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We investigate the scaling of the velocity structure function tensor Dij (r,z) in high
Reynolds number wall-bounded turbulent flows, within the framework provided by the
Townsend attached eddy hypothesis. Here i,j = 1,2,3 denote velocity components in the
three Cartesian directions, and r is a general spatial displacement vector. We consider
spatial homogeneous conditions in wall-parallel planes and dependence on wall-normal
distance is denoted by z. At small scales (r = |r| � z) where turbulence approaches local
isotropy, Dij (r,z) can be fully characterized as a function of r and the height-dependent
dissipation rate ε(z), using the classical Kolmogorov scalings. At larger distances in the
logarithmic range, existing previous studies have focused mostly on the scaling of Dij for
r in the streamwise direction and for the streamwise velocity component (i = j = 1) only.
No complete description is available for Dij (r,z) for all i,j , and r directions. In this paper
we show that the hierarchical random additive process model for turbulent fluctuations in
the logarithmic range (a model based on the Townsend’s attached eddy hypothesis) may
be used to make new predictions on the scaling of Dij (r,z) for all velocity components
and in all two-point displacement directions. Some of the generalized scaling relations
of Dij (r,z) in the logarithmic region are then compared to available data. Nevertheless, a
number of predictions cannot yet be tested in detail, due to a lack of simultaneous two-point
measurements with arbitrary cross-plane displacements, calling for further experiments to
be conducted at high Reynolds numbers.
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I. INTRODUCTION

The most basic statistical characterization of turbulence structure is encoded in the two-point
correlation or two-point structure functions of the turbulent velocity field. At small scales, with
displacements in the inertial range of turbulence, a universal form is available from the Kolmogorov
scaling [1,2]. In wall-bounded flows, at scales comparable to the distance from the wall in the
logarithmic region, very significant deviations from local isotropy develop. We lack a suitably general
description of anisotropic energy containing motions, and the present work is devoted to this topic.

Wall-bounded flows, particularly flows at high Reynolds numbers, have been the subject of
sustained research efforts (see, e.g., Refs. [3–5] for reviews), and predictive reduced-order models
are extensively available in the literature [6–14]. A fairly established conceptual model for high
Reynolds number wall-bounded turbulent flows is the Townsend attached eddy model [6], in which
the logarithmic region is modeled as a collection of self-similar, wall-attached eddies, whose sizes
scale with their distance from the wall (see Fig. 1). Despite its simple form, this model has been
quite useful. Invoking the attached eddy hypothesis, not only can the logarithmic scaling of the
mean velocity profile be derived, but Townsend [6] also derived the logarithmic scalings for 〈u2〉 ∼
log(δ/z), 〈v2〉 ∼ log(δ/z), where u and v are the velocity fluctuations in the streamwise and spanwise
directions, δ is an outer length scale, and z is the wall-normal coordinate. To date, these two
generalized logarithmic scalings have received considerable empirical support [15–19]. The attached
eddy picture also permits scaling laws including 〈�u2〉 ∼ log(rx/z), 〈u(x)u(x + rx)〉 ∼ log(δ/rx),
which have been confirmed recently in de Silva et al. [20] and Yang et al. [21], respectively. Here
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FIG. 1. Conceptual schematic diagram of the attached eddy model of high Reynolds number turbulent
boundary layer flows. The number of visible eddies on a vertical cut doubles as the sizes of the eddies halve.
An attached eddy affects the shaded region. A realization of the velocity fluctuation at a generic point in the
flow field is given by a superposition of the velocity fields associated with the attached eddies within which
the generic point locates. Inclination of the attached eddies leads to a lag in the velocity signal between two
wall-normal locations, as indicated in the sketch.

�u = u(x + rx) − u(x), rx is a streamwise displacement and x is the streamwise coordinate. In
addition to these logarithmic scalings, the k−1

x spectrum in the logarithmic region is also a direct
consequence of the presence of wall-attached eddies [22]. More recently, the attached-eddy model has
been extended to account for more detailed observations, including wake effects and eddy clustering
phenomena (see, e.g., Refs. [7,8]), as well as logarithmic scalings of higher order moments [20,23].

More generally, the statistics of turbulent flows are fully specified by all N -point M-order
correlation functions [24], or equivalently, the related structure functions. Structure functions were
found to be particularly useful for studying homogeneous isotropic turbulence, where an exact
relation holds connecting the third-order structure function to the second order as a function of the
dissipation rate [1]. Furthermore, we remark that knowledge of the scalings of the structure functions
can be used to provide estimates on the coarse-grained velocity gradients, subfilter stresses, and
higher order subscale cumulants [25–27], which has implications for subgrid-scale modeling and
large-eddy simulations, where eddies of any particular scale in wall units become more and more
subgrid (unresolved) as the Reynolds number increases. Moreover, a second-order spatial statistical
description can be leveraged to model the full spatio-temporal structure [28,29] of the flow.

In this work we consider the two-point, second-order structure function defined as

Dij (x,r) = 〈(ui(x + r) − ui(x))(uj (x + r) − uj (x))〉. (1)

For incompressible homogeneous isotropic turbulence, this tensor could be fully specified with a
scalar function DLL(r) (the longitudinal structure function) [2,24], which in turn only depends
on r and the mean rate of dissipation ε in the inertial range (with the formula being Dij =
DLLδij + r/2∂DLL/∂r(δij − rirj /r2), where δij is the second-order identity tensor). The local
isotropic behavior is expected to hold in wall-bounded turbulence for displacements much smaller
than the height z above the wall [20,30–32]. As the dissipation in the logarithmic region can
be evaluated assuming equilibrium between production and dissipation, the z dependence of the
longitudinal structure function is encoded in ε(z) ∼ u3

τ /z. On the other hand for displacements
larger than the height (r > z), i.e., for the energy-containing and momentum-transporting motions,
turbulence becomes anisotropic and inhomogeneous so that simplifications associated with isotropy
are not possible, and the specification of the second-order structure functions becomes less simple.

