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Hot-wire measurements are carried out in turbulent boundary layers over smooth and
rough walls in order the assess the behavior of the skewness (S) and flatness (F ) factors
of the longitudinal velocity derivative as y, the distance from the wall, increases. The
measurements are complemented by direct numerical simulations of a smooth wall turbulent
channel flow. It is observed that, as the distance to the wall increases, S and F vary
significantly before approaching a constant in the outer layer of the boundary layer. Further,
S and F exhibit a nontrivial dependence on the Taylor microscale Reynolds number (Reλ).
For example, in the region below about 0.2δ (δ is the boundary layer thickness) where Reλ

varies significantly, S and F strongly vary with Reλ and can be multivalued at a given Reλ.
In the outer region, between 0.3δ and 0.6δ, S, F , and Reλ remain approximately constant.
The channel flow direct numerical simulation data for S and F exhibit a similar behavior.
These results point to the ambiguity that can arise when assessing the Reλ dependence of
S and F in wall shear flows. In particular, the multivaluedness of S and F can lead to
erroneous conclusions if y/δ is known only poorly, as is the case for the atmospheric shear
layer (ASL). If the laboratory turbulent boundary layer is considered an adequate surrogate
to the neutral ASL, then the behavior of S and F in the ASL is expected to be similar to
that reported here.

DOI: 10.1103/PhysRevFluids.2.064608

I. INTRODUCTION

The atmospheric shear layer (hereafter denoted ASL) data played a pivotal role in testing small-
scale statistics within the framework of both Kolmogorov’s original 1941 theory (K41) [1,2] and
its revision (K62) [3]. In particular, these data have been used [4] to assess the Reynolds number
dependence of both S and F (the skewness and flatness factor, respectively, of ∂u/∂x, u is the
longitudinal velocity fluctuation). In the framework of K41, S and F should be independent of the
Taylor microscale Reynolds number Reλ = u′λ/ν (λ is the Taylor microscale, ν the fluid kinematic
viscosity, and the prime denotes the rms), while under K62 they are generally expected to increase
with Reλ. The ASL data reported in Ref. [4] conformed with the latter trend. However, one critical
issue relating to these ASL data which may cast doubts on their suitability for testing K41 and K62
is that the measurements were carried out at relatively small heights above the ground or ocean
surface, and were therefore influenced by near-surface effects. As the surface is approached, the
individual contributions of the various physical mechanisms (i.e., production, advection, turbulent
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and viscous diffusion, and pressure-velocity diffusion) to the turbulent kinetic energy change from
those away from the surface. Further, the lack of knowledge of the ASL thickness prevents one from
assessing whether or not the heights at which the measurements were carried out are large enough for
neglecting the near-surface effects. Another issue of relevance when testing K41 and K62 relates to
the “state” (stable, unstable, or neutral) of the ASL. The ASL should exhibit neutral stratification to
be comparable to most laboratory data, i.e., the Monin-Obukhov length [5] should be infinitely large
or, at least, very large, to avoid the effects of buoyancy. Interestingly, in his review of atmospheric
turbulence, Wyngaard [6] states that he knew of no measurements in a truly neutral boundary layer,
one with zero buoyancy flux. It should be also remembered that the ASL is subjected to a pressure
gradient and to the Coriolis force; this latter is often assumed to be weak.

Finally, so far the possibility that S and F in the ASL could, in addition to being Re dependent,
also depend on the distance to wall was ignored or overlooked. Clearly, this possibility needs to be
investigated, which is the aim of the present study. Ideally, measurements across the entire neutral
ASL should be carried out in order to assess (i) whether or not the ASL, as data reported, for example,
in Ref. [4], are free of any near-wall effects and (ii) if the behavior of S and F changes with distance
from the ground surface. Unfortunately, such measurements are not possible in the ASL. However,
it is commonly assumed that the laboratory boundary layer can be a relatively good surrogate for
the neutral ASL (e.g., Refs. [7,8]). Only a few studies have reported distributions of S and F across
a turbulent boundary layer (e.g., Ref. [9]). They show that S and F vary as the distance to the wall
is approached. This is also observed in a turbulent pipe flow [10] and a turbulent channel flow [11].

