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Separation of propeller-like particles by shear and electric field
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Separation of one type of chiral particle from mirror-image particles in a racemic mixture
by shear flow and rotating electric field is studied theoretically. In shear flow the chiral
particles and their mirror-image particles migrate in opposite directions along the vorticity
direction. In a rotating electric field, they migrate in opposite directions along the axis of
rotation. In each case, the migration velocity of the particles is calculated for a model chiral
particle: a propeller-like particle which consists of two disks, at an angle to each other,
rigidly connected to a thin rod. Effects of shear rate, field strength, and particle structure
on the migration velocity are discussed. It is shown that the chirality of the particle is
characterized by different parameters depending on the method of separation.
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I. INTRODUCTION

A chiral particle is a particle whose mirror image cannot be superimposed on it by rotation.
Separating one type of particle (R type) in the racemic mixture of the particles from its mirror-image
particles (L type) is a scientific challenge which has potential applications in various fields of
science and technology [1,2].

Conventional separation methods are based on crystallization which gives R-type crystals and
L-type crystals, or on adsorption using the different permeability of R-type and L-type particles. In
such methods, considerable efforts are needed as these techniques require the optimization of the
crystallization conditions or the development of new filters for individual particles or molecules. Such
methods have been developed for small molecules but have not been developed for large particles
of size greater than 0.1 μm. For such large particles, other simpler methods which do not rely on the
individual properties of the particles are needed. Two methods have been proposed for this purpose.

One method is to use the shear flow. It has been shown that chiral particles placed in a shear flow
can have a nonzero average velocity along the vorticity direction [2,3]. Due to the physical law of
mirror symmetry, if one type of chiral particle moves along the vorticity direction, the mirror-image
type moves in the opposite direction, allowing for the separation of both types of particles.

The other method is to use a rotating electric field. If the particles are rotated by an external
electric field, the chiral particles and the mirror-image particles migrate in opposite directions [4–6].

Though such separation can be shown to be possible using the argument of mirror symmetry,
calculation of the actual migration velocity is not easy since one has to deal with the motion of
particles which have a complex structure and are subject to Brownian motion. Accordingly, previous
studies have been limited to the demonstration of the method [4–6]. Few studies have been reported
on the relation between the migration velocity and the parameters characterizing the fields or the
particle structures. In our previous works [3,6], we have studied the migration velocity of a chiral
particle (a twisted ribbon) placed in shear flow [3] and in a rotating electric field [6]. However, the
question of how the migration velocity is related to the chirality of the particle has not been discussed
in detail. Chiral structure is generally characterized by a parameter called the chiral parameter [1],
which is zero for a nonchiral particle, but is nonzero for a chiral particle. In this paper we consider
a special type of chiral particle, a propeller-like particle (shown in Fig. 1), and discuss the relation
between the migration velocity and the chiral parameter.
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FIG. 1. (a) The propeller-like particle considered in this paper. Two disks of radius a are connected by a
thin rod to give a disk-to-disk separation of 2h. (b) The particle viewed from the u3 axis. θ is the angle between
the two disks, and φ is the angle between m and u1. (c) The shear flow considered in this paper. (d) The rotating
electric field considered in this paper.

We study this problem using a simple model particle, a propeller-like particle, as shown in
Fig. 1. We consider two methods of separation, shear flow and rotating electric field, and calculate
the migration velocity explicitly as a function of the particle structure and the field characteristic,
such as the strength of the shear rate or electric field. Using these results, we discuss the chirality
parameter, the parameter which specifies the degree of chirality.

This paper is organized as follows. A framework of the motion of a particle in an external
field is presented in Sec. II. The mobility tensor of a propeller-like particle is calculated by
superposition approximation and its spin-averaged tensor is shown in Sec. III. The conditions
of the simulation method are written in Sec. IV. The migration in shear flow is discussed in
Sec. V. The migration in a rotating electric field is discussed in Sec. VI. The relation between the
structure of the particle and mobility is discussed in Sec. VII. Finally, we summarize our paper in
Sec. VIII.
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II. MOTION OF A PARTICLE IN AN EXTERNAL FIELD

A. Particle in external fields

The particle we consider in this paper in shown in Fig. 1. It consists of two thin disks of radius
a rigidly fixed to a thin rod which we call the particle axis. The center-to-center distance between
the disks is 2h. The two disks make an angle θ with each other. The three parameters a, h, and θ

completely specify the particle shape and its hydrodynamic properties.
To investigate the separation by electric fields, we assume that the particle has a permanent electric

dipole m fixed to the particle parallel or perpendicular to the particle axis. If m is perpendicular to
the axis, another structural parameter, φ, is needed, which is the angle that m makes against a plane
bisecting the two disks [see Fig. 1(b)].

