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The dynamics of the nearly periodic highly modulated turbulent wakes of two-
dimensional rectangular cylinders normal to a uniform flow are investigated experimentally
for thickness-to-chord ratios between 0.05 and 1.92 at Reynolds numbers around 6 600.
Measurements were conducted using planar, time-resolved stereoscopic particle image
velocimetry. A generalized phase average analysis, which invokes elements of mean-field
theory to relate the temporal modal coefficients of the fundamental harmonic and
slow-varying base-flow drift, provided a statistically significant representation of the
coherent cycle-to-cycle variation of the shedding process. It is shown that the characteristics
of the wake velocity fluctuations change as a function of the thickness-to-chord ratio and
can be related to structural differences in the wake topology. Moreover, the trajectory of
shed vortices plays an important role in distinguishing the dynamics observed for different
fluctuation-amplitude cycles. Based on differences in amplitude modulation characteristics
and the vortex formation region topology, three flow regimes can be defined: a thin-plate
regime, for which the feedback between forming vortices and base pressure is important; a
cylinder-like thick-plate regime for which the obstacle afterbody suppresses the feedback;
and a long-plate regime for which wake periodicity is not associated with the classical
Kármán shedding process. The present analysis highlights the importance of the feedback
mechanism for the thin-plate regime and helps reconcile differences in the reported critical
thickness values between regimes.
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I. INTRODUCTION

The turbulent wake of a two-dimensional (2D) rectangular cylinder1 normal to the flow is a
fundamental yet complicated aerodynamics problem relevant to many engineering applications such
as tall structures, buildings, and long-span bridges exposed to wind. The forces caused by vortex
shedding can excite damaging frequencies of flexible structures. Investigating the physical processes
underlying the vortex shedding characteristics allows design optimization and flow control. In order
to understand both the mean and unsteady forces for engineering applications, simplified bluff body
models such as 2D circular, rectangular, and H- and D-shaped cylinders have been the subject of
substantial research in the past. The wakes of these bluff bodies are also of interest in heat and mass
transfer research [1] as turbulence can affect the heat transfer rate, in applications such as stays and
supports in internal flow geometries as found in heat exchangers, or erosion rates behind piers.

Fage and Johansen [2], using hot-wire anemometry and surface pressure measurements for a
2D plate of thickness (b, streamwise thickness when the plate is held normal to the flow) to width
(d, the width or chord) ratio of 0.03, were among the first to characterize the wake periodicity
for rectangular geometries and reported shedding frequencies, fsh, in terms of the nondimensional

*Corresponding author: rmartinu@ucalgary.ca
1Strictly, these “cylinders” are sharp-edged prisms, but are called “cylinders” in the vast majority of the

literature. In conformity to the literature, we will refer to a cylinder with small thickness-to-width ratios,
typically less than 0.2, as a “plate.”
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Strouhal number St = fshd/U∞ (U∞ being the uniform free-stream velocity). The literature on
normal rectangular cylinders is mostly focused on the thin flat plate, b/d typically less than 0.2 [2–7],
and the square cylinder, b/d = 1.0 [8–13]. Intermediate thickness ratios have received much less
attention and the effect of b/d on the flow is not fully understood, but small variations in b/d can
affect the drag coefficient [14] (Cd = Drag/ 1

2ρU 2
∞d, ρ = fluid density). Surface pressure coefficient

[Cp = (P − P∞)/ 1
2ρU 2

∞d, P is the local pressure, P∞ is the free-stream pressure], Cd , and St data
for normal rectangular cylinders as a function of b/d have been measured in several studies [15–23].
Some of the experiments were for forced oscillation shedding [24–26] whose resemblance to natural
shedding is not obvious. However, Nakamura and Ohya [27], among others, found that as b/d is
increased from nominally zero, there are multiple parameters that can affect the flow and make a
comparison troublesome. These experimental parameters include the tunnel blockage (B, the ratio
of the obstacle to the test section frontal areas), free-stream turbulence intensity (Tu, defined in the
conventional manner as the root-mean-square of the streamwise fluctuations divided by U∞), end
conditions, aspect ratio (AR, ratio of the span s to d of a rectangular cylinder), and Reynolds number
(Re = ρU∞d/μ, μ = dynamic viscosity of the fluid).

A synthesis of the available literature suggests some consensus for b/d � 1.7–2. The flow
separates at the sharp leading edges and, in the mean, does not reattach on the “afterbody” (i.e., body
surfaces downstream of the separation points). The wake periodicity is due to a Kármán-like process
of vortex formation and shedding. Generally, the influence of the turbulence intensity is negligible
for Tu � 3% and the flow is relatively insensitive to the Reynolds number for Re > 4 000.

The drag coefficient Cd has been reported [14] to increase as the thickness ratio was increased
from b/d = 0.2, reaching a peak value at a critical thickness of 0.6 and decreased monotonically as
b/d was further increased to b/d ≈ 2. The frequency of vortex shedding, in terms of St, decreased
from b/d = 0.2 to b/d = 0.6 and was nearly constant as b/d was further increased to b/d ≈ 1.5
and decreased for larger b/d. Qualitatively similar results were found in later studies. While similar
values of the critical thickness for maximum Cd have been reported [16,23,28], differences reported
by Igarashi [22] and Knisely [29] indicate that the aspect ratio, and thus the end conditions, influence
the value of the critical thickness. However, differences in the reported values of the critical thickness
as obtained from different large-eddy simulation (LES) studies [30–32], ranging from ∼ 0.4 to 0.6,
suggest more subtle effects as well.

A significant scatter in both the values and trends is observed when comparing results of St as a
function of b/d from different studies. References [16,24,28,29,33,34] report similar trends for St
as a function of b/d as reported in Ref. [14], but their values for St are noticeably higher than in
the latter study. In contrast, Refs. [35] and [22] suggest an increase in St as b/d is increased to the
critical thickness, while Ref. [23] shows little change in St. As b/d is further increased, these studies
report a monotonic decrease in St up to b/d ∼ 1.7–2. Despite the difference in trends reported
for St as a function of b/d, all results indicate a change at or close to the point of maximum Cd .
Several LES studies [30–32,36] report that for obstacles with b/d less than the critical thickness,
the fluctuation amplitude for the base pressure, lift, and drag coefficients are significantly more
modulated than for thicker obstacles. This change has been attributed to a change in the vortex
formation process in the base region. At the critical thickness that maximized Cd , Ref. [28] observed
that the base pressure coefficient Cpb has alternating low and high values at irregular intervals. Based
on visualizations [28,37], albeit at a much lower Re < 4 000, these changes were associated with an
abrupt change between two different flow patterns. It remains, however, that evidence is restricted
to low-Re visualizations and the nature of the changes is still not elucidated.

A second critical thickness was found between b/d ≈ 1.7 and 3 [21,23,29,31,32,38,39] for which
the flow separating from the leading edge reattaches to the afterbody. While periodicity in the wake
velocity fluctuations is observed, it is unclear whether the vortex formation process corresponds to the
more conventional Kármán-like process observed for thinner cylinders. The state of the developing
boundary layer near the trailing edge of the obstacle plays an important role in determining the flow
characteristics. The state is very sensitive to Tu and Re, e.g., see Refs. [21] or [39], explaining the
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large scatter in the reported values for St, Cd , and the value of this second critical thickness for such
elongated cylinders.

The nature of the changes in the vortex shedding at different thickness ratios has not been
experimentally characterized in terms of vortex topology and strength during the formation and
shedding process. Such a characterization requires spatially correlated measurements over the
shedding cycle. To the authors’ knowledge, almost all previous studies are limited to hot-wire
anemometry, surface pressure measurements, force balances, and smoke-dye visualizations. These
methods mainly provide information on St, Cd , surface pressure evolution, and a limited number of
velocity profiles. Because of the inherent limitation of hot-wire anemometry, these velocity profiles
are obtained significantly downstream of the formation region such that even conditionally averaged
measurements do not provide insight into changes in the formation and shedding process.

It is noted that Refs. [6] and [12] report conditionally ensemble-average velocity fields according
to the shedding phase for a thin plate (b/d = 0.08) and a square cylinder (b/d = 1), respectively.

This traditional phase average (TPA) provides a representation of an average shedding cycle. The
results for the square cylinder include the base formation region and show a high level of coherence
with the shedding motion, whereby it is reported that up to 60% of the total Reynolds stress
contributions are due to the coherent motion. Unfortunately, for the thin plate case, only the region
downstream of the formation region is presented, showing a formed vortex street. Leder [6] observed
coherent contributions to the Reynolds stress field that are significantly lower than for the square
cylinder. Ohya [28] and others have shown that the amplitude modulation of the periodic fluctuations
in the leeward face pressure and wake velocity fluctuations is significantly higher for thinner plates.
Moreover, the modulation and variation levels depend on the thickness ratio, suggesting that an
average cycle TPA representation may mask some important flow dynamics.

In the present work, coherent cycle-to-cycle variations in the vortex shedding characteristics, wake
topology, and dynamics are captured from stereoscopic particle image velocimetry (stereo-PIV) mea-
surements using a generalized phase averaging (GPA) technique [40]. Here, the three most energetic
proper orthogonal decomposition (POD) modes are related via mean-field theory of Ref. [41] in
phase space to construct the GPA model for the coherent contribution to the cycle-to-cycle variations.

This paper presents stereo-PIV measurements of all mean velocities, Reynolds stresses, and
triple products in the wake of 2D rectangular cylinders normal to a wind tunnel flow. The b/d ratios
were varied between 0.05 and 1.92 at Re ≈ 6 600, with AR ≈ 38. The effect of b/d on the wake
structure and the vorticity field is described in the form of mean flow, turbulent statistics, shedding
frequencies, and unsteady vortex shedding process. The drag coefficient was found from the mean
momentum equations applied at the end of field of view. The remainder of the paper is laid out as
follows. Section II describes the experimental facility and details of the stereo-PIV acquisition. The
principals and the implementation methodology of the GPA technique are summarized in Sec. III A.
Subsequently, an overview of the mean field is given in Sec. IV A and observations on the nature of
the vortex shedding based on the GPA are presented and discussed in Sec. IV B. Key observations
from the analysis are discussed and related to findings in the earlier literature in Sec. V. The final
section provides the main conclusions.