The present paper reports measurements of laboratory smooth and rough wall turbulent boundary
layers as well as direct numerical simulation (DNS) data in a smooth wall turbulent channel flow.
The study assesses the behaviors of S and F in turbulent wall shear flows, and in particular their
behavior as the distance to the wall varies. This should help determine the suitability of the ASL
data for S and F reported in Ref. [4] for testing K41 and K62. Although it is generally accepted
that there are severe difficulties in carrying out measurements in an often uncontrolled environment
such as the ASL, we are not leveling any criticism at the measured values of S and F in the ASL
reported in Ref. [4]. These measurements were obtained with care and most likely reflect the true
state of the ASL at the locations where the data were acquired. Our study assesses how, as the wall
is approached, the increase in the mean shear and anisotropy can affect the distributions of S and F

with the assumption that these distributions are similar to those in the ASL.

II. DETAILS OF EXPERIMENTS AND NUMERICAL SIMULATIONS

Hot-wire experiments are conducted in smooth and rough wall boundary layer wind tunnels
located at the University of Newcastle. The smooth wall wind tunnel, previously documented by
Ref. [12], has a test section of 4.0 m length and 0.825 m width. It has a height of 0.16 m at the
exit of contraction (9.5:1). The boundary layer is tripped by a 100-mm-long roughness strip of
No. 40 grit sandpaper. The roof height in the test section is adjusted to obtain a nominally zero
pressure gradient turbulent boundary layer. For all the experiments presented here, the coefficient of
pressure along the entire working section is maintained constant to within ±0.5%. It was verified
by Ref. [12] that the boundary layer behaved according to the criteria for fully developed turbulent
boundary layers. Measurements are carried out at four streamwise locations x, ranging between
1.15 m � x � 2.6 m downstream of the trip at a nominal free stream velocity of 10 m/s. However,
for the purpose of the present study, only the measurements at x = 2.6 m are used in order to have
a direct comparison with rough wall measurements at x = 2.54 m (details given below). In all the
smooth wall measurements, the friction velocity Uτ was obtained by fitting the logarithmic mean
velocity profile to the constants κ = 0.384 and A = 4.17 [13]. The Reynolds number Reτ = δUτ/ν

(where ν is the kinematic viscosity) ranges between 900 and 1500.
The rough wall wind tunnel is the same as the one used in the previous studies of Refs. [14,15].

The advantage of using a rough wall is that it can produce higher Reynolds number turbulent
boundary layers than a smooth wall in a low-speed wind tunnel. The test section is 5.4 m long
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and 0.9 m wide. At the exit of the contraction (6:1), the test section has a height of 0.15 m. It is
tripped at the contraction exit by a 4-mm-diam rod followed by a 170-mm-long strip of No. 40 grit
sandpaper. Following the contraction, the roof of the test section is adjusted in order to compensate
for the growth of the boundary layers and to maintain the pressure gradient within ±0.1% of the
free-stream dynamic pressure. The rough wall consisted of a periodic arrangement of cylindrical
rods mounted only on the bottom wall and spanning across the full width of the test section. The
diameter of the rods (k) is nominally 1.6 mm and the spacing p between the rods is set at p = 8k.
Measurements are made at 2.54 m downstream of the tripped inlet of the working section. The
free-stream velocity U∞ is varied between 2 and 19 ms−1. The boundary layer thickness (δ99,
hereafter δ) is found to be nominally 0.1 m (about 63k). The friction velocity Uτ is obtained by
integrating the pressure distribution around a roughness element (see Ref. [15] for full details). The
Reynolds number Reτ = δUτ/ν (where ν is the kinematic viscosity) ranges between 620 and 7200.

