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To draw a precise picture of the hierarchy of coherent vortices in spatially periodic
turbulence at high Reynolds numbers and to understand its generation mechanism, we
conduct direct numerical simulations of turbulence in a periodic cube. By objectively
identifying the axes of vortex tubes at various length scales in the inertial range, we
quantitatively show that the sustained turbulence consists of a hierarchy of antiparallel pairs
of vortex tubes. These vortex tubes are created by being stretched in strain fields around
2–8 times larger vortices, whereas they are weakened by strain around half-scale vortices.
Temporal tracking of identified vortex tubes shows that they tend to form antiparallel pairs
from the moment they are created. We examine three different external forces to show that
the hierarchical structure of antiparallel vortex pairs is robust and its statistical features
in inertial length scales are independent of the force. The turbulence that is sustained by
steady forces is quasiperiodic in time and its significant temporal fluctuations are caused
by successive creation of strong vortex tubes within the hierarchy.
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I. INTRODUCTION

Richardson [1] explained the physics of relative dispersion of fluid particles in developed
turbulence on the basis that turbulence is composed of a hierarchy of eddies with various sizes. As
described in his famous verse [2], the energy is transferred within the hierarchy in a scale-by-scale
manner and this energy cascade phenomenologically explains the origin of the small-scale
universality of turbulence statistics. As predicted by Kolmogorov [3] and widely supported by
experiments (see, e.g., Ref. [4]), the two-point velocity correlation function of turbulence at high
Reynolds numbers obeys a power law for inertial length scales between the Kolmogorov length
η and the integral length L. This implies that the hierarchy of flow structures is self-similar in a
statistical sense. Therefore, an important problem in the study of turbulence is to draw a concrete
picture of the self-similar hierarchy and to clarify its generation mechanism, i.e., the energy cascade
dynamics.

Quite a few cascade models such as the log-normal model [5], the β model [6], the random β

model [7], and the log-Poisson model [8] were proposed to describe the spatial intermittency [9]. For
example, the well-known cartoons by Frisch et al. [6] depicted the notion of the energy cascade and
origin of the intermittency. However, the cascade models do not explain the details of hierarchical
flow structures or cascade dynamics.

Direct numerical simulations (DNSs) of turbulence in a periodic box have played an important role
in the investigation of its flow structures and dynamics. In particular, the discovery of coherent intense
vortices at the dissipative length scale [10–13] in numerically simulated turbulence significantly
affected later research. It was also verified using DNSs that the energy evidently transfers from
lower- to higher-wave-number Fourier modes on average [14–16]. However, the Reynolds numbers
of these DNSs in the past century were not large enough to reveal the corresponding real-space
physics of hierarchical flow structures. Among them, Hussain and co-workers pioneered this field
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of research on the basis of the notion of coherent structures [17] and developed cascade pictures by
supplementing the smallness of the Reynolds number of their DNSs with the knowledge of vortex
dynamics. In particular, the schematic in Fig. 19 of Ref. [18] conjectured a hierarchical structure of
coherent vortices. As will be shown below, their concept that smaller-scale vortices are created in
strain fields around larger-scale vortices is supported by our DNS.

A theoretical study by Lundgren [19] analytically derived a solution to the Navier-Stokes
equations in the form of a spiral vortex that led to a power law of the velocity correlation function
consistent with the Kolmogorov theory [3]. The Lundgren spiral and related pictures [20] are
therefore candidates for the (statistically) self-similar flow structure in developed turbulence. Horiuti
and co-workers [21,22] claimed that there are spiral vortices in their DNS turbulences. More recently,
Kerr [23] also conducted DNSs with an organized initial condition to investigate a process leading
to turbulence and compared the vortical structures observed in the DNSs with the Lundgren spiral.
However, there is no numerical evidence to show the existence of the Lundgren spiral that spreads
over many length scales and sustains the spatial velocity correlation in the entire inertial range
predicted by the Kolmogorov theory.

About thirty years had passed since the pioneering study by Orszag and Patterson [24], when
Kaneda et al. [25] conducted DNS of fully developed turbulence sufficiently beyond the so-called
mixing transition [26], at which clear multiscale features of turbulence with a well-established scale
separation (i.e., L/η � 1) emerge. Computational resources have now developed far enough to
conduct sufficiently long-term DNSs of turbulence under simple boundary conditions at Reynolds
numbers as high as those in the laboratory. Because DNSs possess all spatiotemporal information,
they can help us to investigate the hierarchical structures and their dynamics in turbulence.

The first objective of this paper is to draw a concrete picture of the hierarchy of coherent vortical
structures in spatially periodic turbulence using DNS at sufficiently high Reynolds numbers. In
other words, we aim at quantitatively examining and improving the pictures suggested by previous
authors (see, e.g., Refs. [11,17–19,21–23]; see also [27–29]), including ourselves [30,31]. However,
to attain this objective, we are immediately faced with two problems. The first problem is how to
extract such a hierarchy of flow structures in turbulence that has continuous length scales. Wavelets
have been used [32], but this sophisticated tool has not yet led to a clear conclusion on the hierarchy.
A method using a filter of the Fourier modes of velocity is, by contrast, naive but useful in practice
(see, e.g., Ref. [33]). We also employ the latter simple method. The second problem is how to
identify coherent vortices. The simplest way may be to use the isosurface of the coarse-grained
enstrophy Q̂. In previous papers [30,31] we showed with visualizations of isosurfaces of Q̂, which
was evaluated through Fourier mode filtering, that smaller-scale vortices were created in strain fields
around larger-scale antiparallel (counterrotating) pairs of vortex tubes. However, in these previous
studies we only observed a few examples of antiparallel pairs of vortex tubes and the statistical
significance of such events was largely unknown. Furthermore, there is an inevitable problem in
that the threshold of an isosurface may be chosen arbitrarily and one can look at only intense
vortices in isosurface visualizations. As emphasized by Jiménez et al. [34], turbulence statistics
are not sustained only by intense vortices; therefore, we need to objectively identify vortices with
various strength (see a seminal study by Jeong and Hussain [35]). In this study, we use the so-called
low-pressure method proposed by Miura and Kida [36,37]. This threshold-free method identifies
the axis of a vortex tube using the fact that the pressure field takes a local minimum at the center of
a vortex tube on the plane perpendicular to it. The method was originally proposed for identifying
vortex tubes at the dissipative scale, but we apply it to coarse-grained pressure fields and identify
vortex axes at any hierarchy level. Using this method, we will show in the following sections that
vortex tubes at any inertial length scale indeed tend to form antiparallel pairs irrespective of the type
of large-scale forces.

The second objective of this paper is to clarify the generation mechanism of the observed hierarchy
of antiparallel pairs of vortex tubes. In our previous studies [30,31] we were only able to give two
possibilities and we could not show which was the dominant mechanism. One possibility was the
advection effect observed in the dynamics of vortex filaments [38] and the other was the mechanism
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observed in the creation of small-scale vortices (threads) in larger-scale strain fields [18]. We have
numerically tracked the identified coherent vortices and we will show in the following that the
predominant mechanism of the formation of antiparallel vortex pairs is simultaneous or successive
stretching of several smaller-scale vortex tubes in a single large-scale strain field rather than Siggia’s
mechanism [38] due to self- and mutually induced advection.