II. EXPERIMENTAL FACILITY

The experimental setup is shown schematically in Fig. 1 together with the nomenclature.
Measurements were performed in an open jet working section wind tunnel. Still air is drawn through
a 3-m-diameter inlet and passes through three 20-mesh metal grids, a 24- and 30-mesh metal grid,
and one 80-mesh nylon screen into a contraction section of area ratio 36:1. The working section of the
wind tunnel is a 0.5-m-diameter jet in which the experimental apparatus was mounted. The working
section free-stream velocity is U∞ = 8.70 ± 0.05 m/s and was monitored with a Pitot-static tube.

The free-stream turbulence intensity (
√

u′2/U∞) is 0.8%. The ambient temperature and pressure
were constant throughout the measurements nominally at 20◦C and 90 kPa(a), respectively.
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FIG. 1. Schematic of the wind tunnel, stereo-PIV setup, and nomenclature.

The sharp-edged rectangular cylinder models consisted of machine-smoothed aluminium
carefully spray-painted matt black to reduce laser light reflections. The models were placed through
the center of the working section with one face (of width d) placed normal to the oncoming flow. The
models of span s = 560 mm extended out of the flow. No end plates were used. The chord d ranged
from 12.8 to 13.4 mm, corresponding to Reynolds numbers 6 500 < Re < 6 800 based on d and U∞.
Fifteen rectangular cylinder models of different thickness (b) were used such that 0.05 � b/d � 1.92
as summarized in Table I. The leeward face was at a fixed location 260 mm (approximately 20d)
downstream of the working-section inlet. The thickness was increased upstream of the field of view
(FOV), so that the FOV location in the wake was kept fixed relative to the downstream face of the
models throughout the measurements.

A tensioning structure ensured the rigidity of the models in the flow. A triple-axis Manfrotto
rotary stage enabled accurate adjustment of the plates normal to the oncoming mean flow. The origin
of the Cartesian coordinates is the midpoint of the downstream face of the plates at midspan with x

in the streamwise direction, y in the cross stream, and z in the spanwise direction as shown in Fig. 1.
Time-resolved stereo-PIV measurements were performed for 0.5 < x/d < 5.5. The stereo-PIV

method is well described [42–45]. The high-frame-rate LaVision system included a Photonics

TABLE I. Overview of rectangular cylinder dimensions. The Reynolds number Re is based on d , U∞ =
8.7 m/s, and ambient conditions of 20 ◦C, 90 kPa (a).

d b d b

b/d (mm) (mm) Re b/d (mm) (mm) Re

0.05 12.85 0.64 6511 0.44 13.36 5.88 6780
0.07 13.25 0.96 6724 0.53 13.31 7.10 6765
0.11 12.83 1.47 6511 0.59 13.28 7.81 6765
0.20 13.33 2.68 6765 0.78 13.32 10.36 6765
0.25 13.33 3.34 6765 1.00 12.80 12.75 6511
0.30 13.30 3.94 6765 1.53 13.33 20.39 6765
0.34 13.28 4.57 6765 1.92 13.29 25.52 6724
0.38 13.31 5.12 6765
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Industries 20mJ Nd:YLF laser producing a 1.5-mm light sheet to illuminate the seeded flow, and a
pair of Photron SA4 Fastcams (1024 × 1024 pixels). Cameras, mounted on a traversing system with
equal and opposite angles of 45◦ relative to the z axis, were focused on the same field as shown in
Fig. 1. The Scheimpflug conditions [44] were satisfied through an adapter enabling accurate focus
on the skewed planes of view. The flow was seeded with olive oil as tracer particles of roughly
1–2 μm in diameter generated with a Laskin nozzle. Since the reflected laser light from the obstacle
surfaces saturates the cameras near the surfaces, it was decided to position the stereo-PIV window
downstream of the plate and exclude the plate from the camera view. For each measurement plane,
three trials were taken. In each trial, 2 700 snapshots were recorded over 4.5 s in a double-pulse mode.
The double-pulse separation was 24 μs and the image-pair acquisition frequency was fs = 600 Hz,
which allowed to capture 6 to 10 data points per shedding cycle.

Images were processed using Davis Flow Master 8.2 stereo reconstruction adaptive multi-grid
correlation algorithm, which accounted for the distortion and the subpixel window displacement.
Calibration followed the empirical three-dimensional (3D) reconstruction of Ref. [46].

Two passes of frame-straddled arrangement-vector processing were performed, in which the
interrogation window size was decreased from 64 × 64 at the first pass to 32 × 32 at the second,
both with 50% overlap leading to a vector spacing of 14.5 pixels, which represented a spatial grid
resolution of 1.1 mm or 0.085d in a 78 × 71 mm2 field of view. Less than 2% (on average) of
the vectors were detected as incorrect. The boundaries of postprocessed stereo-PIV images were
cropped to exclude the regions of higher uncertainty associated with interpolation at the edges.

In the present arrangement, the particle image was 2.5 × 2.5 pixels on average. According to
Ref. [44], the particle images were adequately resolved, and no smoothing or modification of the
data was conducted. Subpixel accuracy for the velocity without peak-locking effects was verified
through inspection of the bimodal distribution of the particle displacement histograms. Following
Ref. [47], the rms PIV velocity error, σv , is given by σv ≈ 0.1(SpixMs/�t), where Spix is the pixel
size, Ms is the scale factor of the image, and �t is the time step between successive images. In the
present experiment, Spix = 4 μm, Ms = 4.1, and �t = 24 μs. Thus, σv = 0.068 m/s. Based on the
procedure detailed by Ref. [48], the estimated overall uncertainty (comprising systematic and random
uncertainties) is no greater than 1% and 6% for the normalized mean velocity and Reynolds stresses,
respectively, within a confidence interval of 95%. All normalization of the velocity components and
Reynolds stresses in this paper is by U∞ and U 2

∞, respectively.

III. METHODOLOGY

The present flows exhibit low-frequency variations in short-term mean and amplitude of the
nearly periodic fluctuations associated with vortex shedding. The generalized phase average (GPA),
proposed in Ref. [40], is a refinement of the triple decomposition of Ref. [49]. It draws on concepts
of mean-field theory [41] to capture the coherent contribution to cycle-to-cycle variations. The GPA
thus allows comparison of the structure of shed vortices for different shedding cycles. In this section,
the key concepts and construction of the GPA are briefly summarized.

Starting with the triple decomposition of Ref. [49], the velocity field u is represented by the
summation of a base flow, uB , a contribution from the large-scale spatially correlated motion, uc,
and uncorrelated residual motion, u′′:

u(x,t) = uB(x,t) + uc(x,t) + u′′(x,t), (1)

where bold symbols represent vectorial quantities. In the traditional phase-averaging technique, the
base flow is taken to be the mean flow, viz.,

uB(x,t) = U(x)

and uc is the conditionally averaged fluctuating component of the flow field according to the shedding
phase, φ. As shown by Ref. [50] for the analysis of a circular cylinder wake using spatially correlated
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PIV measurements, uc can be represented by

uc(x,φ) =
2∑

i=1

ãi(φ)� i(x), (2)

where ãi are the phase-averaged temporal modal coefficients and � i(x) are the orthonormal spatial
modes. Here, � i(x) correspond to the spatial functions of the mode pair for the first harmonic of the
fluctuating field, associated with the principal (vortex shedding) frequency, as obtained from proper
orthogonal decomposition [51]. By construction, the traditional phase average does not account for
cycle-to-cycle variations of the fluctuation amplitude since ãi is a function of the shedding phase
only, φ = tan−1[a2(t)/a1(t)], where a1(t) and a2(t) are the temporal modal coefficients of the first
harmonic pair and the fluctuation amplitude

√
ã2

1 + ã2
2 is constant.

In the GPA, the cycle-to-cycle variations in the shedding process are represented by including a
slow-varying contribution to the base flow and envelope of the first harmonic fluctuation amplitude.
First, the base flow is defined as the combination of the mean field and a slow-varying mode, denoted
by the subscript �:

uB(x,t) = U(x) + a�(t)��(x). (3)

In this study, �� corresponds to the most energetic nonperiodic mode for each case considered.
The slow-varying mode is analogous to the slow-drift or shift mode proposed by Ref. [52]

to describe the transient growth of instabilities in low-Reynolds-number cylinder wakes. In low-
dimensional models, the shift mode is included in the Galerkin projection to describe the energy
exchange between the modes for the slowly varying base flow and the first harmonic pair due to
the action of the Reynolds stresses [51]. The shift mode is thus related to mean-field theory [41] as
it describes the base-flow drift between the unstable steady laminar solutions towards the attractor
(dynamically stable oscillatory solution). For low Reynolds numbers, the solution trajectory lies
along a (mean-field) paraboloid when plotted in the a1,a2 vs a� modal space.

For higher-Reynolds-number turbulent wakes downstream of cantilevered square cylinders [40]
and surface-mounted square-based pyramids [53], it has been shown that the solution trajectory
in the a1,a2 vs a� modal space is scattered about a mean-field paraboloid due to the perturbations
caused by the turbulent motion. Thus, in the GPA, the mean-field paraboloid is modeled
according to

a� = c1
(
AGPA

1

)2 + BFP, (4)

where the model coefficients c1,BFP are found by minimizing the mean square residual between the
total flow field and the modeled GPA field. AGPA

1 is the modulus of the modeled first harmonic pair
such that the GPA coefficients are

〈a1〉 = AGPA
1 cos φ, 〈a2〉 = AGPA

1 sin φ, (5)

where 〈·〉 denotes the GPA, φ is the shedding phase, and AGPA
1 is a function of a�. Hence, in contrast

to the traditional phase average of Eq. (2), for the GPA the cycle-to-cycle variation in the amplitude
of coherent fluctuations,

√
〈a1〉2 + 〈a2〉2, is represented.

A. GPA construction

The construction of the GPA follows the procedure of Ref. [40] and is briefly summarized for
completeness. The inherent symmetry in the fluctuating flow (u′) is exploited in order to accelerate
the convergence of modes [51] by splitting them into symmetric and antisymmetric fields across the
centerline (y = 0) such that

u′(x,t) = u(x,t) − U(x) = u′s(x,t) + u′a(x,t). (6)

064702-6



EFFECT OF THICKNESS-TO-CHORD RATIO ON THE . . .