In all the rough wall experiments, a total of 36 logarithmically spaced measurement points
between y = 0.2 and 136 mm (y is the wall-normal distance) are taken using the Mitutoyo height
gauge with a resolution of 0.01 mm. The traversing system is also fitted with an optical linear encoder
with a resolution of 1 μm, which improved the accuracy of positioning the hot-wire probe relative
to the wall. Throughout this paper, x and y refer to the streamwise and wall-normal directions,
respectively, while u denotes the fluctuating streamwise velocity component.

A. Hot-wire anemometry

The hot-wire probe used in all the experiments is a slightly modified Dantec 55P15 boundary
layer type probe and has a spacing of 1.5 mm with a 2.5-μm-diam platinum Wollaston wire soldered
between the prongs. The wire is etched to a length of 0.52 mm to ensure a length-to-diameter ratio
l/d ≈ 210. This equates to an inner-normalized sensor length l+ of approximately 13 and 30 for
smooth and rough wall measurements, respectively. The hot wire is operated using a in-house made
constant temperature anemometer (CTA) with an overheat ratio of 1.8. The overall system response
is found to be second order when a 1 kHz electronic square wave is applied to the CTA system and
the −3 dB drop-off point corresponds to 16–30 kHz for mean velocities in the range 0–20 m/s. We
used Taylor’s hypothesis of frozen turbulence in the form (∂/∂x) = −(1/U )(∂/∂t) to compute the
velocity derivative ∂u/∂x.

Calibration of the hot wire is carried out statically against a pitot-static tube located in the
undisturbed free stream before and after every experiment at 16 different speeds ranging between 0
and 19 ms−1. The pitot-static tube is connected to a micromanometer FC0332 from Furness Controls
with an accuracy of 0.0125 Pa (0.025% full scale output) in the range of 0–00 Pa. A third-order
polynomial is fitted between the free-stream velocity and the hot-wire voltage during the calibration.
A linear interpolation in time between pre- and postcalibrations (see Ref. [16] for details) is employed
to account for any drift in the hot-wire voltage that occurs during the course of an experiment. Only
a minor drift of less than 0.1 V in hot-wire voltage was observed in our experiments.

The hot-wire signals were filtered using a low-pass analog filter before they were digitized
using a 16-bit National Instruments NI9215 module installed on a NI cDAQ-9174 analog-to-digital
converter. The filter cutoff frequency fc(y) is varied across the boundary layer so as to resolve the
smallest scales at a given wall-normal location and the data are sampled at more than twice fc(y)
for about 180 s.

B. Direct numerical simulation

The present numerical database was obtained from the direct numerical simulation (DNS) of
a smooth wall turbulent channel flow with passive scalar transport [17]. Three values of h+
(=180, 395, and 640) are used. The numerical methodology is briefly described as follows. A
fractional step method is used with semi-implicit time advancement. The third-order Runge-Kutta
method is employed for the viscous terms in the wall-normal (y) direction and the Crank-Nicolson
method is used for the other terms. A finite difference method is adopted for spatial discretization.

064608-3



DJENIDI, ANTONIA, TALLURU, AND ABE

TABLE I. Experimental details of smooth and rough wall measurements. Note that the black square in this
table corresponds to green squares in the figures for better visibility.

x U∞ ν/Uτ Uτ δ99 δ∗ θ

(m) Reτ Reθ (ms−1) (μm) (ms−1) (m) (m) (m) l+ k+
s δ/k Symbol

Smooth wall
2.6 1420 3540 9.7 41.0 0.378 0.058 0.0081 0.0057 12.2 �
Rough wall
2.54 629 1760 2.07 142 0.108 0.089 0.022 0.013 3.5 47 56 ©
2.54 1020 2750 3.03 92.8 0.166 0.094 0.024 0.014 5.4 103 59 ♦
2.54 1516 3922 4.17 64.6 0.238 0.098 0.026 0.015 7.7 220 61 �
2.54 2340 6045 6.43 41.0 0.381 0.096 0.026 0.015 12.2 299 62 �
2.54 3945 9925 10.40 25.1 0.623 0.099 0.026 0.015 19.8 450 62 ×
2.54 5766 14305 15.00 17.4 0.900 0.100 0.025 0.015 28.7 625 63 ∗
2.54 7170 17780 18.80 14.0 1.127 0.101 0.025 0.015 35.6 767 63 +