II. DIRECT NUMERICAL SIMULATION

We numerically integrated the Navier-Stokes equation for an incompressible fluid under periodic
boundary conditions in all three orthogonal directions. The spatial period of the boundary condition is
denoted by L (=2π ). We use the fourth-order Runge-Kutta-Gill scheme for the temporal integration.
The spatial derivatives are evaluated using the Fourier spectral method. The aliasing errors are
removed by the phase shift technique. The number N3 of the Fourier modes was chosen depending
on the Reynolds number so kmaxη (with kmax being the largest resolved wave number) is always larger
than unity throughout the DNS, even when the Kolmogorov length η(t) [=ε(t)−1/4ν3/4] fluctuates
significantly in time (see Sec. III E). Here ν and ε(t) are the kinematic viscosity of the fluid and the
energy dissipation rate per unit mass, respectively. We simulate fully developed turbulence where
the average of the Reynolds number, based on the Taylor length (λ), 〈Rλ〉 = 〈u′λ/ν〉 ≈ 750 at the
highest by using up to N3 = 20483 modes. Here u′ is defined by u′ = √

2K(t)/3, with K(t) being
the kinetic energy per unit mass, and angular brackets denote the temporal average. The integral
length is evaluated by

L(t) = 3π

4K(t)

∫ ∞

0
k−1E(k,t)dk, (1)

where E(k,t) is the energy spectrum at wave number k. As will be shown in Sec. III E, the examined
turbulence quasiperiodically evolves with significant fluctuations and its period is much longer than
the turnover time T = 〈L〉/〈u′〉 of the largest eddies. We therefore conduct each run of the DNS for
a sufficiently long time, which is shortest (18.8T ) for the highest-Reynolds-number case, so that we
can accurately evaluate the temporal averages.

We examine three different kinds of external forces to sustain turbulence in the periodic cube.
One of them is a conventional but rather artificial force, which is denoted by f (R). In this forcing
scheme, we rescale and fix the magnitudes of the Fourier modes of the velocity for wave numbers
smaller than kf = √

8 after each time step of the numerical integration of the unforced Navier-Stokes
equation. Since the phases of these fixed modes evolve in time with a time scale of the order of the
turnover time of the largest-scale eddies, large-scale flow structures freely move in space.

The other two forces are simple steady ones. Previous authors of studies of turbulence in a
periodic cube preferred large-scale forces that made the turbulence as homogeneous, isotropic, and
stationary as possible at length scales smaller than the integral length L. This is a reason why artificial
forces such as f (R) have been frequently used. However, it is not clear a priori the extent to which
large-scale force affects smaller scales (see Sec. III D). Therefore, in the present study, we also use
the well-defined steady forces

f (V ) =
⎡⎣− sin(2πx/L) cos(2πy/L)

+ cos(2πx/L) sin(2πy/L)
0

⎤⎦ (2)

and

f (K) =
⎡⎣sin(2πy/L)

0
0

⎤⎦, (3)
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FIG. 1. Isosurfaces of the enstrophy of turbulence sustained by (a) f (R) (〈Rλ〉 = 390), (b) f (V ) (〈Rλ〉 =
480), and (c) f (K) (〈Rλ〉 = 490). The threshold is set as m + 8σ with m and σ being the spatial mean and
standard deviation of the enstrophy. The size of the shown cube is (a) (L/2)3 ≈ (3.5〈L〉)3 ≈ (1500〈η〉)3,
(b) (L/2)3 ≈ (2.5〈L〉)3 ≈ (1000〈η〉)3, and (c) (L/2)3 ≈ (2.1〈L〉)3 ≈ (1100〈η〉)3.

at the cost of large-scale isotropy and homogeneity. The forcing wave number kf is
√

2 and 1 for
f (V ) and f (K), respectively. The flow driven by f (K) is called the Kolmogorov flow (see a review by
Obukhov [39]) and the two-dimensional Kolmogorov flows have been extensively studied. Although
this force was used for numerical simulations of three-dimensional turbulence in early periods [40],
it has not been frequently used for the above-mentioned reason.

These time-independent forces f (V ) and f (K) sustain a quadruplet of vortex tubes and a pair of
vortex sheets in a periodic cube, respectively. In both cases, the steady flow u = L2/(4π2ν) f is
stable when ν is sufficiently large. For a smaller value of ν, we conduct DNSs of turbulence with
an initial condition made by disturbing the steady flow. Since the pioneering study by Brachet et al.
[41], such simple (so-called Taylor-Green) vortices expressed in terms of a few Fourier modes have
been often used as an initial condition of the DNS of decaying turbulence, but in the present study
we keep forcing.

For each of the DNSs with the three forces, sustained turbulence with a larger value of ν is used
as the initial condition of the DNSs with smaller ν. In the following analysis, we will discard an
initial transient period of the order of several turnover times of the largest-scale eddies.

III. RESULTS

A. Hierarchy of vortex tubes

We show the isosurfaces of the enstrophy field Q(x,t) = |ω(x,t)|2 [i.e., the squared vorticity
ω(x,t)] driven by the three different large-scale forces f (R), f (V ), and f (K) in Fig. 1. In this
figure, relatively strong vortices with enstrophy larger than m(t) + 8σ (t), where m(t) and σ (t)
are the spatial mean and standard deviation of Q(x,t) at time t , respectively, are plotted. Despite
the significant difference in the large-scale forces, there always exist wormlike structures and no
qualitative difference in these structures is observed in the three panels in Fig. 1. This is qualitatively
consistent with the small-scale universality because the enstrophy field is predominantly determined
by the smallest-scale vortices.

Since the Reynolds numbers of the turbulences shown in Fig. 1 are high enough, they must be
composed of a hierarchy of vortices with various sizes. However, it is difficult to recognize such
a hierarchy by simply looking at the wormlike vortices. It is worth mentioning that a cluster of
wormlike vortices does not necessarily correspond to a larger-scale vortex. See the Appendix for
more detailed arguments on this point. In other words, to capture a hierarchy of vortices, we have
to coarse grain the vorticity field ω(x,t). As mentioned in Sec. I, we evaluate the coarse-grained
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enstrophy Q̂(x,t) = |ω̂(x,t)|2 with a sharp bandpass filter1 of the Fourier modes of the velocity.
More precisely, we retain the Fourier modes only in a spherical shell [kc/

√
2,

√
2kc] in wave-number

space and we call this bandpass filter the coarse grain at kc because kc is located at the center of the
band in the logarithmic scale. We denote the corresponding coarse-grained scale L/kc by 
c. The
reason why we choose the filter width as [kc/

√
2,

√
2kc] is twofold. One is that, as will be shown in

Sec. III D (see Fig. 9), twice larger scales most significantly contribute to the vortex stretching of a
given scale. The other reason is that, due to the second-order nonlinearity of the governing equations,
the interaction of Fourier modes at a given wave number produces Fourier modes at the twice larger
wave number. We have verified that the shape of coarse-grained vortices is not significantly affected
even if we use a smoother filter (e.g., the Gaussian filter) and we will discuss (in Sec. III B) the
possibility that our conclusions shown below depend on the choice of the coarse-grain method. The
effect of bandpass filtering on the shape of vortices was also investigated in detail by Leung et al. [33].

We show, in Fig. 2, isosurfaces of coarse-grained enstrophy Q̂(x,t) at different length scales for
each of the three forces f (R), f (V ), and f (K). Note that even the blue fine vortices [Figs. 2(a iii)–
2(c iii)] are at the hierarchy level of sufficiently large length scale in the inertial range corresponding
to about (a) 66〈η〉, (b) 100〈η〉, and (c) 97〈η〉. Since the distribution of the coarse-grained enstrophy
is more intermittent for smaller scales, we set the threshold of the isosurfaces larger (〈m̂〉 + 3〈̂σ 〉)
in Figs. 2(a iii)–2(c iii) than 〈m̂〉 + 2〈̂σ 〉 in Figs. 2(a i)–2(c i) and 2(a ii)–2(c ii). Here m̂(t) and σ̂ (t)
are the mean and the standard deviation, respectively, of Q̂(x,t).

As shown in Figs. 2(a i)–2(c i), the shape of largest-scale vortices depends on the type of forcing.
However, for shorter length scales (i.e., length scales shorter than about a quarter of the forcing
scale), the coarse-grained vortices identified by the present method always look tubular irrespective
of the type of external forces [Figs. 2(a ii)–2(c ii) and 2(a iii)–2(c iii)]. More precisely, vortices at
smaller scales are tubelike with smaller radii and shorter lengths. Although many blue vortices look
bloblike in Figs. 2(a iii)–2(c iii), they are actually tubular in magnified views (see Figs. 4 and 5
below).