We take three orthogonal unit vectors u1, u2, and u3 fixed to the particle: u3 is along the particle
axis, and u1 and u2 are the unit vectors in the plane bisecting the disk plane. If the dipole moment m
is perpendicular to the particle axis, it is given by m = m(cos φu1 + sin φu2). If the dipole moment
is parallel to the particle axis, m is given by m = mu3.

We consider the motion of such a particle in a shear field and in an electric field. We let ex , ey ,
and ez be the orthogonal unit vectors in the laboratory frame. We consider the shear flow in which
the velocity at position r is given by [see Fig. 1(c)]

v0(r) = γ̇ exey · r, (1)

where γ̇ is the shear rate. We also consider the electric field which is rotating around ez with angular
frequency ω [see Fig. 1(d)],

E(t) = E(cos ωtex + sin ωtey). (2)

Our objective here is to calculate the average of the particle velocity 〈V 〉 in such situations.

B. Brownian motion of particles of arbitrary shape

The dynamics of particles of arbitrary shape have been studied by many people [7–11]. Here we
summarize the equations we use in our present calculations [12].

Consider a particle moving in a flow field, the velocity of which far from the particle is given by

v0(r) = V 0 + �0 × r + E0 · r, (3)

where V 0, �0, and E0 are constants representing the linear velocity, the angular velocity, and the
strain rate tensor of the imposed flow, respectively. Suppose that the particle is moving with velocity
V and angular velocity � in such a velocity field. The hydrodynamic frictional force Fd and torque
T d exerted on the particle by the fluid are calculated by Stokesian hydrodynamics and can be
written as (

Fd

T d

)
= −

(
A B̃
B C

)
·
(

V − V 0

� − �0

)
+

(
G̃
H̃

)
: E0, (4)

where A, B, B̃, C , G̃, and H̃ are tensors called the resistance tensors [7,8]. They are functions of
the particle shape and particle orientation.

If the particle motion is induced by an external force F and an external torque T , V and � are
determined by the force balance condition

F + Fd = 0, T + T d = 0. (5)

The external force and the torque are derived from the external potential U :

F = −∂U

∂ R
, T = −RU, (6)
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where R is the rotational differential operator defined by [6]

R =
∑

i

ui × ∂

∂ui

. (7)

Equations (4) and (5) give the following equation for the particle velocity:(
V
�

)
=

(
V 0

�0

)
+

(
a b̃
b c

)
·
(

F
T

)
+

(
g̃
h̃

)
: E0, (8)

where the mobility tensors a, b, b̃, c, g̃, and h̃ are given by(
a b̃
b c

)
=

(
A B̃
B C

)−1

(9)

and (
g̃
h̃

)
=

(
A B̃
B C

)−1

·
(

G̃
H̃

)
. (10)

If the particle is subject to Brownian motion, the equation is modified as(
V
�

)
=

(
V 0

�0

)
+

(
a b̃
b c

)
·
(

F
T

)
+

(
g̃
h̃

)
: E0 +

(
V B

�B

)
, (11)

where V B and �B are stochastic vectors representing the thermal motion. Their averages are zero,

〈V B(t)〉 = 0, 〈�B(t)〉 = 0, (12)

and their time correlations are determined by the fluctuation dissipation relation:

〈V B(t)V B(t ′)〉 = 2kBT aδ(t − t ′),

〈�B(t)�B(t ′)〉 = 2kBT cδ(t − t ′),

〈�B(t)V B(t ′)〉 = 2kBT bδ(t − t ′). (13)

It should be noted that in rewriting the deterministic equation (8) to the Langevin equation (11),
we have to add “divergence terms” such as kBT R · b̃ and kBT R · c in order to ensure the equation
is consistent with the Boltzmann distribution at equilibrium. However, such terms become zero in
the present case. One can show for a general symmetric tensor s which is a function of u1, u2, and
u3 that R · s is zero. The tensor c is symmetric from the reciprocal relation, and the tensor b can be
made symmetric if we choose the center of mobility [8] at the center of the particle.