The components of the symmetric field are defined as

u′s(x,y,z,t) = 1
2 [u′(x,y,z,t) + u′(x, − y,z,t)],

v′s(x,y,z,t) = 1
2 [v′(x,y,z,t) − v′(x, − y,z,t)],

w′s(x,y,z,t) = 1
2 [w′(x,y,z,t) + w′(x, − y,z,t)],

and the components of the antisymmetric field, indicated by the superscript a, are given by modifying
the equations above by changing the sign of the second term in the square brackets.

The symmetric and antisymmetric subspaces are orthogonal by construction. In considering the
present data set, it is noted that the two most energetic modes in the antisymmetric field represent
the first harmonic pair at the principal (vortex shedding) frequency, while the most energetic mode
in the symmetric field corresponds to the slow-varying mode.

A Gaussian filter g(t) is applied to the symmetric field to accelerate the convergence of the
slow-varying mode. The filtered field is computed as

〈u′s〉G(t) =
∫ ∞

−∞
(u′)s(τ )g(t − τ )dτ, where g(t) = 1√

2πσ
exp

(
− t2

2σ 2

)
, (7)

and σ is the bandwidth parameter.
Hosseini et al. [53] proposed a robust procedure for selecting σ . First, the integral time scale T�

of slow-varying motion is estimated as the first zero crossing of the autocorrelation of the temporal
coefficients of the slow-varying mode from the unfiltered data. Subject to the Nyquist theorem, the
cutoff frequency is then fc = 2/T�. Letting fc correspond to the half-power point of the filter, the
bandwidth parameter is σ = √

2 ln 2/2πfc. For the cases studied in this work, fc ranged from 0.12fsh

to 0.23fsh. A visual inspection was conducted to verify that ��(x) for the filtered and unfiltered
fields are qualitatively similar. To ensure orthogonality of the modes, the temporal slow-varying
coefficient is defined as

a�(t) = (u′s ,��), (8)

where (u′s ,��) = ∫∫
�

u′s · �� dxdy denotes the inner product in the Hilbert space over the stereo-
PIV observation domain � [51].

Attention is brought to the sign of ��. In the general implementation of POD, the sign of the
eigenvectors is arbitrary. However, in the context of mean-field theory, the sign of a� (and thus
��) has a physical interpretation. Briefly, the sign of a� should always point towards the stable
oscillatory (average) solution [52,54], such that fluctuation amplitudes for a� > 0 tend to become
smaller and for a� < 0 larger. Practically, this condition is satisfied by verifying that the vertex of
the paraboloid represents a minimum for a�.

Figure 2 provides illustrative examples of the modal spatial functions in the form of isocontours
for each velocity component, their associated sectional streamlines, and spectra of the temporal
coefficients for the three most energetic modes for b/d = 0.05,1.00, and 1.92 as obtained from
the FOV downstream of the trailing edge. These three modes represent a large contribution to the
total fluctuation energy content (57%, 60%, 38% for b/d = 0.05,1.00,1.92) and thus represent a
statistically significant coherent contribution to the flow field fluctuations. The coherent contribution
to the spanwise w′ fluctuations is very low, indicating that these are poorly correlated with the
shedding process. For the square cylinder (b/d = 1.00), the power spectral density functions for
the harmonic pairs show a narrow distribution about the peak associated with the vortex shedding
frequency and a lower contribution of the slow-varying mode to the total fluctuation energy. These
observations are interpreted as indicating a lower cycle-to-cycle variation when compared to the
other two cases. Conversely, for b/d = 1.92 more important cycle-to-cycle variations are expected
since the slow-varying mode contribution is relatively large (comparable to the u′ contribution), the
spectra show a broader energy distribution about the shedding peak and the energy content of the
first harmonic pair is significantly lower than for the other cases.
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FIG. 2. First three POD coefficients on components of velocity (flow left to right), (u,v) streamlines, and
St spectrum on their temporal coefficient for b/d = 0.05 rows: (a) 	� and a�, (b) 	a

1 and aa
1 , (c) 	a

2 and aa
2 ,

and in the same order for b/d = 1.0 rows (d) to (f) and for b/d = 1.92 rows (g) to (i), with percentage of
contribution of each to total fluctuation energy k = ∫∫

�
k dxdy; � denotes the stereo-PIV observation domain.

Re ∼ 6 600.

The final step is to verify that the behavior of these modes is consistent with the existence of
an underlying mean-field paraboloid and then to estimate the parameters c1 and BFP of Eq. (4).
A sample distribution in the modal space confirming a distribution scattered about an underlying
paraboloid is shown in Fig. 3 for b/d = 0.05.
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FIG. 3. Example of fluctuations about the mean-field paraboloid in the a�, a1, a2 modal space: (a) 3D view
of a� vs a1,a2; (b) extracted values along a2 = 0 showing fluctuations about the mean-field paraboloid; (c)
Distribution of a� vs A2

1 = a2
1 + a2

2 , A1 is the amplitude of the first harmonic mode. Red lines indicated the
regression as per Eq. (4). Data are shown for b/d = 0.05.

In summary, the GPA reconstructs a low-order model of the coherent fluctuating flow field using
the shift mode, a� as defined in Eq. (8), and the corresponding phase (φ) as inputs to estimate the
amplitudes of the first harmonic mode pair, 〈a1〉 and 〈a2〉 modeled on an underlying mean-field
paraboloid according to Eq. (5). The GPA model

〈u〉(x,t) = U(x) + a�(t)��(x)︸ ︷︷ ︸
uB (x,t)

+〈a1〉(t)�1(x) + 〈a2〉(t)�2(x) (9)

can be reconstructed at any given value of a� to study the vortex structure for different cycle
amplitudes. Note that a� = 0 corresponds to the stable oscillatory solution (i.e., the average cycle
closely approximating that obtained from a traditional phase average), a� > 0 for cycles for larger
and a� < 0 smaller amplitudes compared to the average cycles.

The GPA is a representation of the changes in the shedding cycle due to the slow-varying
base flow uB(x,t). The base flow variation is expressed through a�(t), which is considered
independent of the shedding phase. Thus, the GPA models the transient response about the
stable oscillatory solution. In contrast, the traditional phase average represents only the average
amplitude of the periodic fluctuations and thus only the oscillatory motion on the limit
cycle.

IV. RESULTS

The turbulent wakes are investigated to document the effect of b/d on the wake structure. For this
purpose, the mean wake topology, time-averaged velocities, Reynolds stresses, drag coefficient, and
vortex shedding frequency are investigated together with the GPA representation of the shedding
process. Global parameters are given for all b/d, but for brevity, detailed presentation of the data is
confined to representative cases.

A. The mean field

As a preliminary consideration, the two-dimensionality of the mean flow was verified. Detailed
measurements were conducted for the thinnest plate b/d = 0.05. In Fig. 4, y profiles of U , V , u′2,
v′2, and u′v′ are shown for several spanwise locations z/d at x/d = 5.6. The spanwise velocity,
W , and the Reynolds stresses u′w′, v′w′ vanish within the experimental uncertainty and are thus
not shown. The distributions at the different z/d are seen to collapse onto single curves within the
experimental uncertainty.

Sample results for the spanwise distributions of the maximum values of the Reynolds stresses u′2

and v′2 at x/d = 5.6 downstream of the plate, Cd , St, and mean nondimensional recirculation length
xR , the location x/d along y = 0 for which U = 0, are shown in Fig. 5. The observed variation along
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FIG. 4. Mean velocity and Reynolds stress y profiles at x/d = 5.6, Re = 6 600 at spanwise locations z/d =
1, 0.5, 0, −0.5, −1.

z is within the estimated experimental uncertainty. Less detailed verifications were conducted for
several b/d such that the flow may be considered two-dimensional within the allowable experimental
variations for the cases considered in this study.

The mean drag was estimated using the slender-wake approximation [∂/∂y(P + ρv′2) ≈ 0]
according to

Cd = 2

U 2∞d

[ ∫ ∞

−∞
U (U∞ − U )dy +

∫ ∞

−∞
(v′2 − u′2)dy

]
(10)

as verified by Ref. [55] for a circular cylinder wake and a thin-airfoil wake by Ref. [56]. In this study,
the mean pressure, P , was estimated by solving the Poisson equation over the FOV. Based on P and
the measured v′2, the accuracy of the slender-wake approximation was found to be good for points

FIG. 5. Spanwise behavior of the mean flow at Re = 6 600. (a) Maximum u′2/U 2
∞ and maximum v′2/U 2

∞
at x/d = 5.6, (b) Cd , St, and xR . Cd estimated using Eq. (10).
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FIG. 6. Cd , St, and xR as functions of Re for b/d = 0.05.

x/d > xR + 2 for all b/d. For b/d = 0.05, further experiments in which the FOV was successively
moved downstream to x = 20d showed that the approximation continued to be accurate and the
calculated Cd changed by less than 2%, which is within the uncertainty of ±0.04 as estimated from
the propagation of the mean field measurement uncertainty.

Additional stereo-PIV experiments at z = 0 were conducted for the case b/d = 0.05 over the
range 3 000 � Re � 12 000. These results are summarized in terms of St, Cd , and xR as functions
of Re in Fig. 6. While St is insensitive to Re, an influence of the Reynolds number for Re < 6 000 is
observed in Cd and xR .

The mean near-wake flow is summarized in terms of the velocity vectors and the streamlines
in Fig. 7 for all b/d. The coordinate system origin (x/d = y/d = 0) is located at the center of
the leeward face of the plate. The streamlines were calculated by integrating the 3D velocity data
using a modified second-order predictor-corrector integration technique with no smoothing of or
modifications to the raw data.

Generally, the mean flow field is symmetric about y = 0. Since the mean flow is two dimensional,
the recirculation region must be topologically closed. Hence, the separation streamline must
terminate at the saddle point S marking the maximum downstream extent of the recirculation region
(y = 0,x/d = xR). Starting with the thinnest case, b/d = 0.05, hereafter called the “thinnest plate”,
the extent of the recirculation region xR decreases to a minimum for 0.78 < b/d < 1.0 (S lies slightly
upstream of the FOV for b/d = 0.78) and increases again. As indicated by Refs. [21] and [39], for
b/d � 1.7–2, the mean flow does not reattach on the afterbody. Thus, the recirculation length is
better measured from the point of separation (leading edges of the obstacles). The recirculation
length LR = xR + b/d are compared to xR in Table II and Fig. 8. LR initially decreases as b/d

increases from 0.05 and reaches a plateau in the range 0.25 < b/d < 0.44, before decreasing again,
reaching a minimum around b/d = 1 and increases afterward. This behavior may suggest different
regimes or ranges as discussed next in relation to the drag coefficient.