Structure functions in wall-bounded flows have been considered from a theoretical viewpoint
by Hill [33] and Cimarelli et al. [34] as part of derivations of a generalized Kolmogorov equation
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allowing for nonhomogeneity and anisotropy. From an experimental viewpoint, structure functions
have been studied in recent works by Davidson [32] and de Silva et al. [20]. These prior efforts have
focused primarily on the streamwise direction, i.e., the special case r = (rx,0,0) and i = j = 1.

The attached eddy model for energy containing motions in wall-bounded flows is analogous [35]
to the eddy hierarchy cascade models for isotropic homogeneous turbulence [2]. It describes the
statistical structure of turbulent motions in a given range by providing a method for calculating
statistics based on randomly distributed wall-attached, momentum-transferring eddies with a chosen
characteristic eddy shape, and a prescribed density depending on distance to the wall. As a result
it allows for scaling predictions over a certain range of scales in wall-bounded turbulence. While
previously, only scalings of the streamwise velocity component with streamwise displacements were
considered in the attached eddy model, predictions can also be made for other velocity components
included in other Reynolds stresses, as shown in Refs. [7,8]. However, for structure functions in
arbitrary directions and for all three velocity components, scaling predictions have not yet been
established based on the attached eddy model. Given the success of the model in the context of
streamwise statistics, it is of interest to extend scaling predictions to other directions and velocity
components. This is the main objective of the work presented here.

We develop predictions on the scalings of the full structure function tensor Eq. (1), for x in the
logarithmic region and for relevant ranges of the two-point displacement r such that x + r is also
in the log region (see Ref. [36] for detailed discussion on the extent of the log region). ui , uj are
the velocity fluctuations in xi , xj directions; i,j = 1,2,3. We first consider the full specification of a
general second-order structure function under the specific conditions that the wall-normal coordinate
is denoted by a unit vector ẑ, and the direction of the free stream velocity is given by a unit vector û.
Because of the translational symmetry on wall-parallel planes, the dependency of Dij on x is reduced
to z = x · ẑ, where z is the wall-normal component of x. The two-point displacement vector r may
be in any direction. In general, the symmetric, x̂, ẑ, and r-dependent tensor Dij may be expressed as

Dij (r,z) = D11(rx,ry,rz,z)ûi ûj + D12(·)(ûi t̂j + ûj t̂i) + D13(·)(ûi ẑj + ûj ẑi) + D22(·)t̂i t̂j
+D23(·)(t̂i ẑj + t̂j ẑi) + D33(·)ẑi ẑj , (2)

where t̂ = ẑ × û (unit vectors û and ẑ are orthogonal), û, ẑ, and t̂ form a rectangular coordinate
system, D11, D12, D13, D22, D13, and D33 are scalar functions of z, rx = r · û, ry = r · t̂, rz = r · ẑ
and the friction velocity uτ (or magnitude of the free-stream velocity). As Dij is symmetric under
coordinate system reflection, terms depending on t̂ have to vanish, i.e., D12 = D23 = 0. Note that
according to the theory of homogeneous tensors, a symmetric tensor that depends on three vector
(ẑ, û, r) takes the form

Dij (r,z) = fδδij + fuuûi ûj + fzzẑi ẑj + frr r̂i r̂j + fur
1
2 (ûi r̂j + ûj r̂i) + fuz

1
2 (ûi ẑj + ûj ẑi)

+ fzr
1
2 (ẑi r̂j + ẑj r̂i), (3)

where the f are scalar functions of a number of scalar quantities that can be formed from the vectors
r, û, ẑ and the distance z. As a constraint in this problem, the vectors û and ẑ are perpendicular to each
other, introducing additional conditions. Since the above general tensor requires the specification of
seven instead of four scalar functions [as in Eq. (2)], we opt to use Eq. (2).

Throughout the paper, we denote x1, x2, x3 as the streamwise, spanwise, and wall-normal
coordinates, respectively; we interchangeably use u, v, w for the velocity fluctuations in the
streamwise, spanwise, and wall-normal directions; x, y, z are interchangeably used for x1, x2, x3. As
stated above, the displacement r = (

rx,ry,rz

)
, and rz > 0. In this paper, velocities are normalized by

the friction velocity uτ , and normalization with viscous length scale ν/uτ (where ν is the kinematic
viscosity) will be indicated by a + superscript. We consider only velocity fluctuations. As mentioned
before, prior work has focused mostly on the dependence of D11 upon rx . As can be seen above, for
the full specification of the generalized structure function, we also require expressions for the scalar
functions D22, D33, and D13, all as functions of (rx,ry,rz,z). As shown by Hill [33], incompressibility
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imposes the following constraint on the structure function:

∂Dij (r,z)

∂rj

= 1

2

∂

∂x3
〈[ui(x + r) + ui(x)][u3(x + r) − u3(x)]〉, (4)

which involves moments other than the structure functions themselves, and thus we will not exploit
incompressibility as a useful constraint.

In Sec. II, we summarize the hierarchical random additive process as a model for wall-bounded
turbulent velocity fluctuations in the logarithmic range and in Sec. III show how it can be used to
make predictions about the general scaling of these functions. We will invoke the simplest possible
modeling assumptions and state the resulting specific predictions. We will then attempt to verify
the predicted trends in Sec. IV. Several of the required measurements are available only from DNS
at moderate to intermediate Reynolds numbers so the discussion in Sec. IV cannot be considered
conclusive. We leave open the possibility that once measurements become available at high Reynolds
numbers, the various simplifying assumptions made in the simplest version of the proposed model
may need further refinement.