A fourth-order central scheme [18] is used in the streamwise (x) and spanwise (z) directions, with
a second-order central scheme in the y direction. The velocity derivative ∂u/∂x is thus calculated
with the use of a fourth-order central scheme. Periodic boundary conditions are applied in the x and
z directions, whereas the no-slip condition is used in the y direction. A uniform grid distribution is
used in the x and z directions, while a nonuniform distribution is used in the y direction where the
grid is clustered near the wall but stretched towards the center of the channel. Special care is taken
for the spatial resolution. The grid spacing in the x and z directions (	x and 	z) is about 0.8 times
the Kolmogorov length scale [17], which is similar to that of Ref. [11] who examined small-scale
velocity pressure fluctuations by performing DNS with a well-resolved spatial resolution. On the
other hand, the grid spacing in the y direction (	y) is about 1.6 times the Kolmogorov length scale
at the channel centerline; it is comparable to that of Ref. [19] who made a well-established DNS
database up to h+ = 2003. It is, however, about twice as coarse as that of Ref. [11]. Further details
of the simulation are given in Ref. [17], and the reader may refer to this paper for information on
basic turbulence statistics.

III. RESULTS

Although not shown here, the present data for the mean velocity and turbulence intensity
distributions support the argument that a laboratory turbulent boundary layer (hereafter denoted
LTBL) share similar features with the neutral ASL. This corroborates the results of Ref. [8]. One
may thus expect that the behavior of the turbulence statistics across the LTBL reflects those of the
ASL. In particular, for the problem that concerns us here, the distributions of S and F in the LTBL
should mimic those in the ASL. This is of great interest as it allows us to better interpret the measured
S and F in the ASL. In the next section we examine the distributions of S and F in the LTBL and
the DNS of the turbulent channel flow.

A. Skewness and flatness of ∂u/∂x

Figure 1 shows the measured distributions of S as function of y/δ and y+ in the LTBL over the
smooth and rough walls, and the DNS distributions in a smooth wall turbulent channel flow. Also
shown are S for a smooth wall LTBL [9], smooth wall turbulent pipe [10], and the DNS of a smooth
wall turbulent channel flow reported by Ref. [11].

All the distributions of S in Fig. 1 are qualitatively similar in all the smooth wall flows, with
minor quantitative variations. As the distance to the wall increases, S first decreases, reaches a
minimum, increases, and finally becomes constant over a large part of the outer region of the flow,
forming a plateau. Note the systematic shift to smaller y/δ of the local minimum in S, reflecting
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FIG. 1. Velocity derivative skewness S in a pipe, channel flow, and turbulent boundary layers as a function
of (a) y/δ and (b) y+. Open black symbols (see Table I): Rough wall boundary layer (current study). Blue
symbols: Smooth wall boundary layer [9]. Green squares: Smooth wall boundary layer (Newcastle). Brown
open circles: Pipe flow (R+ = 925 [10]). Red open symbols: Channel flow DNS data (h+ = 180,590 [11]).
Black solid symbols: Present DNS channel flow data (h+ = 180, 395, and 640). For the pipe and channel, δ