Incidentally, it is trivial that the red vortices for kc = kf in Fig. 2(b i) are tubular because they
are directly driven by f (V ), which is defined by (2). It is interesting to observe that the red vortices
in Fig. 2(c i) directly driven by f (K) also look tubular in our visualization of the coarse-grained
enstrophy with sharp bandpass Fourier filtering, although the force f (K), defined by (3), is likely to
sustain a pair of vortex sheets in a periodic cube.

In summary, the first conclusion drawn from our DNS is that spatially periodic turbulence, in the
inertial length scales, is composed of a hierarchy of vortex tubes with different sizes.

B. Generation mechanism of vortex tubes at each hierarchy level

In this section we investigate the generation mechanism of vortex tubes at each level of the
hierarchy on the basis of flow visualizations. Quantitative arguments are developed later in Secs. III C
and III D.

Let us first examine vortex tubes at two relatively large length scales (kc = kf and 4kf ) in
turbulence driven by f (V ). We show isosurfaces of coarse-grained enstrophy at these two length
scales in Fig. 3. It is evident in Fig. 3(a) that yellow vortex tubes are perpendicular to the red ones
and a conclusion immediately drawn from these visualizations is that vortex tubes at the hierarchy
level (kc = 4kf ) are created by being stretched in larger-scale (kc = kf ) strain fields. This is clearly
demonstrated in Fig. 3(b), which shows the creation process of yellow vortex tubes (at kc = 4kf )
around red tubes (at kc = kf ). The yellow vortices are concentrated in strong straining regions at

1In Refs. [30,31] we used a low-pass filter. Long thin vortices are frequently observed in the vorticity field
low-pass filtered at a large wave number, but they are actually identical to those at larger scales. Low-pass filters
are therefore inappropriate for identifying the hierarchy of vortices.
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FIG. 2. Isosurfaces of the coarse-grained enstrophy in the turbulence driven by (a) f (R), (b) f (V ), and (c)
f (K). The coarse-grained wave number is (a i) and (b i) kc = kf and (c i) kc = √

2kf , (a ii) and (b ii) kc = 4kf

and (c ii) kc = 4
√

2kf , and (a iii) and (b iii) kc = 16kf and (c iii) kc = 16
√

2kf . The threshold of the isosurface
is set at (i) and (ii) 〈m̂〉 + 2〈̂σ 〉 and (iii) 〈m̂〉 + 3〈̂σ 〉. The shown domain is the same as in Fig. 1 at the time (b)
t = 3.3T and (c) t = 1.6T in Fig. 12.

kc = kf around the quadruplet of the red tubes and they align along the stretching direction of the
strain field at kc = kf .

Because the vortices and strain fields at kc = kf are directly created by the external force f (V ), the
above results [Figs. 3(a) and 3(b)] may be expected beforehand. However, an unexpected observation
is found in Fig. 3(c), which shows a cropped part of the left middle region of Fig. 3(b). Looking
at the coarse-grained velocity on a cross section of the created (yellow) vortex tubes, we notice
that the vortex tubes tend to align in an antiparallel manner (i.e., their axes are parallel and their
circulations are in opposite directions). Although details of the shape of vortices depend on the
coarse-grain method, the appearance of antiparallel pairs of vortex tubes is unlikely to be an artifact
of our method. In fact, we observed [30,31] antiparallel pairs of vortex tubes in the coarse-grained
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FIG. 3. (a) Isosurfaces of coarse-grained enstrophy (red, kc = kf ; yellow, 4kf ) with threshold 〈m̂〉 + 2〈̂σ 〉
in the turbulence driven by f (V ). The box size is L3 ≈ (5.4〈L〉)3 ≈ (2200〈η〉)3. (b) Same as (a), but from a
different line of sight. Arrows are the coarse-grained velocity at kc = kf . (c) View from another angle of a
cropped region, shown with a blue frame, of the left center part of (b). Arrows are the coarse-grained velocity
at kc = 4kf .

fields obtained by using low-pass filters, which have a much broader filter width than the bandpass
filters. In addition, employing a sophisticated method (Ref. [42], for example), we may identify
vortex sheets around individual vortex tubes (as demonstrated in Ref. [43] for Kolmogorov-scale
vortices in high-resolution DNSs), but a pair of antiparallel vortex tubes would not be expressed as a
single vortex sheet because they have opposite sign of the coarse-grained vorticity. We will discuss
the generation mechanism of antiparallel pairs of vortices in Sec. III F.

The antiparallel pairs of vortex tubes at the quarter of the forcing length scale (i.e., kc = 4kf ,
yellow vortex tubes in Fig. 3), which are created in strain fields around the largest-scale vortices, also
induce strong strain fields around themselves. Therefore, the creation events of further smaller vortex
tubes are easily found around them. Figure 4(a) is a magnified view around a pair of yellow (kc = 4kf )
vortex tubes in Fig. 3(a). We plot in Fig. 4(c) coarse-grained vorticity vectors in these yellow vortex
tubes to verify that they form an antiparallel pair. Figure 4(a) shows that blue vortex tubes (at
kc = 16kf ) are created by being stretched in the strain field around the antiparallel pair of yellow
tubes, and therefore that they are perpendicular to the pair. Furthermore, Figs. 4(b) and 4(d), which
are further magnifications of Figs. 4(a) and 4(c), show that an antiparallel pair of the blue vortex
tubes stretches and creates further smaller-scale (at kc = 64kf corresponding to L/kc ≈ 25〈η〉)
green vortex tubes. These are clear examples of the perpendicular alignment of vortices at different
scales. However, because vortex tubes at a given scale are stretched simultaneously in strain fields
at larger (more precisely, 2–8 times larger) scales (see Sec. III D), the alignment of fine vortex
tubes is generally complicated and small-scale vortex tubes are not always aligned perpendicular to
nearby twice-larger tubes, for example. We will return to this point in Sec. III D, where we show that
strongly stretched vortices are indeed aligned in the perpendicular direction to larger-scale vortex
tubes with strong vorticity.

Since the largest-scale vortex tubes driven by f (V ) are spatially fixed, we may easily recognize the
hierarchical structure of vortex tubes in the turbulence sustained by f (V ). However, we emphasize
that the tendency of antiparallel alignment of vortex tubes at each hierarchy level is never prescribed
by the force. Indeed, such alignments are observed even at length scales much smaller than the
forcing scale (Fig. 4). Furthermore, antiparallel pairs of vortex tubes are ubiquitous in turbulence
driven by other forces. Examples are given in Fig. 5 for the other two forces f (R) and f (K). In
addition to these observations, we will show statistical evidence of the tendency in Sec. III C.

We emphasize again that the hierarchy is created by vortex stretching. This process seems quite
different from vortex breakups, which are the words sometimes used in an explanation of the energy
cascade. Smaller vortices are created around, rather than inside, larger vortices. In this sense, the
picture suggested by Hussain and co-workers [17,18] is supported by our DNSs. Our finding is that
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FIG. 4. Antiparallel pairs of small-scale vortex tubes and the creation of further smaller-scale levels of
the hierarchy. (a) Isosurfaces of coarse-grained enstrophy (yellow, kc = 4kf ; blue, 16kf ). Magnified view of
a part of Fig. 14(c), which is at a later time of Fig. 3(a), but with the threshold for the yellow isosurfaces
reset as 〈m̂〉 + 4〈̂σ 〉. The box size is 1.4〈L〉 × 0.87〈L〉 × 1.1〈L〉 ≈ 560〈η〉 × 360〈η〉 × 450〈η〉. (b) Magnified
view of the cropped part of (a) in a right top region. The box size is 0.33〈L〉 × 0.37〈L〉 × 0.31〈L〉 ≈
140〈η〉 × 150〈η〉 × 130〈η〉. Green blobs are isosurfaces of coarse-grained enstrophy at kc = 64kf with threshold
〈m̂〉 + 8〈̂σ 〉. (c) and (d) Coarse-grained vorticity vectors in the isosurfaces. The yellow vortex tubes in
(a) and blue tubes in (b) form antiparallel pairs. Only the vectors for kc = 16kf are plotted in (d) for visibility.

not a single vortex tube but pairs of them effectively stretch and create smaller-scale vortices at each
hierarchical level.