II. THE HIERARCHICAL RANDOM ADDITIVE PROCESS (HRAP) MODEL

The HRAP is a simplified version of the Townsend attached eddy model, in which the eddy-
induced velocity fields are modeled as random addends. The wall-parallel velocity components at
a wall-normal distance z include additive contributions from eddies whose heights are greater than
z. Conversely, for the wall-normal component, the contributions from large eddies whose heights
are greater than z are severely blocked by the presence of the wall, and only contributions from
eddies of a size comparable to z count. Accordingly, the HRAP formalism models the instantaneous
streamwise and spanwise velocity fluctuations at a given position and height z as a result of random
additive processes according to

u =
Nz∑
i=1

ai, v =
Nz∑
i=1

bi. (5)

A random addend ai (or bi) represents the velocity increment in u (or v) due to an attached eddy
of height ∼δ/2i , where δ is the height of the largest wall attached eddy that the boundary layer can
admit (typically on the order of the outer boundary layer thickness). The instantaneous wall-normal
velocity fluctuation is modeled as the negative of the last addend in the construction leading to u:

w = −aNz
. (6)

This last step ensures a negative correlation so that the mean momentum flux is constant in the log
region:

〈uw〉 =
Nz∑
i=1

〈aiaNz
〉 = −〈

a2
Nz

〉 = −〈a2〉. (7)

A notional attached eddy is sketched in Fig. 2 and a top view of the modeled flow field is sketched
in Fig. 3. By relating ai with an attached eddy of height δ/2i , we have discretized the boundary layer
logarithmically in the wall-normal direction. The base 2 is arbitrary but convenient and is chosen for
consistency with Ref. [37]. We now make an additional geometric assumption about the aspect ratio
of the wall-attached eddies. We assume that wall-attached eddies at a height h may be characterized
by lengths lx and ly in the streamwise and spanwise directions, respectively. Therefore, an attached
eddy of height h affects two points which lie nominally within the lx × ly area of influence (cf. Fig. 2).
Let us further denote the aspect ratio R = ly/ lx as a given, z-independent geometric constant (for
empirical evidence for geometric self-similarity in the logarithmic region, see, e.g., recent detailed
analyses of DNS by del Álamo et al. [38]). In other words, two points such that z < h, z + rz < h,
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FIG. 2. Conceptual sketch of a notional attached eddy of height z. This eddy extends and affects an area
of lx × ly (in x × y plane). The inclination angle of this eddy is θ . lx = z/ tan(θ ). Define R = ly/ lx to be
the aspect ratio, it follows that ly = Rz/ tan(θ ). Because of the assumed similarity, R, θ are z-independent
geometric constants.

rx < h/ tan(θ ), ry < Rh/ tan(θ ) share all addends from eddies of height greater than h. Such a
compact representation of eddy-induced velocity fluctuations allows us to make predictions on the
scalings of various flow statistics in the logarithmic region, where the eddies are self-similar, and
the random addends ai are statistically identical, as are the addends bi (see Refs. [23,39] for detailed
discussion).

We assume that large-scale eddies do not directly interact with small-scale eddies, and that ai ,
aj , i �= j are statistically independent (so are bi , bj , i �= j ). ai and bi are therefore independent
random variables, each of which are identically distributed (but ai and bi possibly have different
distributions). Neglecting interscale interactions (or interactions among different heights) must be
here considered as a first approximation. Amplitude modulation effects [40,41] observed in the
vicinity of the wall have not yet been explored in detail among scales and eddies in the log region.
To the degree that they occur, these can be considered as a higher-order corrections to the simplest
approximation made here of assuming independence. Furthermore, amplitude modulation is an
important process for odd-order statistics, but for second-order statistics, accounting for the effects
of modulation or not does not make a significant difference [42]. At a distance z from the wall, the
influence of an attached eddy of size � z becomes negligible, and therefore the number of random
addends in Eq. (5) can simply be obtained by integrating the eddy population density P (z) ∼ 1/z

FIG. 3. Top view of the modeled wall-bounded flow showing a random superposition of notional wall
attached eddies. Wall eddies tend to be stretched in the flow direction. Because eddy population density is
inversely proportional to the wall-normal distance, the number of observable eddies on an x-y plane quadruples
as the sizes of the eddies halve. Wall-attached eddies of different sizes are colored differently.
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from z to δ, leading to

Nz ∼
∫ δ

z

P (z) ∼ log(δ/z). (8)

As an example of possible applications of the HRAP model, we compute 〈u2〉, 〈v2〉. Squaring both
sides of Eq. (5) leads to

〈u2〉 = Nz〈a2〉 ∼ log(δ/z) = A1 log(δ/z) + B1,
(9)

〈v2〉 = Nz〈b2〉 ∼ log(δ/z) = A1,v log(δ/z) + B1,v,

recovering the logarithmic scaling for 〈u2
z〉 and 〈v2

z 〉. Here, A1, A1,v , B1, and B1,v are constants.
The value of A1, the Townsend-Perry constant, has been determined empirically, yielding A1 ≈
1.2–1.3 [36]. In this work, Eqs. (5), (6), and (8) are used to provide estimates for all scalar functions
in Eq. (2).

III. SCALING OF GENERAL TWO-POINT STRUCTURE FUNCTIONS

We begin by defining the “associated eddy height” corresponding to particular (specified)
horizontal displacements rx and, separately, ry . Specifically, we define

zrx = |rx | tan(θ ), zry = |ry |
R

tan(θ ). (10)

The height zrx is the minimum height of an eddy that can simultaneously affect two points with a
displacement rx only in the streamwise direction. In other words, two points separated by a distance rx

can be affected only by an eddy with a height greater than zrx . Similarly, for displacements only in the
transverse direction ry , zry is the height corresponding to an eddy of x-direction length ry/R. For now
we are assuming these two heights are smaller than δ. For arbitrary displacements rx and ry , we define

zc = min{max[|rx |,|ry |/R] tan(θ ),δ}, (11)

which is the minimum height of an eddy that simultaneously affects two points at a distance rx , ry in
the x, y directions, given that the boundary layer can not admit eddies higher than δ. We assume that
the displacements are larger than a minimum value so that the velocity fluctuations at the two points
differ at least by one addend. For smaller displacements, the two-points are considered equivalent
in the framework of HRAP, and the associated structure function follows the inertial-range scalings.