stands the pipe radius (R) or channel half width (h), respectively. Note that the data for pipe, smooth, and rough
wall turbulent boundary layers are represented using multiple ordinate axes.
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the increase of Re. We used a semilog scale for the wall-normal coordinate to highlight this shift.
Near the edge of the LTBL or the channel centerline, S tends to deviate from the plateau. On the
plateau, S is about −0.4 for smooth and rough LTBLs and about −0.3 in the pipe. There is a vertical
shift in the channel flow distributions between the present DNS and those of Ref. [11], which we
cannot yet explain. The value of the plateau is different: −0.6 for our results and −0.4 for Ref. [11].
For the rough wall, S increases initially before reaching a constant value of about −0.4. Since the
wall boundary configuration is different from that of a smooth wall, thus affecting the turbulence
structure, the behavior of S in the vicinity of the wall differs from that of a smooth wall. When we
use the inner-normalized distance y+, we observe that the location of the minimum value of S on
the smooth wall occurs at about y+ � 20–30; for the pipe it is at about y+ � 10–15. These positions
are relatively close to the average location of the centroid of the quasilongitudinal vortices. On the
rough wall, these vortices are absent at the higher Re, but they may occur at the lowest Re, when the
boundary layer is in a transitionally rough regime.

We also observe a characteristic behavior of F in all smooth wall flows (Fig. 2). For example,
as y+ increases, F decreases, reaches a minimum, then increases to a maximum before finally
decreasing towards a constant. On the rough wall, F shows a continuous decrease until it reaches a
plateau. As S, F deviates from the plateau as the edge of the boundary layer or the centerline of the
channel and pipe is approached. The value of F on the plateau is about 6 for both boundary layers
and the channel flow and for the pipe it is about 3.

We now assess the behavior of S and F in terms of Reλ [λ ≡ u′/(∂u/∂x)2
1/2

] across the boundary
layer and the channel flow (Fig. 3). To help visualize the Reλ dependence of S across the flow, we
color coded some S and Reλ distributions and used different colors to identify various regions of the
boundary layer. The inset of Fig. 3 shows the two Reλ distributions corresponding to the color-coded
distributions of S. Reλ varies significantly as the wall is approached, but remains approximately
constant in the region 0.2 � y/δ � 0.6; on the smooth wall, Reλ exhibits a near-wall maximum
which reflects the near-wall peak of u′. This behavior of Reλ is observed at all Reynolds numbers
Reθ , as seen in Fig. 4, which reports the distributions of Reλ as a function of y/δ for the smooth
and rough wall turbulent boundary layers and the (DNS) smooth wall channel flow. The drop in Reλ

as the edge of the boundary layer is approached reflects the strong large-scale intermittency at the
interface between the boundary layer and the potential flow.

For the smooth wall, the distributions of S and F in Fig. 3 show a nontrivial Reλ dependence, in par-
ticular, in the near-wall region (e.g., red symbols), where both distributions exhibit a cusp when Reλ

reaches its local maximum. Farther away from the wall, S becomes independent of Reλ for both the
boundary layer and the channel flow. The distributions of F also exhibit a similar behavior with Reλ.
The near-wall behaviors of S and F on the rough wall differ from those on the smooth wall because
the roughness alters significantly the near-wall turbulent structure of the flow. Further, as Reθ (θ is the
LBTL momentum thickness) increases, the independence of S on Reλ, as the distance y increases,
becomes clearer. For example, S is practically constant for the range 100 � Reλ � 170 when Reθ =
2750; when Reθ = 17 780 that range becomes 100 � Reλ � 500. A similar trend is displayed by F .

The deviation from the plateau in both S and F as the wall is approached (e.g., Figs. 1 and 2)
reflects most certainly the strong anisotropy in the near-wall region of wall-bounded flows, where
several mechanisms are at play in the energy budget (e.g., production, dissipation, turbulent diffusion,
transfer of pressure-velocity correlation). This alteration of the energy budget is also accompanied
by a strong variation of Reλ. In contrast, in the outer region, especially where Reλ � const the energy
budget is dominated by the production and the dissipation, indicating an energy equilibrium. This
equilibrium is expected to be matched at small scales by a balance between production and destruction
of enstrophy ωiωi (ωi is the vorticity fluctuations; the repeated subscript implies summation over
i = 1, 2, and 3). Further, local isotropy is likely to be relatively well satisfied in regions of weak or
zero mean shear flow [20] and where Reλ is expected to vary weakly or be constant. This occurs in
the outer region of the flow, as already seen in Fig. 4.