The drag coefficients Cd based on Eq. (10) obtained near the exit of the flow domain at x/d = 5.6
are shown in Table II. The results of Cd as a function of the plate thickness are compared with earlier
experimental results in Fig. 9(a). The different test parameters for these studies are summarized in
Table III. All studies show similar trends. Starting with the thinnest plate, Cd increases with increasing
b/d until a critical thickness (at which Cd is maximized) and decreases as b/d further increases.

Quantitatively, the present results agree well with those of Fage and Johansen [2] for the thinnest
plate (Cd = 2.1 as reported uncorrected for blockage or Cd = 1.97 based on the blockage correction
reported in Ref. [29]) and lie within the scatter of reported values for b/d � 1. However, significant
differences exist in both the critical thickness and the magnitude of Cd for b/d < 1. For instance at
b/d = 0.5, Ref. [26] measured Cd = 2.2, Ref. [35] found 2.5, while Ref. [34] reported 1.9 and 2.3
for Re = 6 700 and 67 000, respectively. At b/d = 0.6, Ref. [14] reported Cd = 2.6, Ref. [16] found
3.0, and Ref. [34] reported 2.2 (at both Re). The reported values of the critical thickness include
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FIG. 7. Mean streamlines and (U/U∞, V /U∞) vector field for all b/d measured (flow left to right).
Re ∼ 6 600.

b/d = 0.5 [28,32], b/d = 0.6 [21], b/d = 0.62 [16], and b/d = 0.67 [14,22] while Ref. [34] reports
critical values of b/d < 0.5 at Re = 6 700 and b/d ≈ 0.7 for Re = 67 000. In the present work, the
critical thickness is found to be approximately b/d = 0.34. As is discussed in Sec. V, there is
evidence suggesting that the critical thickness is sensitive to the Re and the end conditions.

The mean St in Table II is compared to results from earlier studies in Fig. 9(b). Again, a large
scatter is observed between the results of different studies. The present results closely match those
of Ref. [20] (at Re = 6 700), Refs. [21] and [23]. Starting from the thinnest plate, St increases
monotonically and very slowly as the thickness is increased to b/d ≈ 1.5. In contrast, Refs. [14]
and [22] report a monotonic decrease with increasing b/d, while Refs. [24] and [29] show a
decreasing trend for St as b/d is increased to ≈ 0.5 and little change as the thickness is further
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TABLE II. Summary of drag coefficient Cd , Strouhal number St, and nondimensional recirculation lengths
xR (measured from back face) and LR (measured from the front face). U∞ = 8.7 m/s. Estimated uncertainty
on Cd is ±0.04 and on St ± 0.005.

LR x/d LR x/d

b/d Re Cd St xR (xR + b/d) for kmax b/d Re Cd St xR (xR + b/d) for kmax

0.05 6511 2.03 0.118 3.82 3.87 4.72 0.44 6780 2.26 0.134 2.12 2.56 2.57
0.07 6724 2.10 0.122 3.51 3.58 4.13 0.53 6765 2.19 0.138 1.73 2.16 1.86
0.11 6511 2.22 0.123 3.02 3.13 3.46 0.59 6765 2.17 0.133 1.41 2.00 1.47
0.20 6765 2.31 0.124 3.02 3.22 3.44 0.78 6765 2.12 0.132 <0.5 <1.5 0.87
0.25 6765 2.42 0.127 2.67 2.92 3.29 1.00 6511 2.00 0.133 0.90 1.90 0.75
0.30 6765 2.41 0.127 2.61 2.91 3.20 1.53 6765 1.78 0.133 0.70 2.23 2.42
0.34 6765 2.42 0.127 2.53 2.87 2.95 1.92 6724 1.71 0.101 3.43 5.35 5.15
0.38 6765 2.34 0.131 2.48 2.86 2.84

increased. As the thickness approaches b/d ∼ 2, reported values of St vary widely, possibly due to
reattachment of the mean flow on the afterbody as suggested by Ref. [21].

Based on the aforementioned results for the influence of b/d on LR , Cd , and St, four cases are
selected for more detailed analysis: b/d = 0.05, representing a thin-plate regime (b/d < 0.34); the
critical thickness at which Cd is maximized (b/d = 0.34); b/d = 1.00, representing a cylinder-like
(postcritical) regime (0.34 < b/d � 1.5); and b/d = 1.92, representing a long-plate regime (b/d �
1.5). It has been verified that the characteristics of the dynamics and vortex topology for other cases
match this classification.

The distribution of the near-wake mean velocities and Reynolds stresses are shown in Fig. 10
as colored isocontours with the streamlines from Fig. 7 for b/d = 0.05, 0.34, 1.0, and 1.92. As
would be expected for a two-dimensional flow, W , u′w′, and v′w′ are vanishingly small (below the
experimental uncertainty) and are thus not shown. Generally, the flow fields are symmetric for U ,
u′2, v′2 and antisymmetric for V and u′v′ about the line y = 0.

Qualitatively, the distributions indicated by the isocontours are remarkably similar for b/d < 1.92,
with regards to the location of the topological critical points (i.e., the recirculation foci and the saddle
points). Note that for b/d = 1.0, most of the recirculation region lies upstream of the FOV and thus
some observations are based on the results of [12]. The U/U∞ contours show the shear layers along

0 0.5 1 1.5 2
0

1

2

3

4

5

b/d

xR

LR

FIG. 8. Mean recirculation length as measured from the obstacle back face xR and from the front face
LR = xR + b/d as functions of the obstacle thickness b/d . Re ∼ 6 600.
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FIG. 9. Cd and St as a function of b/d . Symbols are defined in Table III.

TABLE III. Studies on flow past normal rectangular cylinders. Stereo-PIV; HW, hotwire; SP, surface
pressure; FB, force balance.

Symbol Re Tu
Reference (in Fig. 9) (ascending) (%) b/d AR

(a)
1, Okajima [21] • 70–20 000 0.5 1,2,3,4 13.3–100
2, Present study � 6 600–6 785 0.8 0.05–1.92 38
3, Ohya et al. [20] ◦ 6 700–67 000 0.12 1.5–2.5 7,17
4, Norberg [23] � 13 000–30 000 0.06 0.3–5 25
5, Bearman and Trueman [16] � 20 000–70 000 0.3 0.2–1.2 16
6, Igarashi [22] 	 25 600–57 700 0.5 0.1–4 5, 7.5, 15
7, Nakamura and Hirata [24] ∗ 25 000–100 000 0.2–1 4.3
8, Knisely [29] • 31 000–81 000 0.5 0.04–4 3.2
9, Nakaguchi et al. [14] � 40 000 0.2–4
10, Courschesne and Laneville [35] � 40 000–100 000 0.6 0.3–3 7.2–14.4
11, Vickery [8] • 40 000–160 000 10 1 14
12, Matsumoto [26] � 50 000 0.5,2 40
13, Lee [34] ×; AR = 6, +; AR = 20 90 000 0.5,0.6,1.67,2 6–6.7, 20

Ref. Method Comment

(b)
1 HW No Cd data.
2 Stereo-PIV
3 HW, SP No Cd data, blockage uncorrected, low AR.
4 HW, SP Blockage uncorrected.
5 HW, SP Blockage corrected.
6 HW, SP, FB Cd data only for b/d = 0.5 and 1, blockage uncorrected, low AR.
7 HW, SP No Cd data, forced oscillation, blockage uncorrected, low AR.
8 HW, FB Blockage uncorrected, low ARs, no end plates employed.
9 HW, SP Blockage uncorrected.
10 FB, SP Blockage corrected, low AR.
11 FB, SP No Cd data, high Tu.
12 HW, FB Blockage uncorrected, forced oscillation.
13 FB Blockage uncorrected.
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FIG. 10. Contours of mean velocities and Reynolds stresses with mean streamlines for b/d = 0.05, 0.34,
1.0, and 1.92. Re ∼ 6 600.

the separation streamline and the recirculation zone with negative velocities. Along the symmetry
plane y = 0, the minimum value for U (where ∂U/∂x = 0) occurs approximately at the same
streamwise location as the center of the recirculation foci. V indicates an initial expansion of the
recirculation width (the separation streamlines grow further apart in the downstream direction).
The distance between the separation streamlines is maximum at approximately the location of the
recirculation foci. The maximum gradients ∂V /∂y occur in the vicinity of saddle point (marked S in
Fig. 7). In contrast, for b/d = 1.92, the initial expansion of the wake is not observed and the region
of maximum ∂V /∂y occurs significantly downstream of saddle point marked S in Fig. 7.

The distribution of the streamwise Reynolds stress (u′2) shows a concentration of high levels along
the separated shear layer with maxima located slightly downstream of the recirculation foci. Regions
of high shear stress u′v′ roughly coincide with those of high u′2 but extend downstream along the
edges of the wake. Along the symmetry line, the distribution for u′2 shows a maximum close to the
location of the saddle point S marking the end of the recirculation zone. In this region, the production
term for u′2 is generally small and negative (Guu = −u′2 ∂U

∂x
− u′v′ ∂U

∂y
; ∂U

∂x
> 0,u′v′ → 0, ∂U

∂y
→ 0).

Hence, the increase along y = 0 is more likely due transport from the separated shear layer as can
be surmised from the isocontour pattern.

Concentrations of high levels of the cross-stream normal stress (v′2) occur downstream of the
recirculation region and the maximum values occur along y = 0. In these regions, the magnitude
of ∂V

∂y
is also very large, giving rise to local maxima in the v′2 production rate: Gvv ≈ −v′2 ∂V

∂y
. The
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FIG. 11. (a) kmax as function of b/d . The location of kmax along y = 0 is given in Table II. (b) y-direction
profiles of shape factor, v′2/u′2, through kmax points. (c) Shape factor vs (x/d + b/d)/LR along y = 0. Re ∼
6 600.

spanwise normal stress w′2 has the smallest magnitude of the three normal stresses. Qualitatively,
the distribution of w′2 is similar to that of v′2, although the maximum occurs between the locations
for maximum v′2 and u′2 along y = 0. For a 2D flow, the production term for w′2 vanishes identically.
Since regions of high levels of w′2 coincide those of high v′2, the spanwise stresses appear to be
generated by an energy exchange from the cross-stream normal stresses through the pressure-strain
term.