The mobility tensors a, b, etc. depend on the orientation of the particle and vary with time. It is
convenient to express them using the particle frame since their components in the particle frame are
constant, independent of time. For example, the tensors b and c are written as

b(t) =
∑

ij=1,2,3

bij ui(t)uj (t), c(t) =
∑

ij=1,2,3

cij ui(t)uj (t), (14)

where bij and cij are constants which depend on the shape of the particle but are independent of
time.

In the following calculation, we take u1, u2, and u3 along the principal axes of the tensor c. Then

cij = ciδij , (15)

where ci (i = 1,2,3) are the principal values of the tensor c.
If the particle is moving in a shear flow described by Eq. (1) without any external forces, the

migration velocity is given by

V = g̃ : E0 + V B, (16)

where E0 = γ̇ (exey + eyex)/2.
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If the particle is moving in a rotating electric field described by Eq. (2), the migration velocity is
given by

V = b · T + V B, (17)

where the torque T is given by T = m × E.
In both situations, we calculate the average of the z component of the migration velocity:

〈Vz〉 = 〈( g̃ : E0)z〉, 〈Vz〉 = 〈(b · T )z〉. (18)

III. MOBILITY TENSOR OF PROPELLER-LIKE PARTICLES

We now calculate the mobility tensor of the propeller-like particle shown in Fig. 1(a). We use the
superposition approximation [8] that the resistance tensor of the propeller-like particle is a sum of
the contribution of two disks. The resistance tensors of a disk of radius a are given by

A
(0)
ij = 16

3
ηa(ninj + 2δij ), B

(0)
ij = 0, C

(0)
ij = 32

3
ηa3δij ,

(19)

G̃
(0)
ijk = 0, H̃

(0)
ijk = −16

3
ηa3(eiklnlnj + ejklninl),

where η, eikl , and n are the fluid viscosity, the Levi-Civita symbol, and the unit vector normal to the
disk, respectively.

When the propeller-like particle moves with translational velocity V and rotates at angular
velocity � around the center of the particle (i.e., the midpoint of the connecting rod), disks 1 and
2 of the propeller move with velocity V − h� × u3 and V + h� × u3, respectively, and rotate
with angular velocity �. The resistance tensors of the propeller-like particle are obtained by the
summation of each contribution:

A = A(1) + A(2), B = B(1) + B(2), . . . . (20)

The explicit form of the resistance tensors A(p) and B(p) (p = 1,2) are given as

A
(p)
ij = 16

3
ηa

(
n

(p)
i n

(p)
j + 2δij

)
, B

(p)
ij = (−1)p

16

3
ηaheiklu3k

(
n

(p)
l n

(p)
j + 2δlj

)
, (21)

where n(p) is the unit vector normal to the disk p. Using the twist angle θ between the disks, n(1)

and n(2) are written as

n(1) = sin(θ/2)u1 + cos(θ/2)u2, n(2) = − sin(θ/2)u1 + cos(θ/2)u2. (22)

Other resistance tensors are calculated in the same way and are given by

C
(p)
ij = 16

3
ηa

{
2a2δij + h2eiklejmnu3ku3n

(
n

(p)
l n(p)

m + 2δlm

)}
,

G̃
(p)
ijk = (−1)p

8

3
ηah

{
u3k

(
n

(p)
j n

(p)
i + 2δji

) + u3j

(
n

(p)
k n

(p)
i + 2δik

)}
,

H̃
(p)
ijk = 16

3
ηa3(eikln

(p)
j n

(p)
l + eij ln

(p)
k n

(p)
l

)
+ 8

3
ηah2{(sin2(θ/2)+2)(u2iu3ju1k + u2iu1ju3k) − (cos2(θ/2)+2)(u1iu3ju2k+u1iu2ju3k)

− (−1)p sin(θ/2) cos(θ/2)(u2iu3ju2k − u1iu3ju1k + u2iu2ju3k − u1iu1ju3k)}. (23)
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The mobility tensors are then obtained by Eq. (10). The final results of that calculation are as
follows:

a = 3

64ηa

{
2a2 + h2(cos2(θ/2) + 2)

3h2 + a2(sin2(θ/2) + 2)
u1u1 + 2a2 + h2(sin2(θ/2) + 2)

3h2 + a2(cos2(θ/2) + 2)
u2u2 + u3u3

}
, (24)

b = 3

64ηa

{
−1

2

h sin θ

3h2 + a2(sin2(θ/2) + 2)
u1u1 + 1

2

h sin θ

3h2 + a2(cos2(θ/2) + 2)
u2u2

}
, (25)

c = 3

64ηa

{
2 + sin2(θ/2)