The above results strongly suggest that caution is required when comparing S and F between wall
turbulent flows and either decaying shear flows, such as jets and wakes, or homogeneous turbulent

064608-6



SKEWNESS AND FLATNESS FACTORS OF THE . . .

10-2 10-1 100
0 

10

0 

10

0 

10

0 

10

20

30

100 101 102 103
0 

10

0 

10

0 

10

0 

10

20

30

FIG. 2. Flatness factor of the velocity derivative F in a pipe, channel flow, and turbulent boundary layers
as a function of (a) y/δ and (b) y+. Symbols are as in Fig. 1. Note that the data for the pipe, and smooth and
rough wall turbulent boundary layers are plotted using multiple ordinate axes for clarity.

064608-7



DJENIDI, ANTONIA, TALLURU, AND ABE

0 100 200 300 400 500
-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0 0.2 0.4 0.6
0

200

400

0 100 200 300 400 500
0

5

10

15

20

25

30

35

FIG. 3. Distributions of S and F as a function of Reλ. Symbols are the same as in Fig. 1, except for the
smooth wall data and Reτ = 7170 data of the rough wall. The smooth wall boundary layer data are color coded
as three regions: near-wall region (red, y/δ � 0.04), inertia-dominated region (yellow, 0.04 � y/δ � 0.2), and
outer region (green, 0.2 � y/δ � 0.6). For the rough wall data, data in the outer region, 0.2 � y/δ � 0.6, are
shown in magenta. Inset: Reλ profiles of smooth wall and rough wall (Reτ = 7170) with similar color coding
as in the S distributions.

flows. The message conveyed by Figs. 1–3 is clear: S and F can vary significantly from location
to location within a given nonhomogeneous turbulent flow, while they can be independent of Reλ

in some parts of the flow. Accordingly, the uncertainty of the measurement locations can lead to
quite different conclusions on the magnitudes of S and F and their dependencies on Reλ. Thus,
considering the large uncertainty in the value of y/δ for the ASL measurements, caution must be
exercised, even though these measurements are at Reynolds numbers that are much higher than
those obtained in a laboratory. To illustrate this point, we report in Fig. 5 the values of S obtained
in the ASL by Refs. [21,22] with the present data measured in the smooth and rough wall turbulent
boundary layers. The original data reported by Ref. [21] used values of Reλ based on an arbitrarily
definition, i.e., Reλ,WT = w′λ/ν, where w′ is the vertical velocity rms. Reference [23] proposed a
correction for Reλ,WT and arbitrarily multiplied by a factor 2.5. It is these later “corrected” data
which are reported in Ref. [4]. These data were collected at distances from the wall y = 5.66, 11.3,
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FIG. 4. Comparison of Reλ profiles at different streamwise locations in smooth and rough wall boundary
layers; see Table I for symbols representing the smooth wall and rough wall data. Solid symbols: Present DNS
of smooth wall channel flow.