The magnitude of v′2 is significantly larger than that of the other normal stresses. These distribution
patterns and differences in magnitude between the Reynolds stresses are similar to those observed
for other 2D geometries [12,57] with vortex shedding. For the largest thickness, it is noted that
the regions of high level concentrations of the normal stresses are much larger, suggesting a wider
wake.

In contrast to the qualitative similarity, the magnitude of the Reynolds stresses differ dramatically
as a function of thickness. The changes observed in the magnitude of the fluctuation kinetic energy
k = 1

2 (u′2 + v′2 + w′2) as a function of thickness is representative of the changes seen in the Reynolds

stress levels. In regions of large Reynolds stresses, the main contribution to k is v′2 such that the
maximum value of the kinetic energy, kmax, occurs along y = 0 close to the location of peak
values of v′2. From Fig. 11(a), kmax is significantly larger for geometries for which LR is minimum
(b/d = 0.78,1.0) and decreases rapidly for larger obstacles.

The Reynolds stress profiles across the wake at the downstream location for kmax are shown in
Fig. 12. Note that for b/d < 1.92, these profiles indicate that the width of the wake changes little
with thickness, as inferred from the streamline patterns of Fig. 7 and the spatial modes of Fig. 2,
whereas for b/d = 1.92 the wake is much broader. The magnitude of the Reynolds stresses and
the level of anisotropy (the energy distribution amongst the normal stresses) are very similar for
b/d � 0.6. For b/d = 1.0, there is a significant increase in v′2 (comparatively greater than for u′2),
while levels for w′2 change little. Whereas v′2 remains the largest contribution to k in the vicinity
of y = 0, for b/d = 1.92 the normal stresses are generally of comparable magnitude. Since w′2

levels change little with thickness, the shape factor v′2/u′2 provides a fair characterization of the
anisotropy levels. Figure 11(b) shows the shape-factor distribution across the wake at the x location
for kmax and illustrates the high-anisotropy levels observed for b/d = 1.0 and the much lower levels
observed for b/d = 1.92.

D-shaped, circular, and square cylinder wakes [12,57,58], for which high levels of v′2 along
y = 0 are attributed mainly to the coherent fluctuations due to nearly periodic vortex shedding,
are characterized by high levels of anisotropy and large k values immediately downstream of
the recirculation region. Hence, considered together, the levels of k, the relatively low levels
of w′2 and the shape factor provide indicators of the intensity of the fluctuations due to vortex
shedding.
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∞. Re ∼ 6 600.

The shape factor distribution along y = 0 is shown in Fig. 11(c) as a function of (x/d + b/d)/LR .2

Data for some additional b/d are included to clarify trends. It is readily observed that the distribution
for b/d = 1.92 is very different from that for other obstacles, suggesting different dynamics. For
obstacles thinner than the critical thickness b/d � 0.34, it is remarkable that the shape factor
distributions nearly collapse on a single double-humped curve. The absolute maximum occurs at
approximately (x/d + b/d)/LR = 1.8 and closely matches the location of kmax (or maximum v′2).
The peak is due to the faster growth of v′2 when compared to u′2. The local minimum is located
close to the end of the recirculation region (x/d + b/d ∼ 1.05LR) and arises as v′2 decreases while
u′2 increases as the plate is approached.

The secondary peak (upstream local maximum) occurs in the recirculation zone immediately
downstream of the location of the recirculation foci (see Fig. 7). The latter location coincides with
that of minimum U (∂U/∂x = 0). Between the trough and the secondary peak, u′2 decreases faster
than v′2 when moving towards the plate.

For obstacles of thickness greater than critical (b/d > 0.34), the shape factor data no longer
collapse on a single curve. For 0.34 < b/d � 0.78, the value of the first peak increases while those
of the second peak decrease and the trough becomes indistinct. Note that the relative location of the
peaks also moves upstream in terms of (x/d + b/d)/LR . For the cases of minimum recirculation
(b/d = 0.78 and 1.0), the location of maximum v′2/u′2 has moved significantly upstream (x/d +
b/d)/LR ∼ 1.3 and the maximum value is much larger. Reference [12] performed measurements
deeper into the recirculation region and found that the shape factor decreases monotonically as the
plate is approached. In the latter study, however, it is noted that closest measurement to the cylinder
was approximately d/2 from the back face.

The disappearance of the upstream (secondary) maximum suggests important dynamic differ-
ences. For example, for the thinner obstacles (b/d < 0.78), upstream of the minimum U , ∂U/∂x < 0
and v′2/u′2 > 1, implying a region of negative k production, since along y = 0, u′v′ = 0 such that
Gk = (v′2 − u′2) ∂U

∂x
; noting ∂U

∂x
= − ∂V

∂y
for a 2D flow. For b/d = 1.0, a region of negative production

has not been observed in earlier studies and the present distribution for the shape factor is consistent
with those studies. In the following sections, the details of the characteristics and process of vortex
shedding in the wake are investigated in light of these observations.

2When nondimensioned by xR , the scatter of the peak locations increases.
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FIG. 13. Power spectral density functions, �, for total fluctuations (u′,v′) at point (x/d,y/d) = (5,1) in the
wake of b/d = 0.05, 0.34, 1.0, and 1.92. Abscissa is the nondimensional frequency f d/U∞, Re ∼ 6 600.

B. Shedding process and coherent cycle-to-cycle variations

In this section, the characteristics of the nearly periodic wake velocity fluctuations are described
in terms of the power spectra and envelope of the amplitude modulation of the velocity fluctuations.
The GPA is then used to investigate the wake structure for different amplitude shedding cycles.

Figure 13 shows the power spectral density functions (psdf) �u′ and �v′ for the u′ and v′
fluctuating velocity components, respectively. The abscissa represents the nondimensional frequency
f d/U∞. The psdf are not normalized; thus, u′2 = 2π

∫ ∞
0 �u′(f ) df , v′2 = 2π

∫ ∞
0 �v′(f ) df as per

Parceval’s identity. The spectra are shown for (x/d,y/d) = (5,1) for b/d = 0.05, 0.34, 1.0, and
1.92. The Strouhal frequency is assumed to be that of the maximum � giving the values tabulated in
Table II for all b/d. As expected for a 2D mean flow, the spanwise fluctuations are poorly correlated
with the shedding process and their spectra do not show peaks as those observed in Fig. 13. Hence,
these spectra are not shown for brevity.

For b/d < 1.92, �u′ and �v′ show well-defined peaks centered about the mean shedding
frequency St (the principal harmonic). A weak second harmonic (2St) can be observed, which
is expected since the measurement points are deep within the wake and thus ostensibly between the
counter-rotating vortex streets; see, for example, Refs. [52] or [40]. For b/d = 1.0 (and 0.78), the
spectral peaks are very sharp, suggesting that the fluctuation amplitudes have low modulation and
the shedding frequency changes little between cycles. As the thickness is decreased, the fluctuating
energy distribution becomes broader about St, suggesting more cycle-to-cycle variation.

In contrast, the broadest spectral distribution occurs for b/d = 1.92, where the peak levels are
much lower than observed for smaller b/d. Moreover, there appears to be a very weak concentration
around approximately 1

2 St. Similar spectral distributions were observed by Refs. [21] and [29] for
b/d = 2.0, Ref. [22] in the range of 2.3 < b/d < 2.8, and Ref. [38] between 2.0 < b/d < 2.8.
Reference [38] observed that as Re was decreased to 1000, two peaks first appear in the spectra for
b/d ∼ 2.8–3. These observations have been related to the intermittent reattachment of the shear layer
on the afterbody and the Reynolds number dependence is attributed to the state of the redeveloping
boundary layer.

Further insight can be gained in interpreting the spectral broadening in relation to some aspects of
the wake dynamics by considering the characteristics of the fluctuating velocity signals as illustrated
in Fig. 14. In this figure, arbitrarily chosen time sequences of the fluctuating cross-flow component
velocity v′(t) taken at the location of kmax are analyzed and compared for b/d = 0.05, 0.34, 1.0,
and 1.92. For each case, the subplots show (a) the time sequence for the slow-varying POD modal
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FIG. 14. For each b/d , the plots from top to bottom are (a) a�; (b) Hilbert envelope function [59] cf [v′(t)]
(red) of v′(t) (blue) at kmax; (c) Morlet wavelet coefficients (‖W(ζ,t∗)‖2) of v′(t) with the red circles marking
examples of a decrease in vortex shedding amplitude; and (d) instantaneous xR(t) with red straight line marking
the mean xR value, versus the nondimensional time (t∗). Re ∼ 6 600.

coefficient a� = (u′,	�) as defined in Sec. III A; (b) v′(t) in blue and envelope of the fluctuation
amplitude as estimated from a Hilbert Transform, cf. Ref. [59]; (c) the correlation map obtained
from a Morley wavelet (Morlet) transform of v′(t); and (d) the instantaneous recirculation length
xR(t) along y = 0, where the red line marks the average recirculation length, i.e., xR = xR(t). The
common abscissa is the time t∗ nondimensioned by the sampling rate fs . The red circles in the figure
indicate intervals of very low amplitude fluctuations.

The Morlet used is

ψ(t∗) = e−t ′2/2 cos(5t ′),

where t ′ = t∗/fs(1/Tw) and Tw is the measurement window. The wavelet transform is then defined
as

W(ζ,t∗) = 1

|ζ |1/2

∫ ∞

−∞
v′(τ )ψ

(
τ − t∗/fs

ζ

)
dτ,
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where ζ is the scaling factor (inversely proportional to the frequency). Analogously to the Fourier
transform, ‖W‖2 is interpreted as the power density at a given scale ζ (the vertical axis of the wavelet
correlation maps) at a given time t∗.