3h2 + a2(sin2(θ/2) + 2)
u1u1 + 2 + cos2(θ/2)

3h2 + a2(cos2(θ/2) + 2)
u2u2 + 1

a2
u3u3

}
, (26)

g̃ = −a2h sin θ

4

{
sin2(θ/2)

3h2 + a2(sin2(θ/2) + 2)
(u1u2u3 + u1u3u2)

+ cos2(θ/2)

3h2 + a2(cos2(θ/2) + 2)
(u2u1u3 + u2u3u1)

}
, (27)

h̃ = −1

2

3h2 + a2 cos2(θ/2)(sin2(θ/2) + 2)

3h2 + a2(sin2(θ/2) + 2)
(u1u2u3 + u1u3u2)

+ 1

2

3h2 + a2 sin2(θ/2)(cos2(θ/2) + 2)

3h2 + a2(cos2(θ/2) + 2)
(u2u1u3 + u2u3u1) + 1

2
cos θ (u3u1u2 + u3u2u1).

(28)

Spin-averaged mobility tensor

Analysis of the rotational Brownian motion of a rigid particle of arbitrary shape becomes
complex since one has to deal with the motion of three orthogonal vectors u1, u2, and u3. For
particles with large aspect ratios, spin-averaged approximation has been introduced to simplify such
calculations [3]. The approximation is used in migration of the particle in weak shear flow shown
in Sec. V. In this approximation, the mobility tensor, a, is replaced by the average 〈a〉spin where the
average 〈· · · 〉spin stands for the average over the rotation around u3. Furthermore, in calculating the
average 〈· · · 〉spin, it is assumed that the distribution of u1 and u2 are completely random around u3.
With such an assumption, it is easy to show

〈u1u1〉spin = 〈u2u2〉spin = 1
2 (I − u3u3). (29)

This gives, for example,

〈a〉spin = 3

64ηa

{
1

3
(cos2(θ/2) + 2)〈u1u1〉spin + 1

3
(sin2(θ/2) + 2)〈u2u2〉spin + u3u3

}

= 3

64ηa

1

6
(5I + u3u3), (30)

where terms of higher order in (a/h) are ignored. Similar calculations can be done for other tensors.
The detailed calculations are given in the Appendix, and the final results are

〈a〉spin = 3

64ηa

1

6
(5I + u3u3), (31)

〈b〉spin = − 1

1536ηha
sin 2θ

(a

h

)2
(I − u3u3), (32)
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〈c〉spin = 3

64ηa

[
5

6h2
(I − u3u3) + 1

a2
u3u3

]
, (33)

〈g̃〉spin,ijk = −a2 sin 2θ

48h
(eilj u3lu3k + eilku3lu3j ), (34)

and

〈h̃〉spin,ijk = eilj u3lu3k + eilku3lu3j . (35)

IV. SIMULATION METHOD

To simulate the Brownian motion of the particle, we first calculated the mobility tensor
components in the particle frame. The matrix in Eq. (9) is Cholesky decomposed only once to
include the Brownian displacement [13]. We then conducted a simulation of the rotational Brownian
motion using Eqs. (11) and (14). We used quaternions to describe the rotation [14]. In our simulation,
we included the random angular velocity �B but did not include the random velocity V B , since V B

does not affect the average value 〈Vz〉, and inclusion of the term only increases the statistical error.
The set of differential equations is numerically solved by the fourth-order Runge-Kutta method.

The time difference between time steps is dt = 0.001/γ̇ in the shear flow or dt = 0.001/ω in the
rotating electric field.

We conducted Brownian motion simulations for particles whose length h/a = 3. The particles
were initially in random orientations, and we calculated the average migration velocity 〈Vz〉 with
1000 particles. Our results are independent of the initial orientation when the simulation time and
number of the particles are appropriately large. The results are discussed in subsequent sections,
where the standard errors in each data set are about the same size of each symbol.

V. MIGRATION OF PROPELLER-LIKE PARTICLES IN SHEAR FLOW

A. Results of simulation

Figures 2 and 3 show how the migration velocity 〈Vz〉 of a propeller-like particle in a shear flow
changes with the shear rate γ̇ . In Fig. 2, 〈Vz〉/aγ̇ is plotted against the Péclet number Pe = γ̇ /Dr ,
where Dr is the rotational diffusion constant associated with the rotation of the particle axis. Dr is
given by Dr = kBT (c1 + c2)/2, where c1 and c2 are the first two smallest eigenvalues of the tensor c.