and 22.6 m. Unfortunately, Ref. [21] did not show the distribution of S as a function of y, which
makes it impossible to identify the data taken at the respective positions of y. The data of Ref. [22]
are measured at a height of 108 m about the ground with a hot-wire probe mounted on a wing of
a plane. Measurements were acquired on different days, 1 July 1968 (12:00 pm–13:11 pm) and 28
July 1968 (11:32 pm–21:45 pm). Notice the significant difference in the values of S between the two
series of data. On average, the magnitudes of S of the data measured on 28 July 1968 are quite low,
either due to error measurements or, most likely, a change in the ASL conditions from those of 1
July 1968. Since one expects that the neutral ASL can be treated as a turbulent boundary layer where
S, F , and Reλ vary in a nontrivial manner as shown here, one should take caution in inferring the
Reynolds number dependency of S and F based on a few measurements acquired in the ASL in the
vicinity of the ground [21] or ocean [24]. It is interesting to note that the values of −S at y = 108 m
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FIG. 5. Distributions of S as a function of Reλ in laboratory turbulent boundary layer and ASL. Symbols
are the same as in Fig. 3 for the smooth wall and rough wall boundary layers. ASL data: � [21], and � (28 July
1968) and � (1 July 1968) [22].
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measured by Ref. [22] on 1 July 1968 agree relatively well with that in the region of the boundary
layer where S and Reλ are constant simultaneously, while the measurements of Ref. [21] and those
reported in Ref. [4] from other results at a much lower height show a different trend. This shows that
one must first determine the actual y/δ location of the ASL data and ascertain if the data are free of
any near-wall effects before including them in any assessment of K41 and K62. The multivaluedness
of S and F at given Reλ, well illustrated in Figs. 3 and 5, highlights the ambiguity that can arise if
such data are used without a precise knowledge of y/δ. Alternatively, the inset of Fig. 3 suggests
a relatively simple and objective criterion for measuring both S and F free of near-wall effects:
Reλ should be constant over a non-negligible range of y (and maximum). As stated above, one can
then expect the local isotropy to be well approximated in this region. Thus, if the Reynolds number
is large enough, according to Ref. [25], the transport equation for the enstrophy (ω2) reduces to
Pω = Dω, where Pω and Dω are the production by vortex stretching and destruction by the effect of
viscosity, respectively, of ω2. The balance between Pω and Dω indicates that the small scales have
reached an energy equilibrium which is consistent with constant Reλ, S, and F . Consequently, the
two requirements (i.e., local isotropy and high Reλ) to test K41 and/or K62 are most likely to be met
in that region. Interestingly, the ALS data reported in Ref. [4] were measured at heights no larger
than 40 m, and thus are most likely to fall in the lower part of the log region of the mean velocity
profile. In this region the balance between turbulent energy production and dissipation is not well
verified.

IV. CONCLUDING DISCUSSION

We have carried out hot-wire measurements in laboratory turbulent boundary layers (LTBLs)
over smooth and rough walls, with the assumption that such flows may have similar features to
those for a neutral ASL. We also analyzed data from direct numerical simulations of a smooth wall
turbulent channel flow.

The LTBL measurements of S and F indicate that, as the distance to the wall (y) increases,
both S and F vary significantly before approaching a constant in some part of the outer layer. It
is observed that Reλ varies strongly with y before becoming approximately constant in the region
0.3 � y/δ � 0.6. A similar behavior for S, F , and Reλ is observed in the channel flow DNS data.

The results show that caution is needed when using measurements in wall shear flows, such as
boundary layers, and pipe and channel flows for the purpose of testing K41 and K62. One must ensure
that, in addition to the requirement of a very high Reynolds number (a necessary but insufficient
condition) and local isotropy, the measurements should be carried out in the region of the flow where
S, F , and Reλ are independent of the distance to the wall. The present study suggests that the region
0.3 � y/δ � 0.6 may be adequate for this purpose.

If one accepts that the laboratory turbulent boundary layer is an adequate surrogate for the
neutral ASL, then the behavior of S and F in the ASL is expected to be similar to that reported
in this study. This raises concerns regarding the use of the ASL data reported in Ref. [4] for testing
K41 and K62. Indeed, they have usually been obtained at relatively small heights, typically below
30 m. If we assume that the thickness of the ASL is about 100 m (a conservatively low figure
considering that the general consensus is that the thickness of the ASL is about 10% of the planetary
boundary layer, which can extend to at least 2 km) the ASL data fall in the region y/δ � 0.3, which
does not comply with the present recommendation. The behavior of S and F reported in this study
illustrates the concerns raised [26] with regard to the use of ASL data for testing the consequences
of K41 and K62.
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