
lock. For small values

of H ∗
lock, the rarefaction wave extends all the way to the lock fluid. For increasing lock heights,

the front propagating into the lock fluid becomes steeper and borelike, as can be seen in Figs. 9(e)
and 9(f). This observation is consistent with the earlier investigations of Rottman and Simpson [13]
and Shin et al. [7]. Rottman and Simpson [13] state that this bore begins to form experimentally
when H ∗

lock ≈ 0.7, while their model predicts bore formation for H ∗
lock > 0.5, in agreement with our

analysis in Sec. II. They attribute this discrepancy to diffusive effects and interfacial mixing, both of
which are neglected in their theory. Shin et al. [7] argue that the formation of the left-propagating
bore starts when infinitesimal long waves travel faster than the left edge of the rarefaction wave,
which is theoretically shown to occur for H ∗

lock > 2/3.
To evaluate the front velocity of the gravity current in the DNS, we track its front location x∗

g,r

with time. We define the local dimensionless interface height η∗(x∗,t∗) as

η∗(x∗,t∗) =
∫ 1

0
ρ∗(x∗,y∗,t∗)dy∗ (56)

and determine x∗
g,r as the rightmost location at which η∗ > 0.01. The solid lines in Figs. 10(a)

and 11(a) show that for H ∗
lock = 0.5 and 0.8 the slope dx∗

g,r/dt∗ becomes constant after a brief initial
transient, which indicates a quasisteady gravity current velocity.

Finding the horizontal location of the right edge x∗
r of the rarefaction wave as a function of time

is slightly more complicated. Figure 12 shows that behind the gravity current head the interface
height drops abruptly. For H ∗

lock � 0.5, an extended interface segment of nearly constant height
follows that can easily be identified. For H ∗

lock > 0.5, on the other hand, the gravity current exhibits
significant turbulence, so its interface height fluctuates until it reaches the rarefaction wave. Within
the rarefaction wave region, the interface height fluctuations are much reduced. Consequently, in
order to identify x∗

r coming from the left, we search for the end of an extended region of at least
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FIG. 9. (a)–(c) Temporal evolution of the density field for a partial-depth lock-release flow with H ∗
lock = 0.5.

(d)–(f) Density field at t∗ = 50 for (d) H ∗
lock = 0.4, (e) H ∗

lock = 0.8, and (f) H ∗
lock = 0.9. The density field varies

from ρ∗ = 0 (light gray) to ρ∗ = 1.

three unit lengths over which ∂η∗/∂x∗ does not change its sign. The data shown by the dotted lines
in Figs. 10(a) and 11(a) indicate that this methodology is successful in identifying the right edge of
the expansion fan and finding its propagation velocity, which is constant to a good approximation.
We note that for H ∗

lock = 0.8 the velocity of the right edge u∗
r is substantially smaller as compared

to H ∗
lock = 0.5. These DNS data will be compared to model predictions in Sec. IV.

After determining the locations of the gravity current front x∗
g,r and the right edge of the rarefaction

wave x∗
r , the gravity current height h∗

g,r can be obtained as the average of η∗ over the interval from
x∗

r to x∗
g,r ,

h∗
g,r =

∫ x∗
g,r

x∗
r

η∗(x∗,t∗s )dx∗

x∗
g,r − x∗

r

, (57)

where t∗s should be chosen sufficiently large such that the gravity current height has become time
independent. Here we take t∗s = 50.

The left edge of the rarefaction wave is the location at which the interface height begins to
decrease from its lock value H ∗

lock. Hence, its location x∗
l can be obtained as the leftmost point for
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FIG. 10. Plot of the DNS results for the temporal evolution of (a) the front location of the gravity current
(solid line) and the location of the right edge of the rarefaction wave (dotted line) and (b) the location of the left
edge of the wave, for H ∗

lock = 0.5. The straight line segments represent the corresponding quasisteady velocities,
obtained by linear fits of the DNS results.