C. Quantitative evidence of the antiparallel alignment of vortex tubes

We have only looked at strong vortices in the visualizations in the preceding sections. Let us show
in this section that weaker vortex tubes also tend to form antiparallel pairs. For this purpose, we
identify the axes of vortex tubes at each hierarchy level using the low-pressure method [36,37] and
examine the angular distribution between them. More precisely, we first coarse grain the velocity
field and then solve the Poisson equation to obtain the coarse-grained pressure field, to which we
apply the low-pressure method. We visualize the identified vortex axes in turbulence driven by f (V )

in Figs. 6(a) and 6(b), which correspond to Figs. 3(a) and 4(a), respectively. The axes of both strong
and weaker vortices are well identified at any level of the hierarchy. Comparing these figures, in
particular, looking at the strong vortices identified both by the isosurface (Fig. 3) and by vortex axes
(Fig. 6), we may confirm that our identification of the axis of coarse-grained vortices works very
well. This is not trivial because we may obtain a coarse-grained pressure field by directly bandpass
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FIG. 5. Antiparallel pairs of small-scale vortex tubes in turbulence driven by (a) f (R) and (b) f (K). These
figures are magnified views of Figs. 2(a ii) and 2(c ii), respectively, but the threshold is reset at 〈m̂〉 + 〈̂σ 〉.
Blue blobs are isosurfaces (with the threshold being 〈m̂〉 + 4〈̂σ 〉) of the coarse-grained enstrophy at the
quarter length scale of the yellow vortices. The shown domain size is (a) 0.52〈L〉 × 0.75〈L〉 × 0.84〈L〉 ≈
220〈η〉 × 310〈η〉 × 350〈η〉 and (b) 0.40〈L〉 × 0.44〈L〉 × 0.89〈L〉 ≈ 210〈η〉 × 230〈η〉 × 460〈η〉.

filtering the pressure field instead of solving the Poisson equation with the coarse-grained velocity
field. We have compared the results of the two filtering methods and realized that the present method
is better at capturing details of the coarse-grained vortical structures. The direct pressure filtering
leads to a lower number of identified vortex axes, which are straight and different from the curved
axes shown in Fig. 6. This is because the vorticity reconstructed from the directly filtered pressure
is quite different from the coarse-grained vorticity, which is the target of the present analysis.

To quantitatively verify the tendency of the formation of antiparallel pairs, we evaluate the
probability density function (PDF) of the cosine of the angle θ between the axes at a given coarse-
grained scale. The PDF P (cos θ |r) is conditioned by the distance r between them. More precisely,
we divide each vortex axis into short segments of lengths of the order of the grid width and define
the distance r and the angle θ of each pair of the segments only in the space between the two parallel
planes (S1 and S2 in Fig. 7) that are perpendicular to one (the red one in Fig. 7) of the two segments
at its end points. Then θ is defined as in Fig. 7, while r is estimated by the distance between the
midpoints of the two segments.

The results are plotted in Fig. 8 for the three cases of different external forces. This figure clearly
shows the tendency to form antiparallel pairs (i.e., cos θ = −1) of the vortex axes in a near region

x

z

(a) (b)

FIG. 6. Vortex axes identified using the low-pressure method. (a) Same field as in Fig. 3(a): red, axes of
vortex tubes at kc = kf ; black, stronger (Q̂ > 〈m̂〉 + 2〈̂σ 〉) vortex tubes at kc = 4kf ; gray, weaker vortices at
kc = 4kf . (b) Same field as in Fig. 4(b): black, axes of vortex tubes at kc = 4kf ; blue, stronger (Q̂ > 〈m̂〉 + 4〈̂σ 〉)
vortex tubes at kc = 16kf ; light blue, weaker vortex tubes at kc = 16kf .
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S
1

S
2

θ

FIG. 7. Definition of the angle θ between two vortex axis segments.

0.5
c < r < 0.75
c, with 
c being the coarse-grained scale L/kc. It must be emphasized that this
antiparallel tendency of vortices is independent of the external force. Comparing the three panels in
Fig. 8, it is noticeable that the PDF is almost identical for the three kinds of the forces.

This result not only supports the observation in the previous section, but also indicates that even
weaker vortex tubes tend to align in an antiparallel manner. Incidentally, in the three-times-longer
distance (
c < r < 1.5
c), P (cos θ ) is a constant (≈1/2), implying an isotropic distribution.

The second important observation in Fig. 8 is that the PDF is surprisingly independent of the
coarse-grained scale. Note that the PDF of angles between vortex tubes at different coarse-grained
wave numbers kc are plotted with different colors in Fig. 8. This observation implies a self-similarity
of the hierarchy of vortex tubes. Consistently, we have also verified that the PDF is independent of
〈Rλ〉 (figure is omitted).

To summarize this and the preceding section, the second conclusion of the present paper is that,
at each hierarchy level, vortex tubes tend to form antiparallel pairs and they effectively stretch and
create smaller-scale vortex tubes in strain fields around them. This conclusion is drawn not only
from the visualizations (Figs. 3–5) but also from the statistics of the angle between vortex tubes
(Fig. 8).

D. Scale locality of the stretching

In Sec. III B we have seen that smaller-scale vortex tubes at a hierarchy level are generated by
being stretched in larger-scale strain field. It is therefore important to examine whether or not this
stretching process is local in scale because it is the scale locality of the energy cascade that forms the
basis of the universality of small-scale statistics. In this section we investigate the scale dependence
of those factors that contribute to the stretching. Similar to the coarse-grained vorticity ω̂i(k(ω)

c ),
we define the coarse-grained strain tensor ŝij (k(s)

c ) using the bandpass filter in a wave-number range
[k(s)

c /
√

2,
√

2k(s)
c ]. Then the scale-dependent contributions to the stretching are evaluated using the

following quantity:

G
(
k(s)
c ,k(ω)

c

) =
〈

ω̂i

(
k

(ω)
c

)̂
sij

(
k

(s)
c

)
ω̂j

(
k

(ω)
c

)∣∣ω̂(
k

(ω)
c

)∣∣2

〉
= 〈

g
(
k

(s)
c ,k

(ω)
c

)〉
. (4)

Here the overbar denotes the spatial average and G(k(s)
c ,k(ω)

c ) indicates the contribution to the
stretching of coarse-grained vortices at k(ω)

c from coarse-grained strain at k(s)
c . Note that positive and
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FIG. 8. (a) PDF of the cosine of the angle between vortex axes conditioned by their distance r: solid lines,
0.5
c < r < 0.75
c; dotted, 1.5
c < r < 2.25
c. Here 
c (= L/kc) is the coarse-grained length scale. Results
are for the turbulence (〈Rλ〉 = 390) driven by f (R). Different colors correspond to different coarse-grained
scales: gray, kc = 2kf ; red, 4kf ; blue, 8kf ; green, 16kf ; black, 32kf . The temporally averaged values are
plotted. (b) Results for the turbulence (〈Rλ〉 = 480) driven by f (V ). The temporal average for the coarse-grained
scales at kc = 4kf (gray), 8kf (red), 16kf (blue), 32kf (green), and 64kf (black). The inset shows the PDF
for kc = 16kf at 20 equidistant times along the black trajectory in Fig. 12(a) (see Sec. III E). (c) PDF for the
turbulent Kolmogorov flow (〈Rλ〉 = 490) driven by f (K). The temporal average for the coarse-grained scales at
kc = 4