Consider the cases b/d = 0.05 and 0.34. As b/d is reduced below 1.0, the modulation of the
fluctuation amplitude increases. Correspondingly, the fluctuation levels in a� also increase, which is
consistent with the increase in the spectral content of this mode, relative to b/d = 1.0. Compare, for
example, the specta of a� for b/d = 0.05 in Fig. 2(a) and for b/d = 1.0 in Fig. 2(d). For b/d = 0.05,
the fluctuation energy contained in the slow-varying mode accounts for approximately 6% of the total
fluctuation energy (i.e., k = ∫∫

�
k dxdy; � denotes the stereo-PIV observation domain), whereas

for b/d = 1.0, the fluctuation content for a� accounts for only about 2% of k. There is also a direct
correspondence between a� and the instantaneous recirculation length xR(t) and thus it follows
that the slow-varying mode corresponds to the base-flow fluctuation. For large amplitude cycles
(a� > 0), xR(t) is less than the average xR and when a� < 0, it is longer. In particular, when a�

approaches a minimum (amin
� ), xR(t) approaches a maximum. These very low amplitude cycles are

circled red in the figure for identification and it is observed that these events occur more frequently
as b/d is reduced from 1.0.

The occurrence and duration of these amin
� events are irregular. In considering the correlation

maps of the wavelet transforms, as a� changes, the concentration of high ‖W‖2 changes. During
high-amplitude cycles, the length scale decreases (shedding frequency increases) and during low-
amplitude cycle the shedding frequency decreases. Thus, the modulation of the shedding frequency
increases as the b/d is reduced. This observation is consistent with the increased spectral broadening
observed in Fig. 13 [and for the first harmonic in Figs. 2(b) and 2(c) compared to Figs. 2(e) and 2(f)]
as the thickness is reduced from b/d = 1.0. In particular, as the slow-varying mode approaches
amin

� , the energy density distribution changes significantly and ‖W‖2, at the scale corresponding to
the shedding frequency, decreases significantly indicating a loss of the periodic nature of the signal.
This behavior is interpreted as a disruption of the vortex shedding process. During these instances,
the recirculation region is significantly longer than average.

Considering the case b/d = 1.0, the fluctuation amplitude is mildly modulated and periods of
low-amplitude fluctuations are not observed. They do occur in much larger records, but randomly
and very infrequently and it would distort the significance of the record that is shown to display
an example. The wavelet map shows a concentration of high correlation values of ‖W‖2 at the
scale corresponding to the shedding frequency. The magnitude of ‖W‖2 at this scale varies little in
time, indicating that the shedding frequency is very weakly modulated, which is consistent with the
very sharp peak observed for the square cylinder in the spectra of Fig. 13 and of the first harmonic
POD modes in Fig. 2. Recalling that a� = 0 corresponds to the attractor (i.e., the stable oscillatory
solution and thus approximately the average shedding cycle), the coefficient fluctuations about zero
are much smaller than observed for smaller b/d. Note that for a� > 0, the fluctuation amplitude is
slightly larger and, conversely for a� < 0 slightly smaller, than the average amplitude and thus the
cycle-to-cycle variations are not negligible.

The flow at b/d = 1.92 exhibits different characteristics showing significantly smaller magnitude
v′(t) (and other fluctuating velocity components, not shown). The amplitude of the fluctuations is
much more modulated when compared to other cases. Most striking is the significant number of
very low amplitude cycles (indicated by red circles) and the higher fractional time spent in those
(see Morlet correlation maps). For this thickness, the variations of a� and xR(t) also increase
substantially when compared to smaller b/d. The wavelet correlation maps also show an increase
in the cycle-to-cycle variation of the shedding frequency consistent with the spectra of Fig. 13.
The low-frequency energy content in the a� spectra of Fig. 2(g) is also increased over a larger
frequency band. There appears to be an increase in the energy concentration (magnitude of ‖W‖2)
for scales about half the shedding frequency, which is perhaps related to a weak fluctuation energy
concentration in the spectral distribution observed around fsh/2 in the first harmonic spectra of
Figs. 2(h) and 2(i). These observations suggest that the shedding process is less organized.
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FIG. 15. Probability density function (PDF) for the slow-varying modal coefficient a� for four different
b/d . For each thickness, a� = BFP indicates the location of the paraboloid vertex: (a) b/d = 0.05,BFP = −1.1;
(b) b/d = 0.34,BFP = −1.5; (c) b/d = 1.0,BFP = −1.6; (d) b/d = 1.92,BFP = −0.86. Broken line indicates
a� = a0

� = 0; blue line 5% probability amin
� ; red line amax

� ; and green line alow
� = 1

2 (amin
� + a0

�).

The probability density function (PDF) for the slow-varying mode a� is shown for the cases
b/d = 0.05,0.34,1.0, and 1.92 in Fig. 15. Recall that the amplitude of the first harmonic (the cycle
amplitude) is directly related to a�. In this figure, the typical or average amplitude cycle corresponds
to a� = a0

� = 0 (broken line). Cycles with amplitude larger than average occur for a� > 0 and those
with smaller amplitudes occur for a� < 0. Values of a� corresponding to the maximum amplitude
cycles (amax

� ) are indicated by a red line. Approximately 5% of PIV realizations (snapshots) have
values a� < amin

� (indicated by a blue line). The green line corresponds to alow
� = 1

2 (amin
� + a0

�) and
will be used to represent a typical low-amplitude cycle in the following discussion.

From the PDF distributions for a�, it is observed that the low-amplitude cycles occur with
increasing probability as b/d is decreased from 1.0. This observation agrees with those made from
the Hilbert and Wavelet transform analyses of Fig. 14. For b/d = 0.05 in Fig. 15(a), approximately
5% of events occur for a� < amin

� ≈ BFP = −1.1 and thus lie below the paraboloid vertex. During
these events, the energetic contribution of the first harmonic is negligible and thus these events
are interpreted to imply an interruption of vortex shedding activity. For b/d = 0.34 [the critical
thickness, Fig. 15(b)] very low amplitude cycles (a� approaches BFP = −1.5) are observed for
which the vortex shedding activity is very weak. For b/d = 1.0 [Fig. 15(c)], the PDF is symmetric
about a0

� and amin
� is significantly larger than BFP = −1.6, indicating continuous and sustained

shedding activity. For b/d = 1.92 in Fig. 15(d), a very large number of interruptions in shedding
cycle (amin

� < BFP = −0.86) are observed. As is shown below, the shedding dynamics for b/d = 1.92
differ from those for the thinner plates in several respects.

The wake structure is investigated next using the GPA at four representative fluctuation
amplitudes. The high-amplitude cycles are represented by the largest positive value of the
slow-varying coefficient, denoted amax

� , and the typical or average amplitude cycle by events with
a� = 0, denoted by a0

�. Very low amplitude cycles, or intervals when shedding activity is interrupted,
are represented by a� = amin

� and a typical low-amplitude cycle is represented by a� = alow
� , noting

that in both latter cases a� < 0.
Figure 16 shows the wake for approximately the same shedding phase φ (approximately when

the top vortex is shed) corresponding to amax
� , a0

�, alow
� , and amin

� for b/d = 0.05, 0.34, 1.0, and 1.92.3

The raw stereo-PIV field at this instant is shown together with the GPA representation. The in-plane
vector components correspond to 〈u〉 and 〈v〉 following Eq. (9). The flooded isocontours represent
the vorticity (ωz = ∂v/∂x − ∂u/∂y for the normalized raw field and 〈ωz〉 = ∂〈v〉 /∂x − ∂〈u〉/∂y
for the GPA field). The solid lines enclose the vortex cores as identified using the second-invariant
or Q criterion (Q = 0.01).

3For the cases b/d = 0.05 and 1.92, time intervals around amin
� < BFP, the phase φ has no physical meaning,

since the shedding cycle is interrupted.
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FIG. 16. Vortex shedding at amax
� , a0

�, alow
� , and amin

� for b/d = 0.05,0.34,1.0, and 1.92 (Re ∼ 6 600): First
and third columns show the instantaneous flow field with contours of ωz and lines of Q = 0.01; second and
fourth columns show GPA model with contours of 〈ωz〉, lines of Q = 0.01 and vector field (〈U〉/U∞,〈V 〉/U∞).
The contour levels are the same in each frame. The arrows are explained in the text.
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FIG. 17. Vortex core locations in phase sequence at amax
� , �; a0

�, ◦; and alow
� , ∗. Re ∼ 6 600. Data for

b/d = 1.0 is compared with Ref. [12], �; and Ref. [57], •. The vertical red lines show the end of the
recirculation zone.

The case b/d = 1.0 shows the least modulation of the fluctuation amplitude or variation in a� and
is thus discussed first to provide a comparison for other cases. In Fig. 16, the coherent contribution
to the vorticity field rendered by the GPA represents fairly well the instantaneous raw data field. As
expected, the vortex cores shown in the GPA contain high concentrations of the coherent vorticity.
As a� decreases, it is noted that these high-vorticity regions are increasingly deformed (stretched
streamwise) and the downstream (cross-flow) separation of the centroids appears to increase.

The trajectories of the centroids of the shed vortices from the GPA are compared for the different
amplitude cycles in Fig. 17. The centroids correspond to the location of the peak vorticity; cf.
Ref. [12]. The trajectory for a� = 0 corresponds well to those reported for the average (i.e., that
obtained from a traditional phase average) as reported for a square cylinder [12] and circular
cylinder [57] wakes. For low-amplitude cycles, the centroid trajectory leads away from the symmetry
line y = 0, whereas high-amplitude cycles leads towards it. Note that the trajectory for the different
cycles start diverging roughly d downstream of the formation region.

The circulation contained in the shed vortices is shown in Fig. 18. The circulation is estimated from
�c = ∫ ∫ 〈 ω 〉 dA = ∫ ∫ 〈ωz〉 dxdy. The integration is carried out over a contiguous vorticity domain
for Q > 0.002.4 For b/d = 1.0, the initial circulation is larger (stronger vortices) for high-amplitude
cycles than for lower amplitude cycles, but these differences vanish rapidly downstream. The present
results agree well with those reported for the phase-averaged cycles [12]. Hence, it appears that the
high fluctuation levels [kmax in Fig. 11(a)] observed for b/d = 1.0 are a result of induction by the
vortices and are more related to the trajectory of these vortices than their strength.

As the thickness is reduced, the wake structure between cycles differs increasingly (Fig. 16).
Considering the high-amplitude amax

� cycles for b/d = 0.05 and 0.34, the selected phase is seen

4In the calculation for �c, the lower limit of Q was progressively reduced until an asymptotic behavior was
observed.
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(a) (b)

(d)(c)

FIG. 18. Circulation (�c/dU∞) of vortices in phase sequence, vs streamwise core locations (x/d) at amax
� ,

�; a0
�, ◦; and alow

� , ∗. Re ∼ 6 600. Data for b/d = 1.0 is compared with Ref. [12], �. The vertical red lines
show the end of the recirculation zone.

to correspond approximately to the instant when the top vortex is shed, when the vortex detaches
from the feeding shear layer. Again, the coherent field represented by the GPA appears to capture
well the dominant features observed in the raw field for the four cycles shown. In general, the
recirculation and formation regions increase as a� and, thus, the fluctuation amplitude decrease,
which is consistent with earlier observations for thin plates [36,37].