which |η∗ − H ∗
lock| > 0.01. For H ∗

lock > 0.5, when the flow gives rise to the left-propagating bore,
this procedure yields the horizontal location of the left edge of the bore, denoted by x∗

b . In the
presence of a bore, the left edge of the expansion fan x∗

l is found as follows. Coming from the bore,
we look for the first location where |∂η∗/∂x∗| < 0.01 to make sure we have exited the bore region.
We refer to this point as x∗

e . We then identify the left edge of the rarefaction wave x∗
l as the first
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FIG. 11. Plot of the DNS results for the temporal evolution of (a) the front location of the gravity current
(solid line) and the location of the right edge of the rarefaction wave (dotted line) and (b) the left edge of the
bore (solid line) and of the rarefaction wave (dotted line), for H ∗

lock = 0.8. The straight line segments represent
the corresponding quasisteady velocities, obtained by linear fits of the DNS results.
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FIG. 12. Plot of the DNS results for the local interface height at t∗ = 50, for H ∗
lock = 0.5 (solid line) and

0.8 (dotted line). The circles, squares, and the triangle represent the locations of the right and left edges of the
rarefaction wave, as well as the left edge of the bore.

location where |∂η∗/∂x∗| exceeds 0.01 again. The interface height right after the hydraulic drop
can then be calculated in the same fashion as the gravity current height, i.e., by averaging the local
interface height η∗ from x∗

e to x∗
l ,

h′
l

∗ =
∫ x∗

l

x∗
e

η∗(x∗,t∗s )dx∗

x∗
l − x∗

e

. (58)

Again, we select t∗s = 50, which yields a quasisteady result.
Figures 10(b) and 11(b) represent the temporal variation of x∗

l and x∗
b for H ∗

lock = 0.5 and 0.8,
respectively. Note that the case H ∗

lock = 0.5 is just at the limit of the regime where a left-propagating
bore begins to form. After a brief initial transient, x∗

l and x∗
b vary linearly with time, indicating that the

bore and the left edge of the expansion wave travel with constant velocities. The bore velocity is seen
to be very close to 0.5, which is consistent with the analysis in Sec. II A. Additionally, in agreement
with the findings of Sec. II A, Fig. 11(b) confirms that the left edge of the rarefaction wave travels
more slowly than the bore, so the distance between the bore and the expansion fan grows with time.

IV. THE DNS COMPARISONS

Figure 13 compares the predictions by the differential vorticity model with DNS results, as
well as with earlier model predictions and experimental data by other authors where available. All
existing models predict a continuous increase of the gravity current height with the lock height. The
experimental and DNS results generally fall in between the various model predictions and indicate a
gravity current height slightly less than half the lock height. Both the results of Shin et al. [7] and the
vorticity model recover the classical full-depth lock-exchange result of Benjamin [6] and Borden and
Meiburg [8]. Equations (24) and (29) of the present model also correctly predict that u∗

l = u∗
r = 0 in

this limit, indicating that no expansion fan forms for a full-depth lock release. The model of Rottman
and Simpson [13] does not converge to this limit, as it does not account for the left-propagating bore.
Regarding the gravity current velocity, Shin et al. [7] predict a continuous increase with lock height,
whereas the vorticity model yields a maximum value of u∗

g,r for H ∗
lock = 0.789, which corresponds to

h∗
g,r = 0.333. This is consistent with the analysis of Borden and Meiburg [8] and close to the results
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FIG. 13. Variation as a function of the lock height H ∗
lock: (a) the height h∗

g,r of the gravity current and the
interface height h′

l
∗ after the hydraulic drop, (b) the velocity u∗

g,r of the gravity current, (c) the velocity u∗
l of

the left edge of the rarefaction wave and the velocity u∗
b of the bore, and (d) the velocity u∗

r of the right edge of
the rarefaction wave. Here VM refers to the current vorticity-based model.

of Benjamin [6], which display a maximum at h∗
g,r = 0.347. Although the gravity current speeds

predicted by Shin et al. [7] agree more closely with the DNS and experimental results compared to
those of the present study and Rottman and Simpson [13], we should note that unlike other models,
Shin et al. [7] cannot obtain u∗

g,r for a gravity current with a given height, unless the height of the lock
from which this gravity current has been produced is also prescribed, as can be realized from Eq. (6).