Applying the HRAP model to determine D11(rx,ry,rz,z), we must determine the number of
common addends shared by the two points. For this purpose we focus on the vertical location
of the higher point, at z + rz (rz > 0). Depending on rx and ry , we can identify three regimes
(see Fig. 4):

I : zc < z + rz, II : z + rz < zc < δ, III : zc = δ. (12)

For two points in regime III, the points share no common eddy, hence

D11 =
˝⎛
⎝ Nz∑

i=1

a′
i −

Nz+rz∑
i=1

a′′
i

⎞
⎠

2˛
= (

Nz + Nz+rz

)〈a2〉 − 2

˝(
Nz∑
i=1

a′
i

)
·
⎛
⎝Nz+rz∑

i=1

a′′
i

⎞
⎠
˛

= (
Nz + Nz+rz

)〈a2〉 = A1 log

(
δ

z

)
+ A1 log

(
δ

z + rz

)
+ C3. (13)
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FIG. 4. Examples of pairs of points in regimes I, II, and III. For two points in regime III (indicated as points
III1, III2), III1 shares none of its addends with III2. For two points in regime I (indicated as points I1, I2), I1

share all common addends with I2 (and then I1 includes an extra addend since it is closer to the wall). For two
points in regime II (II1, II2), II1 share part of the addends with II2 (specifically in this example, addends from
eddies of height δ, δ/2). The schematic is in accordance with Fig. 1. As is sketched in Fig. 1, a horizontal line
corresponds to an eddy and affects the region below it. While the sketch is artificially regular for purposes of
illustration, in reality the model encompasses more random spatial arrangements of eddies as in Fig. 3.

For two points in regime I, point x share all the eddies that affect x + r (0 < rz), hence

D11 =
˝⎡
⎣

⎛
⎝Nz+rz∑

i=1

ai +
Nz∑

i=Nz+rz

a′
i

⎞
⎠ −

⎛
⎝Nz+rz∑

i=1

ai

⎞
⎠

⎤
⎦

2˛

=
˝⎡
⎣ Nz∑

i=Nz+rz

a′
i

⎤
⎦

2˛
= (

Nz − Nz+rz

)〈a2〉 = A1 log

(
z + rz

z

)
+ C1. (14)

Note that we are excluding from these considerations the transition towards the locally isotropic
scaling that occurs when r = (r2

x + r2
y + r2

z )1/2 < Czz, where Cz is an O(1) constant. For regime I,
typically rx and ry are small and therefore we must limit rz to be (typically) larger than z. Thus the
scaling implied by Eq. (14) is meant to hold for rz/z � 1. In the limit rz/z � 1, a transition towards
the inertial range scaling is envisioned.

For two points in regime II, points (x,y,z) and (x + rx,y + ry,z + rz) share the eddies of height
greater than zc, hence

D11 =
˝⎡
⎣

⎛
⎝ Nzc∑

i=1

ai +
Nz∑

i=Nzc

a′
i

⎞
⎠ −

⎛
⎝ Nzc∑

i=1

ai +
Nz+rz∑
i=Nzc

a′′
i

⎞
⎠

⎤
⎦

2̨

=
˝⎡
⎣ Nz∑

i=Nzc

a′
i −

Nz+rz∑
i=Nzc

a′′
i

⎤
⎦

2˛

= (
Nz − Nzc

)〈a2〉 + (
Nz+rz

− Nzc

)〈a2〉 − 2

˝⎛
⎝ Nz∑

i=Nzc

a′
i

⎞
⎠ ·

⎛
⎝Nz+rz∑

i=Nzc

a′′
i

⎞
⎠
˛

= (
Nz − Nzc

)〈a2〉 + (
Nz+rz

− Nzc

)〈a2〉 = A1 log

(
zc

z

)
+ A1 log

(
zc

z + rz

)
+ C2, (15)

where a, a′, a′′ are i.i.d. variables. Imposing continuity of D11 with respect to zc, it is clear that the
constants C1, C2, C3 must be equal,

C1 = C2 = C3. (16)

It is worth noting that, although we have discretized the log region into discrete hierarchical scales
and both Nz, Nz+rz

are integers that take only discrete values, because in Eq. (8) the integration is
a continuous function of z, the predictions here are continuous functions of z and r. Combining
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FIG. 5. (a) A sketch of the various regimes used to evaluate the scaling of D11 under the HRAP simplified
attached eddy model. The definition of zc is cut off at δ, therefore regime III is indicated only at zc = δ. z + rz is
required to be in the boundary layer, i.e., z + rz < δ. (b) Contour levels computed according to Eq. (18) for D11

as a function of zc and z + rz for z = 0.01δ, using A1 = 1.25 and setting C11 = 2 for purposes of illustration.

Eqs. (12)–(16), we have

D11 = A1 log

(
z + rz

z

)
+ C11, zc < z + rz,

D11 = A1 log

(
zc

z

)
+ A1 log

(
zc

z + rz

)
+ C11, z + rz < zc < δ, (17)

D11 = A1 log

(
δ

z

)
+ A1 log

(
δ

z + rz

)
+ C11, zc = δ,

where C11 is a constant. Defining ze = max [zc,z + rz], a compact form of D11 is

D11 = A1 log

(
ze

z

)
+ A1 log

(
ze

z + rz

)
+ C11, (18)

where we recall that z and z + rz are assumed to fall in the logarithmic layer, i.e., significantly
below δ.

The various regimes are sketched in Fig. 5(a). Essentially we seek the minimum height hc of
an eddy that can simultaneously affect the two points under consideration. Because of the treelike
organization of the attached eddies, the effects of eddies with height h > hc is canceled (because
we are taking the difference between the two points when evaluating structure functions). Effects of
eddies of heights h < hc remain and are reflected separately on two points, in the form

log

(
hc

z

)
+ log

(
hc

z + rz

)
. (19)

It is useful to point out that hc is not necessarily equal to zc since zc is the minimum height of an eddy
that could affect two points with a displacement rx , ry in the x, y directions. The two points could be
displaced by a very small distance in the x-y plane but by a large distance in the vertical direction.
In that case, hc becomes z + rz and we are in regime I. Regime II is straightforward, where zc = hc.
If the two points are so separated that to affect them simultaneously one needs an eddy of height
greater than δ, then we are in regime III. The description stops at zc = hc = δ (since the boundary
layer does not admit any eddy whose height is greater than δ). A sketch of D11 as a function of zc

and z + rz is shown in Fig. 5(b). The contour levels are computed according to Eq. (18). The hidden
parameter z is 0.01δ, which is chosen arbitrarily for illustration purposes.