Attention is focused next on the cycles amax
� ,a0

�, and alow
� . For b/d = 0.34, during high-amplitude

cycles, amax
� , the vortex—forming as the bottom (red) shear layer rolls up—penetrates deeply into

the wake and interrupts the flux of vorticity along the upper shear layer (blue) as described in the
classical vortex shedding model [60].

In contrast, as a� decreases, the separated shear layer remains attached to the shedding vortex
even though these constructions are shown at similar shedding phases φ. This vorticity distribution
is also noted in the raw field. The bottom shear layer does not roll up as deeply into the wake and
interferes less with the upper shear layer, allowing strands of vorticity connecting the forming and
shed vortices to appear. The vorticity concentration along the strands increases as a� decreases.
Similar observations are made for b/d = 0.05, albeit the vorticity flux along the strands is generally
greater and the low-amplitude cycles occur more frequently than for b/d = 0.34.

From the wavelet correlation maps of Fig. 14, the shedding frequency is lower (larger scale)
during low-amplitude cycles when compared to high-amplitude cases, which suggests that in the
presence of the strands the shedding of vortices is delayed. Moreover, an increase of energy content at
the largest scales is also observed. As described by Ref. [61], the roll-up of the opposing shear layer
interrupting the vorticity flux to the forming vortex is important to maintaining the regularity of the
vortex shedding clockwork. The presence of the strands and increased energy content at larger scales
(low-frequency range) implies a disturbance to this clockwork and thus would be consistent with
earlier observations [36,37] for thin plates: The structure of the shed vortices appears less regular
during low-amplitude cycles and these low-amplitude events can be associated with a low-frequency
spectral signature.

The trajectory of the centroids are remarkably similar to those observed for b/d = 1.0, see Fig. 17,
even though the trajectories for different amplitude cycles deviate earlier, with respect to xR , as the
thickness is reduced. The circulation of the shed vortices (for x/d > xR in Fig. 18) is very similar
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for all cycles. Perhaps surprisingly, �c changes little with the thickness as long as the separating
shear layer does not reattach on the afterbody (as occurs for b/d = 1.92).

Consider next the lowest amplitude cycles, denoted by amin
� . For b/d = 0.34, amin

� in Fig. 15(b)
lies very close to the vertex of the estimated mean-field paraboloid. Vortices are still shed but the
frequency is irregular; the wavelet correlation coefficients in Fig. 14 indicate that the energy at the
nominal shedding frequency is very low. For b/d = 0.05 [Fig. 15(a)], amin

� lies below the paraboloid
vertex; thus the GPA represents these events as interruptions in the vortex shedding cycle and the
fluctuations are those of the base flow. The raw field is consistent with this observation; the separated
shear layer extends far downstream and does not show evidence of the typical roll-up associated
with the vortex formation and shedding process. These events of disrupted shedding occur more
frequently as the thickness is reduced and appear to correspond well to the disorganized wake
regimes described in the earlier literature.

A peculiar secondary feature is observed for the low-amplitude shedding cycles for b/d = 0.05
and 0.34. A region of counter-rotating vorticity (blue, indicated by an arrow in Fig. 16) occurs
near the lower shear layer vorticity (red). Since the GPA represents the coherent contribution to the
fluctuating field, it is not surprising that this feature is observed in the raw field as well. Moreover, it
has been verified that a similar feature is observed at the root of the upper shear layer in the second
half of the shedding cycle, i.e., 180◦ later than the shedding phase shown in the figure. The vorticity
concentration associated with this secondary feature increases as a� decreases. Its circulation would
induce a motion opposing that of the roll-up of the shear layer. It may thus represent, at least in part,
the mechanism resulting in a weaker roll-up and thus play an important role in the wake organization.

The significance of these counter-rotating vorticity regions can be further appreciated in
considering the shape factor distribution of Fig. 12(c). The counter-rotating region extends
approximately to the location of the secondary peak inside the mean recirculation. The rotation
opposes the reverse flow and thus acts to dampen u′ fluctuations, leading to increased anisotropy
(v′2 − u′2 > 0) and negative k production, as noted in Sec. IV A. While these conditions are prevalent
for low-amplitude cycles, they are the contributions resulting in the negative k production and are
thus statistically significant and highlight differences in the dynamics as fluctuation amplitude
changes. These observations illustrate the benefit of the GPA, as the counter-rotating vorticity region
is increasingly difficult to detect from the average cycle (a� ≈ 0) as b/d increases, but does remain
statistically significant.

The dynamics and structure of the wake are distinct for b/d = 1.92. From Fig. 16, the vortices
form much further downstream (relative to xR) than for thinner obstacles and the characteristic
concentration of vorticity in the core regions is difficult to distinguish from the vorticity levels
in the shear layers. The classical formation mechanism involving the roll-up of the shear layer
cannot be easily identified. In contrast to the thinner cylinders, the trajectory of the centroids is
independent of the a� (Fig. 17), while the circulation �c varies significantly (Fig. 18). As suggested
by Ref. [21], the vortex formation process differs from the classical Kármán process, ostensibly due
to the reattachment of the flow on the obstacle afterbody as suggested from LES simulations [31,32].

V. DISCUSSION

The rectangular-cylinder thickness can significantly impact the wake structure in terms of the
Reynolds stress levels and distribution as well as the wake dynamics as exhibited by the amplitude
modulation of the velocity or pressure fluctuations and the characteristics of the cycle-to-cycle
variations. The variations correspond to changes in the coherent contribution to the formation region
dynamics and wake structure of the vortex street. While the fluctuation amplitude and shedding phase
appear to be effective observational parameters for conditional averaging, as implemented in the
GPA, these are not causal, mandating further consideration with regards to underlying mechanisms.
In this respect, the observation that the fluctuation amplitude is more related to the vortex trajectory
than the strength of the shed vortices is of paramount importance.
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The strength (i.e., �c) of the shed vortices is relatively insensitive to either the changes in shedding
cycle amplitude or the obstacle thickness, at least for b/d � 1, as seen in Fig. 18. Let �o represent the
average circulation delivered to the wake during a shedding cycle from the separation point, estimated
from Ref. [62] to be �o/U∞d = (1 − Cpb)/2St, where Cpb is the average back-pressure coefficient.
For a wide range of obstacles, including circular [57], square [12], and triangular cylinders [63],
�c/�o ≈ 0.45.

For the thinnest plate, using the values of Cpb ≈ −1.4 [2] and St from Table II and � from
Fig. 18(a), one obtains �/�o ≈ 0.45. Assuming that this ratio holds for the remainder of the present
cases, then the circulation generated during the different amplitude cycles changes little. However,
from Fig. 14, the shedding period increases as the amplitude level decreases. Hence, the rate at
which circulation is delivered to the wake, and thus the vorticity flux, must decrease as the shedding
period increases.

The vorticity flux is directly related to the curvature of the separated shear layer [64,65]. During
high-amplitude cycles, the flux is greater (shorter shedding period) and thus the curvature is greater,
conversely the formation length is shorter, than during low-amplitude cycles. In turn, the vortices
are shed from the end of the shear layer and its curvature determines the initial trajectory of the
vortices. As seen in Fig. 16 and 17, the vortices are directed increasingly towards the center of
the wake (y = 0) as the curvature increases. These variations of the shear layer curvature, and
consequently the length of the recirculation region, occur over several typical shedding periods and
thus highlight the significance of representing the base flow fluctuations through the slow-varying
contribution.

Since �c changes little with b/d or between cycles, local increases, for example along y = 0,
in the Reynolds stress and k levels as b/d increases from 0.05 to 1.0 must be related to both
the amplitude-dependent vortex trajectory and the relative probability of occurrence, since the
main contribution to v′2 and k is due to the coherent shedding motion. As the vortex centers of the
opposing streets move closer during the high-amplitude cycles, the vortex-induced fluctuations along
the wake center are significantly higher than for low-amplitude cycles. Since the average of squares
is weighted towards higher amplitude fluctuations, the high-amplitude cycles tend to contribute more
than low-amplitude cycles to k. This effect is then compounded as the low-amplitude cycles occur
very rarely for b/d = 1.0 and very often for b/d � 0.6.

The foregoing results are consistent with earlier observations that the presence of the afterbody
has a stabilizing effect on the separated shear layer [66]. The relative occurrence of low-amplitude
cycles is related to the cycle-to-cycle variations in the separated shear layer curvature. In turn,
the curvature is related to the pressure behind the separation point, which is fixed at the leading
edge for sharp-edged obstacles [62]. For b/d = 1, the mean pressure is nearly constant over the side
faces and the surface pressure fluctuations, p′2, vary little from the leading edge to approximately
0.7d downstream [9,13,28,32,67]. In this region, the largest contributions to p′2 are due to the
periodic fluctuations. These fluctuations vary little between cycles and are uniform in phase and
amplitude [13]. The above observations agree well with numerical simulations for 0.8 � b/d < 2,
which also show that the fluctuations of the lift coefficient are only weakly modulated [30,32]. On
the back face p′2 is significantly lower than that on the side faces [9,13,67]. Phase-averaged velocity
measurements for b/d = 1 [68] show that the shear layer intermittently reattaches on the side faces
close to the trailing edge, thereby interrupting the communication between the separated regions
over the side faces and the obstacle base.

In contrast, for thin plates the base pressure fluctuations are easily communicated to the separation
point and the stabilizing effect of the afterbody is absent, resulting in a strong feedback expressed
through large amplitude modulations of the wake fluctuations. Numerical simulations [30,32] show
that as b/d is reduced below the critical thickness: The shear layer does not reattach on the side faces;
the mean pressure distribution on the side faces is no longer uniform; p′2 increases significantly
close to the leading edge; and the lift fluctuations are increasingly modulated. It thus appears that
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the critical thickness and the modulation of the wake fluctuations are related to the strength of the
wake feedback mechanism.