The DNS data for u∗
b are consistent with the finding by the vorticity model that a left-propagating

bore emerges when the lock height exceeds half the tank depth and that this bore travels with a
velocity of 0.5, independent of H ∗

lock. The current model also predicts that the interface height after
this hydraulic drop h′

l
∗ is always equal to 0.5, in very close agreement with DNS results. In addition,

the vorticity model predicts, and the DNS results confirm, that the dependence of the expansion
fan’s left edge velocity u∗

l on H ∗
lock is symmetric with regard to H ∗

lock = 0.5. The model of Shin
et al. [7], on the other hand, predicts that the propagation speed of the fastest leftward disturbance,
as represented by the left edge of the expansion fan before the formation of the bore and the bore
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otherwise, is always opposite and equal to the gravity current velocity, which is not confirmed by
the current DNS results. The vorticity model predictions for u∗

r , which are in close agreement with
the DNS results, become negative beyond H ∗

lock = 0.789, so the rarefaction wave as a whole travels
to the left.

V. ENERGY ASSESSMENT

When deriving the set of governing equations, we did not invoke any assumptions about energy
conservation or energy losses in the flow. Consequently, we can now assess the energetics of
the flow a posteriori, by evaluating the head loss along the top wall of the tank from B to A

in Figs. 2(b) and 2(c). The pressure difference along this streamline can be calculated from the
horizontal momentum balance for the control volume ABDE in the laboratory reference frame.
The flow is at rest at AE and BD and the velocity along the top wall is taken from the preceding
analysis. Due to the unsteadiness of the flow within ABDE, we need to employ the unsteady form
of the streamwise momentum conservation equation and account for the rate Ṁ at which momentum
changes within the control volume. Hence, we obtain

Ṁ =
∫ B

D

p dy −
∫ A

E

p dy = (pB − pA)H − (ρg − ρa)g
H 2

lock

2
, (59)

where we assume that the pressure is hydrostatic at the boundaries. The rate at which momentum
inside ABDE changes with time is given by the sum of the rates at which momentum changes
inside the gravity current, expansion wave, and left-propagating bore regions

Ṁ = Ṁgc + Ṁw + Ṁlb. (60)

These individual rates can be calculated by multiplying the rate at which the area of the flow region
under consideration increases, with the momentum per unit area. Consequently,

Ṁgc = ρa(ug,r − ur )[ug,rhg,r − ua,r (H − hg,r )], (61)

Ṁw =
∫ Hlock

hg,r

ρa

du

dh
[ugh − ua(H − h)]dh, (62)

Ṁlb = ρa(ub − ul)[ug,lh
′
l − ua,l(H − h′

l)]. (63)

Mass conservation gives ug,rhg,r = ua,r (H − hg,r ) for the gravity current, ugh = ua(H − h) in the
expansion wave, and ug,lh

′
l = ua,l(H − h′

l) for the bore, so the right-hand sides of Eqs. (61)–(63)
vanish in the Boussinesq limit. Hence we obtain Ṁ = 0, so Eq. (59) yields

pB − pA = (ρg − ρa)g
H 2

lock

2H
. (64)

Once we determine the pressure difference pB − pA along the top wall, the corresponding head loss
� can then be obtained from the unsteady form of Bernoulli’s equation along streamline BA,

pB + 1

2
ρau

2
B + ρa

∂φ

∂t

∣∣∣∣
B

= pA + 1

2
ρau

2
A + ρa

∂φ

∂t

∣∣∣∣
A

+ �. (65)

Here φ denotes the velocity potential for the upper layer. In addition, uA and uB represent the
flow velocities at A and B, which vanish as the fluid is at rest at these locations. Clearly, φ has
to be continuous and its x derivative should recover the horizontal velocity in the ambient. These
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FIG. 14. Head loss �∗ along the top wall of the tank, computed from B to A, as a function of the lock
height H ∗

lock.

conditions can be satisfied for Hlock � H/2 by

φ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 for xA � x < xO

− ∫ x

xO
uads for xO � x < xO ′

−ua,r (x − xO ′) − ∫ xO′
xO

uads for xO ′ � x < xF

−ua,r (xF − xO ′) − ∫ xO′
xO

uads for xF � x � xB

(66)

and for Hlock > H/2 by

φ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 for xA � x < xC

−ua,l(x − xC) for xC � x < xO

−ua,l(xO − xC) − ∫ x

xO
uads for xO � x < xO ′

−ua,r (x − xO ′ ) − ua,l(xO − xC) − ∫ xO′
xO

uads for xO ′ � x < xF

−ua,r (xF − xO ′ ) − ua,l(xO − xC) − ∫ xO′
xO

uads for xF � x � xB.