A few asymptotes of Eq. (17) have been investigated previously. For example, taking rz = 0 and
rx 	 δ (and/or ry 	 δ), we have zc = δ, ze = δ and we obtain D11 = 2A1 log(δ/z) + C11, i.e., the
logarithmic scaling of 〈u2〉 = 1

2D11(|r| 	 δ,z) as a function of z is recovered. Taking rz = ry = 0
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and rx in the relevant range [an rx such that rx > z but a converted wall-normal height rx tan(θ )
still in the log region], we have zc ∼ rx , ze = zc ∼ rx and the scaling

〈
[u(x + rx) − u(x)]2

〉 =
2A1 log(rx/z) + C is obtained [20].

New scaling laws can be obtained from Eq. (17), e.g., taking rx = 0, rz = 0 and ry in the range
such that ry � z and the corresponding wall-normal height ry/R · tan(θ ) in the log region, we have
zc ∼ ry , ze = zc ∼ ry and thus

〈[u(x,y,z) − u(x,y + ry,z)]2〉 ∼ 2A1 log(ry/z), (20)

i.e., a transversal logarithmic scaling similar to the longitudinal one found in de Silva et al. [20].
According to the HRAP model, the transverse scaling has the same slope 2A1 as the longitudinal
one, because geometric parameters including R, tan(θ ) that enter zc, ze can be absorbed into the
additive constants without affecting the slope. Or, taking rx = 0, ry = 0, rz in the range such that
z + rz is still in the logarithmic region, we have zc = z + rz, ze = zc = z + rz and thus

〈[u(x,y,z + rz) − u(x,y,z)]2〉 ∼ A1 log[(z + rz)/z], (21)

now with slope A1 instead of 2A1, predictions that should be interesting to confirm based on data.
Next the HRAP model can be applied for D22. According to Eq. (5), both u, v are results of

additive processes, the only difference is that for v the addends bi may have different statistics to
those of ai . Hence, the scaling behavior of D22 is similar to those of D11 but involving 〈b2〉 instead
of 〈a2〉. Thus, we obtain

D22 = A1,v log

(
ze

z

)
+ A1,v log

(
ze

z + rz

)
+ C22, (22)

where A1,v , C22 are constants. Similar scalings including 〈[v(x,y,z) − v(x,y + ry,z)]2〉 ∼
2A1,v log[ry/z], 〈(vz+rz

− vz)2〉 ∼ A1,v log[(z + rz)/z] are expected as well. Again the prefactors
of the streamwise and transverse logarithmic scalings are the same, but offset constants are possibly
different.

The last diagonal term D33 is considered next:

D33 = 〈[w(x + rx,y + ry,z + rz) − w(x,y,z)]2〉
= 2〈ww〉 − 2〈w(x + rx,y + ry,z + rz)w(x,y,z)〉. (23)

We have assumed that the streamwise velocity fluctuations at the two points differ at least by one
addend (if not, then the structure function follows the inertial range scalings), therefore the last addend
in u(x,y,z), which controls the wall-normal component w(x,y,z), is statistically independent of the
last addend in u(x + rx,y + ry,z + rz), which controls the wall-normal component w(x + rx,y +
ry,z + rz). Let us use a for the addends in u(x,y,z) and a′ for the addends in u(x + rx,y + ry,z + rz).
We have 〈w(x + rx,y + ry,z + rz)w(x,y,z)〉 = 〈aNz

a′
Nz+rz

〉 = 0, and therefore

D33 = 2. (24)

We have made the approximation that 〈ww〉 = 1 in the log region. That is to say, the normal
vertical velocity structure function transitions from the inertial regime to a constant value (∼2) for
displacements larger than the height above the wall. Because the HRAP model predicts a constant
value for D33 in the logarithmic region, Eq. (24) does not provide a length scale for the D33 scaling
and because D33 ≡ 2 in the logarithmic region, D33 should collapse by plotting against rx/δ and
r/z, at least in the logarithmic range. Therefore the collapse of D33 scaling depends on the rx range
within which a transition from the inertial range scaling to the logarithmic range scaling takes place.
Because this transition occurs at around r ∼ O(z), the length scale for constant scalings like the one
in Eq. (24) should be z and we expect a collapse of data when D33 is plotted as a function of r/z.

Eqs. (18), (22), and (24) summarize the scaling behaviors of all three diagonal components of
Dij . Next, the off-diagonal components are evaluated. Given ai , bi are independent variables, we
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can immediately conclude

D12 = 0, D23 = 0, (25)

also consistent with the requirement of reflectional symmetry. The last term to be evaluated is the
shear term, D13:

D13 = 〈[u(x + r) − u(x)][w(x + r) − w(x)]〉 = 2〈uw〉 − 〈u(x + r)w(x)〉 − 〈u(x)w(x + r)〉. (26)

The first term 〈uw〉 = −u2
τ = −1. Let us consider the two cross terms. Without loss of generality,

we have assumed rz � 0. Then z + rz � z and Nz+rz
� Nz. 〈u(x + r)w(x)〉 = −〈∑Nz+rz

i=1 a′
i · aNz

〉
is directly 0 for Nz+rz

< Nz because addends with different indices are statistically independent;
for Nz+rz

= Nz, 〈u(x + r)w(x)〉 is −〈aNz
a′

Nz
〉, which is also 0 because the streamwise velocity

fluctuations at the two points differ at least by one addend (otherwise the structure function just follow
the inertial range scalings). Now let us consider the other cross term 〈u(x)w(x + r)〉. Again because
addends for eddies of different sizes are uncorrelated and because Nz � Nz+rz

, 〈u(x)w(x + r)〉 =
−〈∑Nz

i=1 ai · a′
Nz+rz

〉 = −〈aNz+rz
a′

Nz+rz
〉. For two points in regimes II, III, this cross term vanishes

because the size of the smallest common eddy is greater than z + rz and aNz+rz
, aNz+rz

are statistically
independent. For two points in regime I, aNz

= a′
Nz

and the cross term 〈u(x)w(x + r)〉 is −1. Hence,
for the range of r,x discussed in this work:

D13 = −1 zc < z + rz, D13 = −2 z + rz < zc. (27)

The discontinuity is because the assumed region of influence of an attached eddy is not a well-behaved
function that decays smoothly to 0, but instead is a function that jumps to 0.