In light of the foregoing analysis and discussion, further attention is now given to the large scatter
observed in the reported results for Cd and St from different earlier studies. Several studies, including
Refs. [16,27,33,34,69], have shown that the flow past a rectangular sharp-edged cylinder is affected
by the free-stream turbulence intensity Tu and scale, the tunnel blockage B, Re, the span-to-width
aspect ratio AR, and the end conditions. For large b/d, the separated shear layer reattaches upstream
of the trailing edge, so that the state of the redeveloping boundary layer is critical to the wake
dynamics [21,31]. It is almost trite to state that Re and Tu will have a significant effect, since these
affect both the transition and thickness of the separated shear layer or the state of the redeveloping
boundary layer. In the range of parameters found in most studies, the flow development is very
sensitive to these parameters. It is thus not surprising that for b/d ∼ 2, there is a very large scatter
in the reported results. Hence, attention is focused on the thinner geometries b/d < 2.

A comparison of the results reported by Refs. [8,9,23,27,29,34,35,70,71] suggest that for Tu < 2%
the flow dynamics are relatively insensitive to the turbulence intensity. For Tu in the range 2% to
5%, they generally result in a reduction of the critical thickness. This is consistent with observations
that for b/d > 0.7, little difference for Tu < 5% is reported. For b/d ∼ 0.6 a decrease in Cd is
typically reported while for b/d < 0.2 it is an increase. Increasing Tu above 6% generally leads
to significant perturbation of the separated shear layer and thus the vortex formation process and
significant changes in the wake dynamics are observed, which are more pronounced for the thinner
obstacles [8,72]. Reference [27] notes that increasing the turbulence integral length scale to the order
of the d has similar effects. These observations indicate that Tu in the range 2–5% is sufficiently large
to strengthen the feedback mechanism, affecting the vorticity flux from the leading edge separation
and thus reduce the critical thickness. The results for Tu < 2% are presented for Cd and St in Fig. 9.
Results at Tu = 0.06% [23] and 0.6% [35] are very similar, but differ from those of Ref. [39] at
Tu = 0.12% or Ref. [29] at 0.5%. Thus the scatter cannot be attributed to changes in the free-stream
turbulence alone.

While it is known that an increase in the blockage will increase St and Cd , the difference observed
in the results of Fig. 9 are much larger than can be accounted for with blockage corrections [73]. The
blockage is generally small (B < 5%) for the studies given in Table III. References [16] and [35]
have corrected their data for blockage, while the remainder of the studies in Table III are reported
uncorrected. The present results were conducted in an open section wind tunnel with B ≈ 3.5%,
and thus minimal blockage effect is expected.

For b/d < 2, the discrepancies between results reported for Cd and St, as shown in Fig. 9,
occur principally for the thin-plate regime b/d < 0.8. It is noted that the reported values for the
critical thickness, b/d, at which the maximum Cd occurs, varies from 0.38 to 0.67. Moreover, the
experimental conditions differ significantly between studies in terms of Re, AR, and whether end
plates were used.

In the cylinder-like regime (∼ 0.8 < b/d < 2), reported values of St and Cd are insensitive to the
Reynolds number, for Re > 6 000—cf. Refs. [8,16,21,34]—for aspect ratios AR > 20 without the
use of end plates [69] or as low as AR ∼ 7 when suitable end plates are used [34]. This observation
is consistent with the present results. For rectangular cylinders, the separation point is fixed at the
leading corners and the afterbody is sufficiently long to suppress the wake feedback mechanism. In
contrast, for the circular cylinder, where the separation point on the body is not fixed, the influence
of Re, AR, and end plates is much more pronounced [74,75].

Around the critical thickness for the thin-plate regime, the obstacle is insufficiently long (i.e.,
thick) to suppress the feedback mechanism and an increased sensitivity to Re and AR is observed.
For example, Ref. [34] reported that for a constant Re = 90 000, as the aspect ratio is reduced
from 20 to 6, the critical thickness decreases even with the use of end plates, as seen in Fig. 19.
Reference [16] found that the pressure on the front face of rectangular cylinders is insensitive to
b/d or Re. In contrast, whereas the back pressure Cpb (and thus Cd ) for b/d = 1.0 was insensitive
to Re, for b/d = 0.6, Cd changed significantly as a function of Re as shown in Fig. 20. The present
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FIG. 19. Present Cd results (AR = 38, no end plates, Re ∼ 6 600), Ref. [34] Cd results (AR = 20, with end
plates, Re = 90 000), and Ref. [34] Cd results (AR = 6 to 6.7, with end plates, Re = 90 000).

results are consistent with this observation. As Re is reduced, the critical thickness occurs at smaller
b/d such that at a fixed b/d = 0.6 the drag coefficient would be observed to decrease (i.e., Cpb

increases).
Based on the foregoing observation, an additional experiment5 to measure the mean back pressure

Cpb were conducted for the thinnest plate (b/d = 0.05). Pressure taps were placed about the
centerline (y = 0) at z/d = 0, ± 4, and ±10, covering the range of stereo-PIV measurements.
Experiments were conducted with and without end plates for 10 000 < Re < 20 000. The end plates
were mounted on the cylinders at the edge of the flow stream. In both cases, within the experimental
uncertainty of ±0.06, Cpb did not vary with z as would be expected for a mean 2D wake. Without
end plates Cpb � −0.96 ± 0.06 and with end plates Cpb � −1.20 ± 0.06. Assuming that Cp ≈ Cpb

over the entire back face and that the pressure distribution on the windward side of the plate does
not change and is close to the stagnation pressure, the use of end plates accounts for less than 15%
change in the drag coefficient and is thus less than the scatter observed from the different studies.

In contrast to the results of Ref. [16] for b/d = 0.6, for b/d = 0.05 values of Cpb were insensitive
to Re up to 20 000, which is consistent with the earlier observation that Cd did not vary with Re in

5The authors would like to thank an anonymous reviewer for this suggestion.

FIG. 20. Cd results deduced from −Cpb values in Ref. [16] for the critical thickness b/d = 0.6 for 36 000 <

Re < 130 000 with a second-order polynomial fit.
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this range (Fig. 6). These results suggest that the critical thickness is very sensitive to end conditions
and Re and that changes in the critical thickness may underlie much of the scatter observed when
comparing results from different studies.

VI. CONCLUSION

The results of a stereoscopic particle image velocimetry study of the nearly periodic, turbulent
wakes of two-dimensional rectangular cylinders normal to a uniform flow are presented for thickness-
to-chord ratios between b/d = 0.05 and 1.92 at a Reynolds number around 6 600. Based on a
generalized phase average approach, the coherent contributions to cycle-to-cycle variations of the
fluctuating velocity field are quantified. The dynamics of vortex formation and shedding are then
investigated for different b/d as a function of fluctuation amplitude.

Three flow regimes can be identified based on b/d. For the thin-plate regime, the mean drag
coefficient increases with b/d to a critical value: (b/d)c ≈ 0.34 in this study. In this regime, the wake
is characterized by highly modulated fluctuation amplitudes and variations in the shedding frequency
as well as intervals in which shedding activity is suppressed. This dynamic behavior can be attributed
to a feedback mechanism between the formation and base regions. During low-amplitude cycles,
the shedding frequency decreases significantly (i.e., the formation time increases) and coherent
structures directly behind the plate corners (indicated by arrows in Fig. 16) are observed. The
vorticity associated with these structures opposes that of the adjacent separated shear layer. When
compared to higher amplitude cycles, the roll-up of the shear layer is delayed and the forming
vortices penetrate less deeply into the base flow region. This process appears to give rise to areas of
negative k production in the base region not observed for other regimes.

For larger thickness ratios, the presence of the afterbody acts to suppress the feedback mechanism
between the formation and plate-base region. In the cylinder-like regime ((b/d)c < b/d � 1.6), the
mean drag coefficient decreases for increasing b/d and the cycle-to-cycle variations of the shedding
process are much less pronounced. In this regime, intervals of suppressed vortex shedding activity
are rarely observed. The long-plate regime (b/d � 1.6) is characterized by reattachment of the shear
layer on the afterbody. The wake dynamics differ significantly from those for smaller b/d and the
wake periodicity is not associated with the classical Kármán formation and shedding process. For
this regime, the state of the redeveloping boundary layer on the afterbody confers on the wake
dynamics an increased sensitivity to the Reynolds number and the free-stream turbulence intensity
as observed from a comparison of several studies.

The significance of the feedback mechanism for thin plates helps reconcile discrepancies when
comparing trends in the Strouhal number, drag coefficient, and the critical thickness (b/d for
maximum drag) for earlier studies. Similarly to circular cylinders, the communication between the
wake formation region and the separation point results in a sensitivity to the Reynolds number and
end conditions.

For the plate flow, this sensitivity can be observed as a change of the critical thickness and is the
subject of ongoing studies. In contrast, for the cylinder-like regime (e.g., the square cylinder), these
effects are suppressed due to the presence of the afterbody.

More generally, the present analysis highlights the importance of the slow-varying base-flow
fluctuations on the shedding dynamics. Despite very large cycle-to-cycle variations of the fluctuating
velocity amplitude and shedding period, the strength (i.e., circulation) of the shed vortices changes
remarkably little for different-amplitude cycles or as a function of b/d. The instantaneous dynamics,
wake topology, and fluctuation intensity are directly related to changes in the separated shear shear
layer curvature and the trajectory of the shed vortices. When compared to low-amplitude cycles,
the high-amplitude shedding cycles are characterized by a shorter formation length and a higher
curvature of the separated shear layer. Once shed, the vortices from opposing sides move closer to the
mean-flow symmetry line (y = 0). For low-amplitude cycles, in contrast, the trajectory of the vortices
leads away from y = 0. During the high-amplitude cycles, larger magnitude coherent fluctuations
are induced due to the relative proximity of the shed vortices and, conversely, lower magnitude

064702-29



MOHEBI, DU PLESSIX, MARTINUZZI, AND WOOD

coherent fluctuations during low-amplitude cycles. Hence, resolving the vortex topology—in this
case, particularly, the cycle-to-cycle variation in the vorticity distribution and relative location
of the vortex cores—is important for interpreting the fluctuation dynamics. The aforementioned
behavior illustrates mechanisms consistent with energetic exchanges between the slow-varying
motion associated with the base flow and the oscillatory motion due to vortex shedding as described
in mean-field theory.
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