(67)

Relation (66) or (67) can be substituted into Eq. (65) to obtain �. We render the result
dimensionless by scaling pressure and head loss with pref = �ref = ρag

′H . The other variables
are nondimensionalized as described in Sec. II. We thus obtain, for the dimensionless heaadloss �∗,

�∗ =
⎧⎨
⎩

H ∗
lock

2/2 − u∗
a,ru

∗
g,r + ∫ H ∗

lock
h∗

g,r

du∗
a

dh∗ u
∗dh∗ for H ∗

lock � 0.5

H ∗
lock

2/2 − u∗
a,ru

∗
g,r − u∗

a,lu
∗
b + ∫ h′

l
∗

h∗
g,r

du∗
a

dh∗ u
∗dh∗ otherwise.

(68)

Figure 14 displays the head loss along the top wall for the entire range of H ∗
lock. Consistent with

the analyses of Benjamin [6] and Borden and Meiburg [8], the flow is energy conserving only for
H ∗

lock = 1, when the left- and right-propagating gravity currents occupy half the depth of the tank.
For other values of H ∗

lock, the flow dissipates energy in the region next to the gravity current, since
its height is less than 0.5, as well as in the rarefaction wave, and in the left-propagating bore when
H ∗

lock > 0.5. Note that, on the other hand, the analysis of Shin et al. [7] had assumed nondissipative
flow along the top wall. The head loss �∗ has a maximum for Hlock = H/2, when the left-propagating
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bore begins to form. We reiterate that with the vorticity model, explicit knowledge of Hlock is not
required in order to write down the governing equations for the gravity current front.

VI. CONCLUSION

The vorticity-based modeling concept for stratified flows was initially introduced by Borden
and Meiburg [8,14] for quasisteady conditions. Here we have further extended this approach to
flows that are fully unsteady at least in some regions, so they cannot be rendered quasisteady by a
change of reference frames. In order to accomplish this, we shifted from the integral control volume
balance employed in those earlier investigations to a differential control volume balance for the
fully unsteady parts of the flow. Evaluation of the conservation equations for mass and vorticity
then required the additional assumption of locally uniform parallel flow within each layer. With this
additional assumption, we showed that the unsteady vorticity modeling approach reproduces the
two-layer shallow-water equations for the unsteady sections of the flow.

In order to test this unsteady modeling approach, we applied it to the case of partial-depth
lock-release flows, for which we can compare with model-based predictions as well as experimental
data of other authors and with DNSs conducted as part of the present investigation. Consistent
with the shallow-water analysis of Rottman and Simpson [13], the vorticity model demonstrates
the formation of a quasisteady gravity current front, a fully unsteady expansion wave, and (for
H ∗

lock > 0.5) a quasisteady propagating bore. When a bore forms, it travels with velocity 0.5 and
the interface behind it always is at half the channel depth, independent of the lock height. We
demonstrate analytically that such bores are energy conserving. The differential vorticity model
furthermore gives predictions for the height and velocity of the gravity current and the bore, as well
as for the propagation velocities of the edges of the expansion fan, as functions of the lock height. All
of these predictions are seen to be in good agreement with the DNS data and, where available, with
experimental results. Since it does not require any energy-based closure assumptions, the vorticity
model can be employed for an a posteriori analysis of the energetics of the flow. Such an analysis
shows lock-release flows to be energy conserving only for the case of a full lock, whereas they are
always dissipative for partial-depth locks.

The current extension enables the vorticity-based approach to formulate simplified models for a
range of stratified flow fields with at least some fully unsteady regions.
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