Equations (18), (22), (24), (25), and (27) are the complete description of the scalings of the
structure function in the logarithmic region. It is worth noting that the −2/3 power-law scaling in
the inertial range is not incorporated up to this point but smooth transitioning to power-law inertial

range scaling is expected whenever
√

r2
x + r2

y + r2
z < Czz, where Cz is a constant of O(1).

Note that in the model the assumed eddy inclination angle θ and the eddy aspect ratio R do not
appear explicitly in the scaling law. These parameters do enter, however, when determining the limits
between the various scaling regimes. For instance, the eddy inclination angle is used to compute a
streamwise extent within which an attached eddy of height h exerts its influence on, while the aspect
ratio R affects the scaling limits when considering various ry and rx combinations. We remark further
that for more realistic modeling of wall-bounded flows, an eddy tilting angle might also be used
to account for the lag of the effects of attached eddies across the wall-normal direction (see, e.g.,
Ref. [41] for discussion of this effect). Last, the assumption of ai , bi being i.i.d. variables may not hold
exactly. However, in the high Reynolds number limit, the variance 〈u2〉 ∼ log(δ/z) does not strictly
require i.i.d. but rather holds provided correlations have sufficiently rapid decay (the logarithmic
scaling of cumulants is indicative of a large deviations principle [43,44] and is not restricted to i.i.d.
variables [2]). Similarly, 〈uw〉 = −1 is constant according to the HRAP model but is in fact only
approximately so in the log region for finite Reynolds number, indicating already the z dependence
of the random addends. Because of this wall-normal dependence at finite Reynolds number, scalings
including 〈u2〉 = a2

1 + a2
2 + · · · + a2

Nz
are only approximately log(δ/z), and deviations from the log

scaling are expected to be similar to the deviations of 〈uw〉 from a constant −1. It should be kept
in mind that the attached eddy hypothesis and the HRAP model used here are models for the high
Reynolds number limit and are therefore only approximate for any finite Reynolds number.

IV. EMPIRICAL EVIDENCE FOR PROPOSED SCALINGS

Statistics that involve streamwise displacements can be evaluated from a single hot-wire
measurement by invoking Taylor’s hypothesis [28,45,46]. Evaluating statistics that include a
displacement in the spanwise direction requires much more work in a laboratory experiment
because it needs simultaneous measurements at multiple spanwise locations. It is possible to resort
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FIG. 6. Linear-log plot of D22(rx,0,0; z) and 0.5D11(rx,0,0; z) as functions of rx measured experimentally
at Reτ ≈ 15 000 at wall-normal locations z+ = 400, 800, 1500. The thin lines are for D11 and the bold lines
are for D22. The straight dashed lines indicate the fitted slopes of the logarithmic scalings.

to numerical simulations for such measurements, but for numerical simulations, direct numerical
simulations (DNS) in particular, the limited Reynolds number is an obstacle. The highest Reynolds
number accomplished to date for a channel flow using DNS is Reτ ≈ 5000 [18]. The reader is
directed to Refs. [47–52] for more DNS data sets of turbulent channel flows. In this section, the
streamwise scalings, Dij as functions of r = (rx,0,0) are investigated using hot-wire measurements
in boundary layer flows. Spanwise scalings and trends in other directions, on the other hand, are
examined using channel flow DNS data sets.

Recent work [53] suggested applying extended-self-similarity (ESS) to structure functions to
obtain scaling behavior of improved quality, following the success of ESS in the context of moment-
generating functions [54]. ESS is useful when considering scalings of higher-order moments relative
to the scaling of a known lower-order moment. Here we consider only the second-order statistics and
we require scaling ranges for different physical quantities in different directions (spanwise, vertical),
therefore the usefulness of ESS in the present context is not immediately clear.

To document the streamwise logarithmic scalings, we use the cross-wire measurements taken
in boundary layer flows at Reτ ≈ 15000 (where u,w components are measured in one experiment
and u,v components are measured in another experiment). Details of the experimental setup can
be found in Refs. [17,55] and the references cited therein. The sampling frequency is high enough
to allow streamwise displacements smaller than r+

x = 10, which falls much below the range of
two-point displacement of interest (r+ � z+ 	 100). The use of Taylor’s hypothesis for quantities
such as structure functions is common and has been proven to be valid [20,56]. The streamwise
logarithmic scaling for D11 was confirmed in Ref. [20] and can be observed in Fig. 6, where 0.5D11

is shown as a function of rx at wall-normal heights z+ ≈ 400,800,1500. The prefactor 0.5 is used
for better visualization when plotted together with D22, which is also shown in Fig. 6. The figure
shows D22 as functions of rx/z at three wall-normal locations. The data collapse when plotted
against rx/z. Because of the high Reynolds number, a logarithmic region that spans more than a
decade is found both in D11 and D22 in the streamwise direction. The slope for D11 is fitted here
in the rx range 1 < rx/z < 10, and the fitted slope results in 2.2, not far from prior measurements
where 2A1 = 2.5. As for the slope of the streamwise logarithmic scaling of D22, the fitted slope is
0.99. This is very close to the expected slope of 2A1,v , where A1,v ≈ 0.5 is the slope of 〈v2〉 (as a
function of z) measured previously [17,51]. Compared to D11, one notes that the logarithmic scaling
region for D22 occurs at smaller scales as the curves appear to be shifted to the left, by almost
a factor 6. This means that C22 is considerably higher than C11, which is consistent with effects
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FIG. 7. Linear-log plot of D13(rx,0,0,z) at Reτ ≈ 15 000 as a function of rx at two wall-normal heights.

from the continuity equation that leads to smaller integral length scales for transverse correlations
as compared to longitudinal ones. A factor 6, however, is quite large.