√
2kf (gray), 8

√
2kf (red), 16

√
2kf (blue), 32

√
2kf (green), and 64

√
2kf (black). The inset shows the

PDF for kc = 16
√

2kf at 20 equidistant times along the trajectory in Fig. 12(b) (see Sec. III E).
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FIG. 9. (a) Contribution of the coarse-grained strain at k(s)
c to the stretching of coarse-grained vortices at

k(ω)
c = 2kf (�), 4kf , (◦), 8kf , (
), 16kf , (�), and 32kf (•) in the turbulence (〈Rλ〉 = 390) driven by f (R). The

larger symbols correspond to self-contribution (k(s)
c = k(ω)

c ). (b) Same as (a) but for the turbulence (〈Rλ〉 = 480)
driven by f (V ) at k(ω)

c = 4kf (�), 8kf (◦), 16kf (
), 32kf (�), 64kf (•), and 128kf (�) (c) Same as (a) but for
the turbulence (〈Rλ〉 = 490) driven by f (K) at k(ω)

c = 4
√

2kf (�), 8
√

2kf (◦), 16
√

2kf (
), 32
√

2kf (�), and
64

√
2kf (•).

negative values of G correspond to the stretch and contraction of the vortices, respectively. Results are
plotted in Fig. 9 for the three different external forces: f (R), f (V ), and f (K). The important conclusion
drawn from this figure is that the strain at the scale that is twice as large as the stretched vortices
contributes most to the stretching. We emphasize that this tendency is independent of both the scale
and the kind of the external force. It is also important that the feature is independent of the Reynolds
number as shown in Fig. 10(a), in which three curves for three different Reynolds numbers collapse.

064603-12



HIERARCHY OF ANTIPARALLEL VORTEX TUBES IN . . .

FIG. 10. (a) Same quantity as in Fig. 9 plotted for the turbulence driven by f (V ) at three different Reynolds
numbers: 〈Rλ〉 = 280 (red), 480 (black), and 750 (blue). The larger symbols correspond to self-contribution
(k(s)

c = k(ω)
c ). (b) Same as (a), but with G and k(s)

c normalized by Q̂(k(s)
c )1/2 and k(ω)

c , respectively. The larger
symbols correspond to k(s)

c = kf .

In a related study, Leung et al. [33] showed that ω̂i(k(ω)
c ) tends to align with the eigenvector of

ŝij (k(s)
c ) with the largest eigenvalue at 3–5 times larger scales than the scale (∼L/k(ω)

c ) of vorticity
ω̂i(k(ω)

c ). This trend is verified by normalizing G(k(s)
c ,k(ω)

c ) using the square root of the coarse-grained
enstrophy Q̂(k(s)

c ) [Fig. 10(b)]. This figure implies that, except for k(s)
c = kf , the alignment between

ω̂i(k(ω)
c ) and the eigenvectors of ŝij (k(s)

c ) is self-similar and the alignment of ω̂i(k(ω)
c ) to the stretching

direction is most pronounced when k(s)
c ≈ k(ω)

c /4 irrespective of k(ω)
c and the Reynolds number.

Looking again at Fig. 9, we notice that G(k(s)
c = 2k(ω)

c ,k(ω)
c ) is negative for k(ω)

c > 4kf . This
implies that vortices at a given scale in the inertial range are contracted by the strain at about half
their scale. Such contraction may be observed in Fig. 3(b) (see also Fig. 13 in Sec. III E), where
the red vortices are weakened in the region where yellow vortices are created probably because of
the contraction in strain fields induced by the yellow vortices. In other words, the balance between the
stretch in larger-scale strains and the contraction in the smaller-scale strains sustains the hierarchy.
Detailed arguments, such as core dynamics analysis [44], are needed to examine this balance more
quantitatively.

The above observation that vortices tend to be created by other vortices about twice as large as
them is consistent with the classical view of the scale-by-scale energy cascade. However, Fig. 9
shows that the scale dependence of the vortex stretching is rather broad and even the contribution
from the scale eight times as large is not negligible. Note in particular that the contribution of the
strain directly driven by the external force (k(s)

c ≈ kf ) can nonlocally affect small-scale vortices.
This relatively broad (in scale) contribution to the stretching is the reason why the alignment

between a vortex tube (for example, the blue vortices in Fig. 14 in Sec. III E) at a given length scale
and larger-scale vortices seems random. Nevertheless, it can be verified that the strongly stretched
vortices do align perpendicular to larger-scale intense vortices. The conditional PDF P̂ (cos θ |r) of
the cosine of the angle θ between two vortex axes at two different coarse-grained wave numbers
k(small)
c and k

(large)
c (<k(small)

c ) is plotted in Fig. 11 for three cases of k
(large)
c , where the turbulence with

f (V ) is examined because the nonlocality of the stretching is most pronounced (Fig. 9) when the
location of the external force is spatially fixed. The PDF P̂ is conditional; that is, we only consider
the angle between the smaller-scale vortex tubes stretched strongly enough [i.e., conditioned by the
stretching rate g(k(large)

c ,k(small)
c ) defined in (4)] and the larger-scale vortices of sufficient intensity [i.e.,

conditioned by the coarse-grained enstrophy Q̂(k(large)
c )]. It is not surprising from the observation in

Fig. 3 that vortices at kc = 4kf (yellow vortices in Fig. 3) tend to be perpendicular (i.e., θ = π/2) to
the largest-scale (red) vortices [the gray curve in Fig. 11(a)]. Because the lifetimes of the largest-scale
vortices are much longer than those of the smaller-scale vortices, this perpendicular alignment to
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FIG. 11. Temporally averaged PDF of the cosine of the angle θ between the vortices at two different coarse-
grained scales k(small)

c and k
(large)
c (<k(small)

c ) with the distance r being 0.35

(large)
c < r < 0.5


(large)
c . Different colors

correspond to different coarse-grained scales for smaller vortices: gray, k(small)
c = 4kf ; red, 8kf ; blue, 16kf ;

green, 32kf ; black, 64kf . The turbulence (〈Rλ〉 = 480) driven by f (V ) is examined. (a) k
(large)
c = kf . The PDF

is conditioned as the stretching rate g(k(large)
c ,k(small)

c ) > 〈m̂〉 and the coarse-grained enstrophy Q̂(k(large)
c ) > 〈m̂〉.

(b) k
(large)
c = 4kf . The PDF is conditioned as g(k(large)

c ,k(small)
c ) > 〈m̂〉 + 3〈̂σ 〉 and Q̂(k(large)

c ) > 〈m̂〉 + 2〈̂σ 〉.
(c) k

(large)
c = 16kf . The PDF is conditioned as g(k(large)

c ,k(small)
c ) > 〈m̂〉 + 4〈̂σ 〉 and Q̂(k(large)

c ) > 〈m̂〉 + 4〈̂σ 〉. The
insets show the PDF without conditions on the stretching rate g and the enstrophy Q̂.

the largest-scale vortices is also observed for smaller scales [Fig. 11(a)] and such an alignment
to largest-scale vortices is observed even without the conditioning based on g and Q̂ [the inset of
Fig. 11(a)]. Conversely, for smaller scales (i.e., larger k

(large)
c ) angles between vortex tubes of different

scales are distributed rather isotropically [the insets of Figs. 11(b) and 11(c)]. However, interestingly,
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FIG. 12. (a) Temporal evolution of the kinetic energy K(t) per unit mass and the dissipation rate ε(t)
of the turbulence driven by the steady force f (V ). The evolution is counterclockwise. The interval between
two successive dots indicates the turnover time T = 〈L〉/〈u′〉 of the largest eddies. The Reynolds number
〈Rλ〉 = 280 (thin red line), 480 (black solid line), and 750 (blue dotted line). (b) Same as (a) but for the
turbulent Kolmogorov flow driven by f (K). The Reynolds number 〈Rλ〉 = 190 (gray dotted line), 310 (thin red
line), and 490 (black solid line).

the perpendicular alignment (θ = π/2) between smaller- and larger-scale vortex tubes is evident,
when the PDF is conditioned on the stretching rate g of the smaller-scale (offspring) vortex tubes
and the enstrophy Q̂ of the large-scale (parent) vortex tubes [Figs. 11(b) and 11(c)]. These results
are consistent with the suggested picture of the sustaining mechanism of the hierarchy of vortex
tubes, because antiparallel pairs of vortex tubes induce intense stretching in their perpendicular
directions. Incidentally, the thresholds of g and Q̂ for the plots in Fig. 11 were chosen by trial and
error to examine the anisotropic alignments because a vortex at given length scale is simultaneously
stretched by vortices at various length scales (Fig. 9) and therefore the scale dependence of the
thresholds is not trivial.