As seen in Fig. 2, the average migration velocity 〈Vz〉 is zero if θ is equal to zero or ±π/2. This is
natural, since the particle is not chiral for these angles. If θ is different from these values, 〈Vz〉 becomes

100 105
-0.003

-0.002

-0.001

0

0.001

0.002

0.003

FIG. 2. Migration velocity 〈Vz〉/aγ̇ of a propeller particle in simple shear flow plotted as a function of the
Péclet number γ̇ /Dr . Symbols show the results of simulation. The dashed lines show Eq. (36).
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100 105

10-5

100

105

1
3

1
1

FIG. 3. Migration velocity 〈Vz〉/aDr (normalized by aDr ) of a propeller particle in simple shear flow
plotted as a function of the Péclet number γ̇ /Dr .

nonzero. It is seen that the migration velocity of particles having −θ is the opposite of that of particles
having θ . These results are consistent with the mirror symmetry of the equation of motion in fluids.

We now discuss in more detail how the migration velocity 〈Vz〉 depends on the shear rate γ̇ , and
the twist angle θ .

B. Shear rate dependence

Figure 3 shows 〈Vz〉/aDr against Péclet number γ̇ /Dr in a double logarithmic plot. It is seen that
〈Vz〉 increases with an increase in γ̇ , and that the slope decreases with an increase in γ̇ . This result
can be understood as follows.

For small Péclet numbers, it has been predicted that 〈Vz〉 increases with the power law 〈Vz〉 ∝ γ̇ 3.
This is because (a) the migration velocity 〈Vz〉 must be an odd function of γ̇ , and (b) the linear term
is zero since the linear coupling between the vectorial quantity 〈V 〉 and the tensorial quantity E0

is not allowed (Curie’s law) [2,3]. This prediction is consistent with Fig. 3, where the slope of 3 is
shown by the first triangle.

On the other hand, for large Péclet numbers, it is seen that 〈Vz〉 increases linearly with γ̇ . (This is
also seen in Fig. 2, where the plot 〈Vz〉/aγ̇ approaches a constant value for large Péclet numbers).
This is reasonable since for large Péclet numbers, Brownian motion is negligible and dimensional
analysis indicates that 〈Vz〉 must be proportional to γ̇ .

Theoretical calculations can be done for 〈Vz〉 if we use the spin-averaged mobility tensor. By use
of Eqs. (A6), (A7), and (18), the migration velocity 〈Vz〉 is written as

〈Vz〉 = (〈 g̃〉spin : E0)z = γ̇ gspin

2

〈
u2

3x − u2
3y

〉
, (36)

where gspin = a2 sin 2θ/(24h). For small Péclet numbers, the average 〈u2
3x − u2

3y〉 is proportional to
(γ̇ /Dr )2. For large Péclet numbers 〈u2

3x − u2
3y〉 approaches a finite constant value. This gives the

shear rate dependence discussed above. The dashed line in Fig. 2 is calculated by using the results
for 〈u2

3x − u2
3y〉 for a uniaxial particle [15]. Good agreement is seen between such calculations and

the simulation if γ̇ /Dr is less than ≈10.
Deviation between the calculated values and the simulation is seen for larger Péclet numbers.

Examination of the results indicates that it is because the spin-averaged approximation becomes
inaccurate at large Péclet numbers. Figure 4 shows the orientational order parameters. The spin-
averaged approximation assumes 〈u1u1〉 = 〈u2u2〉, but such equality does not hold for large Péclet
number, as seen in Fig. 4.
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100 105

0

0.2

0.4

0.6

FIG. 4. Orientations 〈u2
1x − u2

2x〉, 〈u2
2y − u2

1y〉, and 〈u2
3x〉 − 1/3 of a propeller-like particle with θ = π/4 are

shown as a function of the Péclet number γ̇ /Dr in simple shear flow.

Despite the failure in the quantitative prediction at large Péclet numbers, the spin-averaged
approximation predicts correctly the overall behavior of the shear-rate dependence of the migration
velocity. This is also seen in the structural dependence of the migration velocity which is discussed
in the next section.

C. Structure dependence

We now discuss how the migration velocity depends on the structure of the particle. Figure 5
shows the plot of 〈Vz〉/aγ̇ against the twist angle θ at various Péclet numbers. It is seen that the
simulation result is well fitted by the curve const × sin 2θ for all Péclet numbers.