By symmetry one expects D12 ≡ 0, which is also predicted by the HRAP. The experimental
hot-wire results (not shown) are consistent with low values of D12 (the data are slightly negative,
D12 ≈ −0.1 in wall units, at large streamwise displacements possibly due to small misalignments
of the cross-wires and possible uncertainties in the measurements).

Figure 7 shows D13 as a function of rx at two wall-normal locations. D13 collapse when plotted
against rx/z. For sufficiently large two-point displacement rx , D13 = −2, as suggested by the HRAP
model and required by the fact that the mixed structure function must asymptote to twice (negative)
the square of the friction velocity at large distances. For rx � z, the structure functions should follow
the inertial range scalings and such scalings were discussed in Refs. [33,34]. Note for two points
that are displaced only in the streamwise direction, we never actually enter regime I.

Figure 8 shows D33 − 2〈w2〉 as functions of rx/z. The data do not collapse when D33 itself
is plotted as a function of rx/z at different wall-normal locations (not shown), but by subtracting
limrx←∞ D33 = 2〈w2〉 from D33, a good collapse is found, as is seen in Fig. 8. This suggests that
the difference in D33 is from fine-scale motions in the regime rx � z [57,58]. Beyond rx ≈ z, D33

tends to 2〈w2〉, consistent with the model although the exact magnitude of 〈w2〉 is not 1 in wall

FIG. 8. Linear-log plot of D33(rx,0,0,z) at Reτ ≈ 15 000 as a function of rx at two wall-normal locations
2〈w2〉 at the two wall-normal locations are 2.5 and 2.8, respectively.
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FIG. 9. (a) Streamwise variance 〈u2〉 as a function of the wall-normal distance for the Reτ ≈ 4200 DNS.
The dashed line has a slope 1.26. The two vertical lines enclose the expected log region and are at z+ = 3

√
Reτ

and z/δ = 0.1. (b) D11(rx,0,0,z) plotted against rx at three wall-normal distances within the enclosed region
in (a). A log region is found in the enclosed region. The fitted slope within the enclosed region is 1.6 and is
indicated using a dashed line. The expected slope is ≈2.5 and is indicated using a thin solid line.

units. The transition from the inertial range scalings to the logarithmic range scalings occurs near
rx/z ∼ O(0.1). Note that scalings in the logarithmic range are not necessarily log scalings, e.g., the
scaling of D33 in the logarithmic range is a constant scaling −2 instead of a logarithmic scaling.
Comparing D33 and D13, the transitions to log-range scalings are at quite different rx/z distances, with
D33 transitioning at smaller distances than D13. This difference is not surprising if one considers first
the fact that w is controlled mostly by a local eddy while u is affected by larger eddies, and second the
aforementioned difference in the integral scales between the transverse and longitudinal components.

For empirical evidence of the spanwise scalings, we require simultaneous measurements at
a number of spanwise distances. For this purpose we use the Reτ = 4200 DNS channel-flow
dataset [51]. The DNS has used a grid of size 3072 × 3072 × 1081 (in x, y, z directions) for a
computational domain of size 2π × π × 2, where the half channel height is 1.

Figure 9(a) shows 〈u2〉 as a function of the wall-normal distance. In Fig. 9(b), we show
D11(rx,0,0; z) as a function of rx at different wall-normal locations. As seen in Fig. 9, although
no logarithmic region can be found in 〈u2〉 as a function of z, a logarithmic region can be discerned
in the streamwise velocity structure function as a function of rx . Nevertheless, the measured slope is
1.6, whereas at high Reynolds numbers, the observed slope is 2A1 ≈ 2.5. Thus even if a logarithmic
scaling is observed, one may expect differences of at least 40% when comparing with values
expected at high Reynolds numbers. This insight will be useful when measuring scaling parameters
in directions where only DNS data are available. In terms of the behavior at sufficiently large rx , at
which 〈u(x)u(x + r)〉 = 0, we expect D11 = 2〈u2〉. For the current dataset, the two-point correlation
at r = Lx/2, where Lx is the streamwise dimension of the periodic computational domain, does not
drop to 0 due to the limited size of the channel. As a result, D11 does not reach 2〈u2〉 in Fig. 9(b) at
large rx values.

Figure 10 shows D11, D22 as functions of the spanwise displacement ry at three wall-normal
heights z+ ≈ 249, 285, 327. The data are obtained by averaging over one snapshot of the DNS, so at
large ry some fluctuations are visible due to lack of convergence. Nevertheless, logarithmic scalings
are observed within the region indicated by the vertical lines. Such behavior is consistent with
the HRAP model. While the streamwise velocity correlation does not drop to 0 at rx = Lx/2, the
correlation in the spanwise direction decays to 0 at ry = Ly/2, where Ly is the spanwise dimension
of the computational domain. As a result, at sufficiently large ry , both D11 and D22 tend to 2〈u2〉
[which can be confirmed by comparing Figs. 10(a) and 9(a)] and 2〈v2〉 (not shown).

The measured slope for D11(ry) and D22(ry) are, respectively, 3.7 and 1.3. According to HRAP,
the expected slopes for the spanwise logarithmic scalings should be the same as their streamwise
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FIG. 10. Linear-log plot of D11(0,ry,0; z), D22(0,ry,0; z) as function of ry at three wall-normal heights
z+ ≈ 249,285,327. The measured slopes are 3.7, 1.3 for D11 and D22 and are shown using dashed lines. The
expected slopes (2A1 = 2.5 and 2A1,v = 1.0) are indicated using thin solid lines.

counterparts, which at high Reynolds numbers are ∼2.5 and ∼1.0, respectively. The difference
between the measured and expected slopes is on the order of 30%–40%. However, we note that it is
a difference in the opposite direction as that noted before: for ry the DNS is showing larger slopes
than the expected high Reynolds number scaling, whereas it gave lower values for the streamwise
displacement, rx scaling. The difference between the measured slope and the expected slope could
be due to a few reasons: first, as was mentioned above, the limited Reynolds number of the data,
because of which, a log region is absent in 〈u2〉 and hence any expectations based on the slope of
〈u2〉 would also be not observable from the data [59]; second, the difference between large-scale
fluid motions in channel flow and boundary layer flow, the former of which lacks a second very
long mode in the premultiplied spectrum when compared to channel flow [56]; and third, the limited
size the computational domain [51], etc. It may also be that the slopes should indeed be different
from the expected ones according to the HRAP model because of physical processes that are not
accounted for here. For now, we simply remark that data at higher Reynolds numbers are needed
to provide more definitive confirmation or refutation of the HRAP prediction that the slopes in ry

should be equal to those in the rx direction.
Next we examine trends and scalings with wall-normal displacements, where r = (0,0,rz).