Thus the third conclusion of this paper is that vortices at each hierarchical level are most likely to
be stretched in strain fields around 2–8 times larger vortices. If we assume that this vortex stretching
leads to the cascade of energy to smaller scales, this conclusion supports the classical view of
the scale-by-scale energy cascade. However, the somewhat broad contribution from larger-scale
vortices makes the alignments between vortices at successive scales, in particular at small scales,
rather obscure.

E. Quasiperiodic evolution

Since the energy at a given scale is possessed by vortex tubes at the same scale [30], the scale
locality of vortex creation shown in the preceding section implies that it takes a finite time for
the energy to cascade from the forcing scale to the dissipative scale. This finite-time energy cascade
leads to an interesting phenomenon. Namely, even when turbulence is sustained by a steady force
such as f (V ) and f (K), it evolves quasiperiodically with significant temporal fluctuations. We plot the
temporal evolution of the kinetic energy K(t) per unit mass and its dissipation rate ε(t) in Fig. 12 for
each of steady forces f (V ) and f (K). Their temporal fluctuations are non-negligible. The evolution
is quasiperiodic in the counterclockwise direction in these figures and its period is about 20T for
f (V ) and about 10T for f (K) irrespective of 〈Rλ〉. Here T = 〈L〉/〈u′〉 is the turnover time of the
largest-scale eddies. We emphasize that the observed quasiperiodic behavior is not transient, but lasts
permanently. Since the enstrophy Q(t) is equal to ν−1ε(t), the strong fluctuation of ε(t) indicates
that the activity of small-scale vortices varies significantly in time. On the other hand, since K(t) is
determined by the circulation velocity of the largest-scale eddies, its large fluctuation indicates that
the activity of the largest eddies also varies in time. Because the activity transfers from larger-scale
eddies to those of smaller scales (see Fig. 15 below and Ref. [45] for more detailed analyses), the

064603-15



SUSUMU GOTO, YUTA SAITO, AND GENTA KAWAHARA

(a) (b) (c)

(d) (e) (f)

FIG. 13. Isosurfaces of coarse-grained enstrophy (red, kc = kf ; yellow, 4kf ) with threshold 〈m̂〉 + 2〈̂σ 〉
in the turbulence driven by f (V ). The box size is L3 ≈ (5.4〈L〉)3 ≈ (2200〈η〉)3. Six snapshots on the black
trajectory (〈Rλ〉 = 480) in Fig. 12(a) are shown at (a) t = 0, (b) t = 4.4T , (c) t = 5.5T , (d) t = 11T ,
(e) t = 16T , and (f) t = 22T .

phase of the evolution of ε(t) lags behind that of K(t). This is the reason why the evolution becomes
counterclockwise in Fig. 12. It is worth mentioning that quasiperiodic turbulence behavior driven
by a time-independent force is observed in many flow systems. For example, significant temporal
oscillations over 20 turnover times were experimentally observed by Pinton et al. [46] in the turbulent
von Kármán flow.

The quasiperiodic behavior shown in Fig. 12 can be consistently explained in terms of the
scale-by-scale energy cascade discussed in the previous sections. For this purpose, we plot quasicyclic
evolution [along the black trajectory for 〈Rλ〉 = 480 in Fig. 12(a)] of the isosurfaces of Q̂ for three
different kc in Figs. 13 and 14, where the coloring is the same as in Fig. 2, i.e., the red, yellow, and
blue blobs are isosurfaces of Q̂ at kc = kf , 4kf , and 16kf , respectively. Here kf is the forcing wave
number, which corresponds to the length scale of 
f = L/kf ≈ 3.9〈L〉 ≈ 1600〈η〉.

The temporal evolution (Figs. 13 and 14) of vortex tubes in the turbulence driven by f (V )

is summarized as follows. (i) Around the red vortex tubes created by f (V ), smaller-scale yellow
vortices appear [Figs. 13(a)–13(c)] and then further smaller-scale blue vortex tubes are created
around them [Fig. 14(b)]. (ii) Through this energy cascade to smaller scales, the large-scale red
vortex tubes become quiescent [Figs. 13(c) and 13(d)]. Indeed, around the time [t ≈ 5T ; Figs. 13(c)
and 14(b)] when the small-scale vortices are created, the energy dissipation rate attains its maximum
[see Fig. 12(a)] and K(t) drastically decreases afterward. (iii) Since K(t) (i.e., the source of the
energy cascade) is exhausted, the entire system consequently becomes quiescent [Figs. 13(d) and
14(c)]. (iv) When the activity at small scales declines, the energy input due to the force dominates
and the red large-scale vortex tubes are reproduced [Figs. 13(e) and 13(f)]. Because of this cyclic
behavior of strong vortex tubes, K(t) and ε(t) evolve quasiperiodically [Fig. 12(a)].
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(a) (b) (c)

FIG. 14. Isosurfaces of coarse-grained enstrophy (yellow, kc = 4kf ; blue, kc = 16kf ) with threshold
〈m̂〉 + 2〈̂σ 〉 in a (1/2)3 part of Fig. 13 at (a) t = 0, (b) t = 5.5T , and (c) t = 11T .

To quantitatively verify that the quasiperiodic evolution of K(t) and ε(t) is related to the successive
creation of vortices at different length scales, we plot the temporal evolution of the spatial average
of coarse-grained enstrophy at three different length scales by three thick dotted lines in Fig. 15(a).
The values in the figure are normalized by the temporal average and standard deviation so that we
can see the time lags between the activity of vortices at the different scales. It is evident that the
smaller-scale activity lags behind the larger-scale one and the time lag becomes shorter for smaller
scales. This is consistent with the picture that smaller-scale vortices are created by being stretched
by 2–8 times larger-scale vortices (Sec. III D) because the strain rate is larger at smaller scales.
The black thin line in Fig. 15(a) shows the energy input rate �(t), which evolves together with
the activity of the largest-scale vortices. The energy dissipation rate ε(t), which evolves together
with the smallest-scale vortices, therefore lags behind �(t) with the cascading time (that is about
5T in this case with the external force f (V )). This is the reason why �(t) and ε(t) evolve in the
counterclockwise direction in Fig. 15(b), in which three curves for three different Reynolds numbers
are plotted. The period of the cycles shown in Figs. 12(a) and 15(b) is approximately independent
of the Reynolds number. This is also consistent with the picture that the cyclic behavior is caused
by the scale-by-scale energy cascade.

Similarly, quasiperiodic evolution [Fig. 12(b)] of K(t) and ε(t) of the turbulent Kolmogorov flow
corresponds to cyclic behavior of the activity of vortices (Fig. 16). When a pair of red energetic
vortex tubes is established [Fig. 16(b)], smaller-scale yellow vortex tubes are created perpendicular
to them [Figs. 16(b) and 16(c)]. Accordingly, further smaller-scale vortex tubes are created (figure
is not shown), the energy dissipation rate becomes large [see Fig. 12(b)], and the entire system
becomes quiescent [Fig. 16(d)]. Afterward, the external force creates large-scale vortex tubes again
[Fig. 16(e)]. Thus, in both cases with f (V ) and f (K), such successive creations of vortices lead to
the quasiperiodic behavior shown in Fig. 12.