The functional form of sin 2θ is what one might expect. The migration velocity must vanish when
θ is equal to zero and π/2 (as was discussed in Sec. III), and sin 2θ is the simplest periodic function
satisfying this condition. The sin 2θ dependence can be derived theoretically if the spin-averaged
approximation [Eq. (33)] is used.

-0.003

-0.002

-0.001

0

0.001

0.002

0.003

FIG. 5. Migration velocity 〈Vz〉/aγ̇ of a propeller particle in simple shear flow plotted as a function of the
angle θ . Symbols show the results of simulation. Lines show the curve 〈Vz〉/aγ̇ = α sin 2θ , where α is a fitting
parameter.
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To summarize, the migration velocity of a propeller in shear flow is given by the following
equation:

〈Vz〉 ∼
{

1
a2

(aγ̇ )3

D2
r

sin 2θ for γ̇

Dr
� 1,

aγ̇ sin 2θ for γ̇

Dr
	 1.

(37)

VI. MIGRATION OF PROPELLER-LIKE PARTICLES IN A ROTATING ELECTRIC FIELD

A. Mobility of propeller-like particles in weak electric fields

Using the same method as in the previous section, we have conducted simulations for propeller-
like particles having a permanent dipole moment placed in a rotating electric field. Before presenting
the results, we first show the theoretical results which are valid for weak electric fields.

In weak electric fields, the time-averaged migration velocity is proportional to E2 and can be
written as [6]

〈Vz〉 = M(ω)E2, (38)

where the coefficient M(ω) is expressed by the mobility tensor b representing the translation-rotation
coupling,

M(ω) =
3∑

i,j=1

(
biim

2
j − bijmimj

) 1

6kBT

ωτj

1 + (ωτj )2
, (39)

and τi (i = 1,2,3) is the dielectric relaxation time given by

τi = 1

kBT
(∑

j cj − ci

) . (40)

For the present propeller-like particle, the tensors bij and ci are calculated by Eqs. (25) and (26),
and Eqs. (39) and (40) give the following expression for the mobility M(ω) (here we only give an
expression in the limit of h 	 a):

(a) In the case that the dipole is perpendicular to the main axis, i.e., m = m(cos φu1 + sin φu2),

M(ω) = 1

6ahηkBT

m2 sin θ cos 2φ

128

ωτ

1 + (ωτ )2
, (41)

where

τ = 64ηa3

3kBT
. (42)

(b) In the case that the dipole is parallel to the main axis, i.e., m = mu3,

M(ω) = − 1

6ahηkBT

m2 sin 2θ

768

(a

h

)2 ωτ

1 + (ωτ )2
, (43)

where

τ = 64ηah2

5kBT
. (44)

In the following section, we discuss the results of the simulations in comparison with these results.
The results for weak electric fields are not shown here since such a comparison was reported in our
previous paper [6]. Here we mainly focus on the results of strong electric fields.

B. Dipole moment perpendicular to axis of the propeller-like particle

Figure 6 shows the migration velocity of a particle which has a dipole moment parallel to u1,
plotted against the field strength E (normalized by kBT /m) for various twist angles θ . The frequency
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FIG. 6. Migration velocity 〈Vz〉/ωa of a propeller-like particle having dipole moment perpendicular to the
axis, placed in rotating electric field, plotted as a function of mE/kBT . Symbols show the results of simulation.

ω was chosen as 1/τ . The effect of the frequency was discussed in the previous paper [6], according
to which the migration velocity becomes largest at the frequency ω = 1/τ .

It is seen that the curves in Fig. 6 have mirror symmetry with respect to the horizontal axis: the
migration velocity of a particle having angle −θ is the opposite of that of a particle having angle θ .

The dashed lines in Fig. 6 indicate the theoretical curves obtained for weak fields. For weak
fields, the migration velocity increases with the increase of field strength in proportion to E2, which
is consistent with our simulation. The result of the simulation deviates significantly from the dashed
line for a strong electric field. This is because the orientation of the dipole moment is saturated in
a strong electric field. In the strong-field limit, the migration velocity is determined by the angular
frequency of the field and is independent of the field strength. This is seen in the result of the
simulation (Fig. 6).

Figures 7 and 8 show how the migration velocity depends on the structure of the particle. Figure 7
shows the dependence on the twist angle θ . Unlike the shear flow, the migration velocity does not
vanish at θ = ±π/2. This is because, due to the presence of the dipole moment, the particle remains
chiral even at the angle θ = ±π/2. The solid lines in Fig. 7 denote the curves of sin θ .