For two points that are displaced in the wall-normal direction, D11 and D22 follow the scalings
D11(0,0,rz; z) ∼ A1 log[(z + rz)/z], D22(0,0,rz; z) ∼ A1,v log[(z + rz)/z] (see earlier discussion in
Sec. III). Thus we may examine the scaling by plotting as a function of log(z + rz) for fixed z, or
by fixing z + rz and plotting as a function of log(z). Since we must ensure that z + rz is limited to
below δ, the latter is more natural. Figure 11 shows D11(0,0,rz; z), D22(0,0,rz; z) as functions of z

for a specified z + rz value (we choose z + rz = 0.4δ). The results are marked as “not displaced.”
For D11 a possible scaling range appears to form above z+ ∼ 300 with a slope that is consistent with
the prediction from HRAP (which is A1 ≈ 1.25 for D11). For D22 a longer range appears starting
around z+ ∼ 50, and a slope consistent with A1,v ≈ 0.5 can be observed.

Additionally, we show D11(rx,0,rz; z), D22(rx,0,rz; z) as functions of z for the same specified
z + rz = 0.4δ and for a fixed streamwise displacement rx . The streamwise displacement value
is chosen here such that the function f (rx) = 〈u(x,y,z)u(x + rx,y,z + zr )〉 is at its maximum. We
remark that this is in the spirit of the modulation model [41] in which the signal at the higher location
is displaced in order to account for the lag between the “large-scale” signal (here at z + rz) and the
small-scale signal (here at z). As seen in Fig. 11, for the presently considered ranges of displacements,
the shift in rx does not affect the overall trends as a function of z, at least at this Reynolds number.
It is worth noting that these structure functions do not vanish when z → 0 (see Fig. 11 at small z+)
because the value at z + rz remains, i.e., D11 = 〈[u(x,y,0) − u(x,y,rz)]2〉 = 〈u(x,y,z + rz)2〉 �= 0.
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FIG. 11. Linear-log plot of D11(0,0,rz; z), D22(0,0,rz; z) as functions of z for fixed z + rz = 0.4δ. The
known slopes A1 ≈ 1.25, A1,v = 0.5 are indicated using dashed lines. We also show results for D11(rx,0,rz; z),
and D22(rx,0,rz; z) where rx is such that the function f (rx) = 〈u(x,y,z)u(x + rx,y,z + rz)〉 is at its maximum.
Results are denoted as “displaced.”

To observe a logarithmic region, the HRAP formalism requires both z and z + rz to be in
the logarithmic region. This is more easily attained for the spanwise component as 〈vv〉 has an
extended logarithmic region, from z+ ≈ 50 to z/δ ≈ 0.4) at this Reynolds number. If we consider
〈v2(z)〉 = 〈[v(x,y,z) − 0]2〉 = D22(0,0,rz > δ; z), then in Fig. 11, we are simply taking z + rz from
the freestream [where v(z + rz) = 0] to a wall-normal location in the boundary layer (z + rz)/δ =
0.4. As is seen in Fig. 11(b), this reduces the logarithmic region to a range 50 < z+, z < 0.4(z + rz).
The same does not hold for the streamwise component because a logarithmic region can barely
be found in 〈u2〉 at this Reynolds number. So it is interesting that when plotting D11 against z for
z + rz = 0.4δ, a logarithmic region begins to emerge, and more so for the displaced data, with the
slope close to A = 1.25.

Last we consider structure functions with displacements along a diagonal line on the x-y plane.
Figure 12 shows D11, D22 along a sample line that forms a ∼26◦ angle with the x axis (ry/rx = 0.5).
As is expected from the HRAP model, logarithmic scalings are still found. Taking a diagonal line
mixes the logarithmic scalings in the streamwise and spanwise directions. As a result, from the data
the measured slopes are in between the slopes measured in the spanwise and streamwise directions.
Recall that from HRAP the slopes would be expected to be equal for displacements in both directions

FIG. 12. Linear-log plot of D11(rx,ry,0,z), D22(rx,ry,0,z) for ry = rx/2 as a function of r =
√

r2
x + r2

y at

three wall-normal heights z+ ≈ 249,285,327. The measured slopes are 3.6 and 1.1 for D11 and D22 and are
indicated using dashed lines. Logarithmic scalings are observed within the region marked by vertical lines.
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so the differences discussed previously in the context of the spanwise structure functions hold also
for the present results.

V. CONCLUSIONS

In this work, we investigated the scaling behavior of the full structure function tensor [defined in
Eq. (1)] in the logarithmic region within the framework provided by the HRAP, which is a simplified
formalism based on the Townsend attached eddy hypothesis. The results for the required six scalar
functions as a function of (rx,ry,rz,z) are presented in Eqs. (18), (22), (24), (25), and (27). Certain
special cases of Eq. (1) have been studied in the past, most notably the streamwise dependencies of
the streamwise velocity component. In this paper, evidence supporting some of the newly proposed
scalings is provided based on hot-wire and DNS data sets, in particular scaling that involves vertical
displacements with respect to a fixed end point in the bulk region and logarithmic scaling for the
transverse velocity component. However, the slope in the logarithmic laws for structure functions
with displacements in the spanwise directions appeared to be larger than those predicted by the
present simple version of HRAP. Several additional scalings laws remain to be confirmed in more
detail and in laboratory experiments or DNS, which will need to be at higher Reynolds numbers than
the ones that are presently available. The modeling work here thus calls for new detailed multipoint
measurements of wall-bounded flows at high Reynolds numbers.
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