It is also interesting to observe that despite the strong temporal fluctuations (Fig. 12) of K(t) and
ε(t) the statistics of the alignment between vortex tubes at a given length scale are steady. Evidence
is given in the insets of Figs. 8(b) and 8(c), which show that the conditional PDF P (cos θ |r)
is surprisingly time independent. This contrasts with the fact that the strength of the vortices
significantly depends on time (Fig. 12) and implies that a continuous energy transfer may be
sustained by these background vortices. This result reinforces the conclusion in Sec. III C that
not only conspicuously strong vortices, but also weaker background vortices tend to align in an
antiparallel manner at each level of the hierarchy.

The fourth conclusion of this paper is that, because it takes a finite time to transfer the energy
from the forcing scale to a dissipative scale due to the scale-by-scale creation of vortices, turbulence
driven by a steady force evolves quasiperiodically.
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FIG. 15. (a) Time lags in the spatial average of the coarse-grained enstrophy Q̂ at three different length
scales (black dotted line, kc = kf ; red dotted line, 2kf ; blue dotted line, 4kf ), the energy input rate �(t) (black
thin line), and the dissipation rate ε(t) (blue thin line) of the turbulence (〈Rλ〉 = 480) driven by f (V ). Brackets
〈〈·〉〉 denote the normalization by the temporal mean and standard deviation. (b) Cyclic evolution of �(t) and
ε(t) of the turbulence driven by f (V ) at three different values of the Reynolds number. The Reynolds number
〈Rλ〉 = 280 (thin red line), 480 (black solid line), and 750 (blue dotted line).

F. Generation process of antiparallel pairs of vortex tubes

Before closing the paper, we investigate the generation process of antiparallel pairs of vortex
tubes in detail. Figure 17 shows the temporal evolution of vortices with a shorter time interval
(≈0.27T ) in a cropped region of Fig. 13. As demonstrated in this figure (see also Ref. [47]), the
yellow vortex tubes in Fig. 13 hardly move from the beginning of their creation. In this region,
there exists a large-scale straining field in the x direction in front of the red vortex tube shown in
Fig. 17 (i.e., between the pair of red vortex tubes shown in Fig. 13). This is the reason why so many
yellow (quarter-sized) vortex tubes parallel to the x direction are created. For example, let us look at
the yellow antiparallel pair P1 at time t = 2.74T . This pair grows together from t ≈ 2.2T and this
process seems similar to the schematic in Fig. 14(b) of Ref. [18], drawn as a process of smaller-scale
vortex creation around a single large vortex tube (see also Ref. [48] for an update of their view).
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FIG. 16. Isosurfaces of coarse-grained enstrophy (red, kc = √
2kf ; yellow, 4

√
2kf ) with threshold 〈m̂〉 +

2〈̂σ 〉 in the turbulence driven by f (K). The box size is L3 ≈ (4.2〈L〉)3 ≈ (2200〈η〉)3. Five snapshots on the
black trajectory (〈Rλ〉 = 490) in Fig. 12(b) are shown at (a) t = 0, (b) t = 3.3T , (c) t = 4.9T , (d) t = 7.4T ,
and (e) t = 11.5T . Upper figures are side views and lower ones are top views.

Another example of the creation of yellow antiparallel vortex pairs (P2 and P3 at t = 4.10T ) is the
following: At t ≈ 3.3T , a counterrotating vortex tube (V2) emerges next to the vortex marked by
V1 and then at t ≈ 3.8T another vortex tube (which is counterrotating to V2) is created to form P3.
Such successive creations of vortex tubes in the neighborhood of an intense vortex are frequently
observed. These observations imply that several smaller-scale vortex tubes are stretched together

P1
P1P1

P2

P2

P3

V1 V2

V2

1.37T 1.64T 1.91T 2.19T 2.46T 2.74T

3.01T 3.28T 3.56T 3.83T 4.10T 4.38T xy

z

FIG. 17. Same as Fig. 13, but only a cropped region is shown with a shorter time interval (0.27T ). A
supplemental movie is also available in Ref. [47].
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FIG. 18. Averaged PDF of the cosine of the angle θ between the axes of newly formed vortices and
those surrounding them with the distance r being 0.5
c < r < 0.75
c for four different kc. The results are for
turbulence at 〈Rλ〉 = 200 driven by f (V ). The same coloring is used as in Fig. 8(b) for kc = 4kf , 8kf , 16kf ,
and 32kf .

in a single larger-scale strain field. This is the main cause of the formation of antiparallel pairs of
smaller vortex tubes. It is also evident in Fig. 17 that the lifetime of individual smaller-scale (yellow)
vortices is too short for the self- and mutually induced advection observed in the collapse of vortex
filaments [38] to form antiparallel pairs.

To quantitatively verify the observation that the vortex pairs are not formed by their approach
to one another, we track the identified vortex axes backward in time to determine the time of their
births. Then the PDF P (cos θ |r) is evaluated between the newly formed vortex tubes and those
surrounding them at a distance r at the time of their birth. The result is shown in Fig. 18, which is
almost identical to the PDF in Fig. 8 for the angle θ between all vortices at various ages. This result
is consistent with the above conclusion that antiparallel vortex tubes are formed from the beginning
of their creation.

Thus the fifth conclusion of this paper is that vortex tubes created in larger-scale strain fields tend
to form antiparallel pairs from their birth.

IV. CONCLUSION

Turbulence at sufficiently high Reynolds numbers in a periodic cube is composed of a self-similar
hierarchy of antiparallel pairs of vortex tubes with various radii and lengths. It has been verified by
visualizations (Figs. 3–5) and by statistical analyses (Fig. 8) that vortex tubes at a hierarchy level
tend to form antiparallel (i.e., counterrotating) pairs. The distribution (Fig. 8) of angles between
vortex axes is independent of the type of external forces. The hierarchy of vortex tubes is sustained
by creation of smaller-scale vortices due to stretching in larger-scale strain fields. This sustaining
mechanism of a hierarchy of vortices was predicted by previous authors (see, for example, Ref. [18])
and our DNSs have updated it. Since antiparallel pairs of vortices induce stronger strains than
single vortices, larger-scale paired vortices more effectively create smaller-scale vortices around
them (Figs. 3–5, 19, and 20). The sustaining mechanism of the hierarchy is also supported by
our statistical analysis showing that strongly stretched vortex tubes tend to align in the direction
perpendicular to larger-scale intense vortex tubes (Fig. 11). Concerning the generation mechanism
of antiparallel pairs, visualizations (Fig. 17 and Ref. [47]) and statistical analyses (Fig. 18) show
that vortex tubes at a given length scale form antiparallel pairs from their birth. This is because
antiparallel pairs of smaller-scale vortex tubes are created together by a single larger-scale strain
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under the constraint of angular momentum conservation. Although we could not identify a concrete
mechanism of creation of antiparallel vortex pairs in our previous studies [30,31], the above results
on the basis of the tracking of individual vortices show that Siggia’s mechanism [38] is irrelevant for
their formation. In other words, our prediction depicted in Fig. 6(a) of Ref. [31] is wrong. Instead,
we have demonstrated in Fig. 17 that smaller-scale antiparallel pairs of vortices are created through
a process similar to the schematic in Fig. 14(b) of Ref. [18], though the process is observed around
paired, rather than single, vortices in our DNSs.

One of the most important conclusions of this paper is that strain fields at the scale twice as large
as the stretched vortex is the strongest contributor to the stretching and creation of smaller-scale
vortices, but even strain at the scale eight times as large can contribute (Fig. 9). This feature is
also independent of the external forcing. The observed scale locality of the vortex stretching is
consistent with the locality of energy transfer in wave-number space predicted using closure theories
[49] and examined using DNSs [14–16]. Recall that the creation of smaller-scale vortices is related
to energy transfer to smaller scales [27,30,31]. Indeed, we have verified that the observed intense
cascade events cause energy transfer in wave-number space [45]. This scale-local energy cascade is
the cause of another interesting phenomenon that the turbulence driven by the steady forces is not
steady and that the activity of vortices at each hierarchy level evolves quasiperiodically (Fig. 12).
In contrast, the angle distribution between the vortex axes is steady [insets of Figs. 8(b) and 8(c)].
This implies that, while weak background vortices sustain the mean energy cascade, the successive
creation of strong vortices (Figs. 13, 14, and 16) leads to the significant temporal fluctuation.