-1

0

1

FIG. 7. Migration velocity 〈Vz〉/aω of a propeller-like particle having dipole moment perpendicular to
the axis plotted as a function of the angle θ . Symbols show the results of simulation. Lines show the curve
〈Vz〉/ωa = α sin θ , where α is a fitting parameter.

064303-11



M. MAKINO AND M. DOI

-1

0

1

FIG. 8. Migration velocity 〈Vz〉/ωa of a propeller-like particle having dipole moment perpendicular to
the axis plotted as a function of the angle φ. Symbols show the results of simulation. Lines show the curve
〈Vz〉/ωa = α cos 2φ, where α is a fitting parameter.

If the field is weak, the migration velocity should be calculated analytically. Equation (41)
indicates that the migration velocity depends on θ and φ as 〈Vz〉 ∝ sin θ cos 2φ. Figure 7 indicates
this angle dependence holds even for a strong field. The same is true for the φ dependence. Figure 8
indicates that the weak-field result 〈Vz〉 ∝ cos 2φ holds even for a strong field. This is because φ is
related to the particle structure.

C. Dipole moment parallel to axis of the propeller-like particle

Figure 9 shows the migration velocity of a particle which has a dipole moment parallel to
the particle axis. Unlike the particle having a perpendicular dipole moment, this particle becomes
nonchiral when θ = ±π/2. Therefore, the migration velocity vanishes at these angles.

10-2 10-1 100 101 102 103 104-1

0

1

FIG. 9. Migration velocity 〈Vz〉/aω of a propeller-like particle having dipole moment parallel to the axis
plotted as a function of mE/kBT . Symbols show the results of simulation.
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-1

0

1

FIG. 10. Migration velocity 〈Vz〉/aω of a propeller-like particle having dipole moment parallel to the axis
plotted as a function of the angle θ in a rotating electric field. Symbols show the results of simulation. Lines
show the curves 〈Vz〉/ωa = α sin 2θ , where α is a fitting parameter.

Figure 10 shows the twist angle dependence of the migration velocity 〈Vz〉. It is seen that 〈Vz〉
depends on the twist angle θ in the same way as in the shear flow, 〈Vz〉 ∝ sin 2θ . This angle
dependence is the same as that predicted by the theory for a weak field [Eq. (43)].

VII. DISCUSSION

For a propeller-like particle, the particle is not chiral for θ = 0, and the migration velocity is zero
in cases of both shear and electric fields. The migration velocity becomes nonzero as θ deviates from
zero, but the θ dependence is different for different types of fields and different types of particles.

In the shear flow, the migration velocity is proportional to sin 2θ . In the rotating electric field, on
the other hand, the migration velocity is proportional to sin θ cos 2φ if the dipole is perpendicular to
the particle axis, and is proportional to sin 2θ if the dipole is parallel to the particle axis. The reason
for this is shown graphically in Fig. 11.

If the particle does not have a dipole moment (or if the dipole moment is parallel to the axis),
the two particles a-1 and a-3 in Fig. 11 are identical, and the particles a-2 and a-4 are also identical.
Therefore, the migration velocity of a particle with twist angle θ is equal to that with twist angle
θ + π ; i.e., the migration velocity has a periodicity π as a function of θ . On the other hand, if the
particle has a dipole moment perpendicular to the axis (with φ = 0), the four particles b-1, b-2, b-3,
and b-4 are all different, and the periodicity of the migration velocity is now 2π .

Whether a particle is chiral or not depends not only on the geometrical structure of the particle
but also on other physical characteristics (such as the dipole moment) of the particle. This means that
“chirality” depends on the experimental method by which we distinguish particles. For example,
the propeller-like particle having twist angle π/2 is not regarded as chiral from the structural
viewpoint. Indeed they cannot be separated by hydrodynamic methods which act on the geometrical
shape only. On the other hand, if such particles have dipole moments perpendicular to the particle
axis, they become chiral and the particles and their mirror-image particles behave differently in a
rotating electric field. As was discussed by Harris et al. [1], there is no unique way of defining the
chiral parameters. A practical way of defining the chiral parameters is to use the migration velocity
associated with a certain separation method.

Finally, we provide an estimate of the migration velocity. We consider a propeller particle of size
a = h/3 ∼ 1 nm. In a shear flow of shear rate γ̇ ∼ 103 1/s, where the radius of a concentric cylinder
is 10 cm and gap distance 1 mm and rotating speed 100 rpm are assumed, the migration velocity is
estimated to be 〈Vz〉 ∼ 10−25 m/s (viscosity η ∼ 1 mPa s temperature kBT ∼ 4.12 × 10−21 J), which
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(a-1) (a-2) (a-3) (a-4)

(b-4)
(b-1) (b-2) (b-3)

FIG. 11. Top views of the propeller-like particles for various twist angles. The reds and blues show disks
1 and 2, respectively. The black arrows show the dipole moments. Particles a-1 through a-4 are without dipole
moment. Particles a-1 and a-3, and a-2 and a-4, are completely identical particles. Particles b-1 through b-4 are
with dipole moment. All particles from b-1 to b-4 are different.

is too small for separation. On the other hand, using similar parameters as in Ref. [4], under a rotating
electric field of strength E ∼ 106 V/m and angular frequency ω ∼ 108 1/s, 〈Vz〉 ∼ 10−8 m/s for the
perpendicular dipole moment and 〈Vz〉 ∼ 10−10 m/s for the parallel dipole moment (the magnitude
of the dipole moment is assumed to be m ∼ 10−29 C m). Therefore, separation by rotating electric
field is feasible. If the particle is large, the separation becomes possible by shear flow: if a ∼ 1 μm,
the separation speed is 〈Vz〉 ∼ 10−8 m/s, ∼ 10−3 m/day.

VIII. SUMMARY

We theoretically studied two methods of separating one type of propeller-like particles from
their mirror-image particles. We calculated the migration velocity in a shear flow and in a rotating
electric field, and showed how they depend on the field strength and also on particle structure. We
explicitly demonstrated that a hydrodynamically nonchiral particle can be chiral if it has a dipole
moment. We also demonstrated that the spin-averaged approximation works well: the characteristic
aspects of such structure dependence are in accordance with the results obtained using this
approximation.
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APPENDIX: AVERAGE TENSOR AROUND u3

If the unit vectors u1 and u2 are randomly distributed around u3, one can get the following
equations, where i stands for 1 or 2:

〈ui〉spin = 0, 〈uiui〉spin = 1
2 (I − u3u3), and 〈uiuiui〉spin = 0. (A1)

Using the relation u1 = u2 × u3 = −u3 × u2, we have

〈u1u2u3〉spin = 〈u1u2〉spinu3 = −u3 × 〈u2u2〉spinu3 = −u3 × 1
2 (I − u3u3)u3

= − 1
2 u3 × Iu3. (A2)

Using these equations for Eqs. (24)–(28), we have

〈a〉spin = 3

64ηa

[
1

2

{
2a2 + h2(cos2(θ/2) + 2)

3h2 + a2(sin2(θ/2) + 2)
+ 2a2 + h2(sin2(θ/2) + 2)

3h2 + a2(cos2(θ/2) + 2)

}
(I − u3u3) + u3u3

]
,

(A3)

〈b〉spin = 3

64ηa

h sin θ

4

{ −1

3h2 + a2(sin2(θ/2) + 2)
+ 1

3h2 + a2(cos2(θ/2) + 2)

}
(I − u3u3), (A4)

〈c〉spin = 3

64ηa

[
1

2

{
2 + sin2(θ/2)

3h2 + a2(sin2(θ/2) + 2)
+ 2 + cos2(θ/2)

3h2 + a2(cos2(θ/2) + 2)

}

× (I − u3u3) + 1

a2
u3u3

]
, (A5)

〈g̃〉spin,ijk = gspin(eilj u3lu3k + eilku3lu3j ), (A6)

where

gspin = −a2h sin θ

8

(
cos2(θ/2)

3h2 + a2(2 + sin2(θ/2))
− sin2(θ/2)

3h2 + a2(2 + cos2(θ/2))

)
, (A7)

and

〈h̃〉spin,ijk = hspin(eilj u3lu3k + eilku3lu3j ), (A8)

where

hspin = 1

2

{
3h2 + a2 sin2 θ (cos2(θ/2) + 2)

3h2 + a2(cos2(θ/2) + 2)
+ 3h2 + a2 cos2 θ (sin2(θ/2) + 2)

3h2 + a2(sin2(θ/2) + 2)

}
. (A9)

For a/h � 1, we can expand the right-hand side of these equations with respect to a/h. Retaining
the leading order terms in a/h, we have Eqs. (31)–(35).
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