A key concept in the present paper is the formation of antiparallel vortex tubes. The creation
of antiparallel pairs of smaller vortex tubes perpendicular to larger vortices is frequently observed
in various flow systems, for example, in mixing layers [50], in the wake behind a cylinder [51],
and in the wake behind a flat plate [52]. Interestingly, Moisy and Jiménez [53] observed antiparallel
spiraling structures of intense vortices, which seem to be located within a core of a large-scale vortex.
The core dynamics [44,54,55], therefore, may be important also in the formation of antiparallel pairs
of vortices, although we have paid attention only to strain fields outside of large-scale vortices (see
also the Appendix). It is also worth mentioning that an antiparallel pair of orthogonal vortices (such
as bridges) plays an essential role in vortex reconnections (see Ref. [56] and references therein) and
Hussain and co-workers [17,54] suggested that vortex reconnections could lead to successive energy
cascade from larger to smaller scales.

Thus we have successfully drawn a concrete picture of the hierarchy of antiparallel vortices in
spatially periodic turbulence and explained its generation mechanism in terms of vortex stretching.
However, there also remain some future works. First, it is not clear how the picture of a hierarchy of
vortices and the mechanism of energy cascade are related to the Kolmogorov scaling in the inertial
range. Second, although we have carefully examined the suggested picture of the hierarchy, we
cannot fully exclude other possibilities because the picture may depend on the coarse-grain and
identification method of coherent vortices. Recalling that details of the shape of the smallest-scale
vortices depend on numerical resolutions [43], the shape of coarse-grained vortices can depend on
filtering methods. Although in our analysis we have not observed structures similar to Lundgren’s
spiral [19], Horiuti and Fujisawa [21] reported spiral structures in spatially periodic turbulence,
though at lower Reynolds numbers, by using a different identification method of coherent vortices.
It would therefore be interesting to compare their method with ours in higher-Reynolds-number
turbulence. Third, we have not developed arguments on the instability of the elements of the
hierarchy of vortices. We have shown that smaller-scale vortices are created by being stretched in
strain fields around larger-scale vortices. It is therefore reasonable to assume that the time scale of
the creation of these smaller-scale vortices is proportional to the reciprocal of the strain rate at the
larger scale. To complete the scenario of the energy cascade, we need to show that the time scale
of the decay of larger-scale vortices is longer, at least in the prefactor, than that of the creation
of smaller-scale vortices. Although our flow visualizations suggest that this is indeed the case, we
need to identify the instability and estimate its growth rate for more quantitative arguments. Such a
theoretical investigation is likely to lead to deeper understanding of the dynamics and statistics of
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the energy cascade and may give us useful information on the first problem mentioned above. For
this purpose, the circulation of vortices is essential because it controls their instability. It is therefore
an important future study to estimate circulations of individual vortices at each level of hierarchy
by extending our technique of the identification of scale-by-scale vortex axes. Fourth, although we
have restricted ourselves to the case of spatially periodic turbulence sustained by an external force,
an important avenue of future study would be to examine the universality of the observed hierarchy
in various turbulent flows. In particular, it is interesting to examine whether or not the hierarchy
observed in the forced turbulence is altered in decaying turbulence in a periodic cube. Another
immediate target may be the wall-bounded turbulence (see a review by Jiménez [57]), since it is
possible to conduct DNS of turbulence in a channel, for example, at sufficiently high Reynolds
numbers to be accompanied by both the power-law energy spectrum and the logarithmic-law mean
flow velocity.

ACKNOWLEDGMENTS

This work was partly supported by JSPS Grants-in-Aid for Scientific Research No. 25249014,
No. 26630054, and No. 16H04268. The DNSs were conducted with the support and under the
auspices of the NIFS Collaboration Research programs (NIFS13KNSS043 and NIFS15KNSS066).

APPENDIX: CLUSTER OF WORMLIKE VORTICES

Figure 1 shows that the isosurfaces of enstrophy exist intermittently in space and they form
clusters. Similar clusters of the wormlike vortices are observed at much higher Reynolds numbers
[58]. One might imagine that the clusters of the smallest-scale vortices correspond to larger-scale

x

z

(a) (b) (c)

(d) (e)

FIG. 19. Black objects are isosurfaces of enstrophy in the turbulence (〈Rλ〉 = 390) driven by f (R). (a) Same
as Fig. 1 but from another line of sight. (b)–(e) Colored objects are isosurfaces of enstrophy coarse grained at (b)
kc = kf (threshold is 〈m̂〉 + 2〈̂σ 〉), (c) kc = 4kf (〈m̂〉 + 2〈̂σ 〉), (d) kc = 16kf (〈m̂〉 + 3〈̂σ 〉), and (e) kc = 64kf

(〈m̂〉 + 5〈̂σ 〉). The size of the shown cube is (L/2)3 ≈ (3.5〈L〉)3 ≈ (1500〈η〉)3.
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FIG. 20. Magnified views of a cropped region (shown with the blue frame) in Figs. 19(a), 19(d), and 19(e),
respectively. The size of the shown cube is (L/8)3.

vortices and such multiple-scale clusters of the smallest-scale vortices compose a hierarchy of
multiple-scale vortices. However, this seems not to be the case. As was recognized by several
authors [30,33], a larger-scale vortex is not necessarily composed of a cluster of wormlike vortices.
In this Appendix we show evidence of this in the case of the turbulence driven by f (R), but the
shown results are independent of the kind of the external force.

Figure 19(a) is another view of Fig. 1(a). There are voids of the wormlike vortices in the left upper
and right upper regions in this figure. As shown in Fig. 19(b), where we plot isosurfaces (red blobs)
of the enstrophy coarse-grained at kc = kf , the largest-scale vortices exist in these voids (rather than
clusters) of the wormlike vortices. Furthermore, it is evident in Fig. 19(c) that yellow vortices at the
scale kc = 4kf , which corresponds to a quarter of the scale of the red vortices, are also in the void
regions of the black isosurfaces of the enstrophy.

We plot in Figs. 19(d) and 19(e) smaller-scale vortices. The purple blobs in Fig. 19(e) are
isosurfaces of the coarse-grained enstrophy at kc = 64kf . This figure and its magnified view,
Fig. 20(c), show that purple vortices coincide well with wormlike vortices [Figs. 19(a) and 20(a)].
This is reasonable because kc = 64kf corresponds to the length scale 17〈η〉, which is approximately
the smallest length scale in this turbulence. Figure 19(d) shows the vortices at an intermediate length
scale between yellow ones in Fig. 19(c) and purple ones in Fig. 19(e). In this global view [Fig. 19(d)],
blue vortices at kc = 16kf exist in the regions where the wormlike vortices also exist. However, we
see in a magnified view [Fig. 20(a)] that a considerable number of black vortices are located around
blue larger vortices. For example, in the left region of Fig. 20(b), there is a pair vortex tubes, which
are counterrotating, and black vortices exist along the direction of the stretching around the pair.
This observation is consistent with the mechanism of vortex creations described in the main text
(see Sec. III B). Incidentally, we also observe the cases that a few black vortices are located within
a blue vortex. Although similar observations that a larger vortex seems to be composed of a cluster
of a few wormlike structures were reported by previous authors [53], the majority of smaller-scale
vortices exist around larger-scale vortices, the hierarchy cannot be a nested structure of vortices.

To summarize this Appendix, the hierarchy of vortices in the inertial range is not composed of
clusters of the wormlike vortices. Large-scale vortices exist in their voids rather than in their clusters.
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