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The process of shock interaction with a rigid cylinder is studied using a compressible im-
mersed boundary method combined with a high-order weighted essentially nonoscillatory
scheme. Movement of the cylinder is coupled to the flow field. First, the accuracy of the
numerical scheme is validated. Then the influences of the incident shock Mach number and
the cylinder diameter are discussed. The results are compared with those from cases with
stationary cylinders. It is found that variation of either the incident shock Mach number or
the cylinder diameter can cause different schlieren images. At a given dimensionless time,
the trajectory of the upper triple point varies nonmonotonically with the incident shock
Mach number while the primary reflected shock gets closer to the cylinder with increasing
incident shock Mach number. For any moving case with a given incident shock Mach
number and cylinder diameter, the trajectory of the upper triple point, the time evolution
of the normalized vertical distance from the highest point of the primary reflected shock to
the centerline of the cylinder, and the time evolution of the normalized shock detachment
distance can all be predicted by linear correlation. As for the time evolution of the force
exerted on the cylinder, the peak of the moving cylinder appears earlier than the stationary
one in dimensionless time, with much lower value. Correlations to predict the occurrence
of the peak drag and its value under different shock Mach numbers and cylinder diameters
are proposed. The resulting cylinder movement is also briefly discussed.
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I. INTRODUCTION

The interaction between shock and rigid bodies is a common phenomenon that may be involved
in various practical occasions such as transdermal drug delivery [1] and particle burning in a solid
rocket motor [2]. The dynamic process results in strong variation of both the flow field and the
force exerted on the rigid bodies. Upon a shock the wave gets in touch with a rigid body, its front
is modified, and the shock strength is reduced. During the interaction, reflected, refracted, and
diffracted waves occur and various nonlinear waves such as Mach stems, contact discontinuities,
and vortices may appear [3]. Meanwhile, the force exerted on the rigid body is quite unsteady [4–7].
The peak value is even an order of magnitude higher than that of the quasisteady force loaded on
the rigid body when it is exposed to the steady flow field. Thus, the standard correlation for the
quasisteady drag coefficient for a rigid body in compressible flow [8] cannot be applied to such a
circumstance. Alternative models are required to correctly predict the variation of the drag force.

Such a problem has attracted a great deal of attention from many researchers for quite a long
time [9–11]. Many relevant experimental studies have been conducted. The studies can mainly be
divided into two types. One type is with a stationary obstacle, while the other type is with a moving
obstacle. In the first type of study, the obstacle is fixed through different means and cannot move
with the flow [12–16]. The size of the obstacle is relatively large and the transition from Mach
reflection to regular reflection and the unsteady force exerted on the objects are of great interest. In
the second type of study [17–19], due to the limit of the experiment, on the contrary, the object is
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usually chosen to be very small, which makes the process during which the shock passes through
the obstacle too short to be recorded. As a result, the interaction process cannot be studied in detail
and the main focus can only be the variations after the interaction process. The object is assumed to
be accelerated by uniform postshock gas flow that remains constant during the investigation and the
quasisteady drag coefficient is often obtained from the obstacle’s trajectory.

With the development of numerical methods and computational capability, the computational
fluid dynamics has been an effective tool in solving problems that cannot be easily studied by
experimental measurement. In recent years, the immersed boundary (IB) method [20] has gained
popularity in the field of multiphase flow, in which the complexity of grid generation for complicated
structures caused by the traditional grid conforming method [21–24] can be effectively avoided. It
has been used to study the shock interaction with a stationary obstacle [25–27]. There also has been
some progress on the shock interaction with moving boundaries. In the study of [28], the particles
were forced to move with fixed velocities and directions, which is not suitable for the description
of practical applications. In the study of [29], force on the obstacle was exerted by the surrounding
fluid, but the authors just tested such a case to validate the proposed numerical scheme. In the study
of [30], the authors studied the problem from the perspective of turbulence and were most concerned
with the parameters related to the vortex. Among all these studies, the dynamics of shock-wave
reflection have been scarcely investigated.

In the present study the dynamic interaction between shock and a rigid cylinder is studied. The
problem is numerically simulated using a ghost-cell IB method coupled with the fifth-order weighted
essentially nonoscillatory (WENO) scheme based on an inviscid approach. First, a ghost-cell IB
method that allows us to simulate compressible flow with moving boundaries is proposed and its
accuracy is verified and validated. Then the method is applied to study the shock interaction with a
moving cylinder. The main objective of the present work is to investigate the dynamical influences
on the flow field by the interaction process and the variation of the drag coefficient. The influences
of the shock Mach number and cylinder diameter on the shock reflection trajectory, the dynamic
drag coefficient, and the cylinder movement are analyzed. Taking these two physical parameters into
consideration, correlations to predict the occurrence of the peak drag and its value are proposed. The
overall differences between processes of shock interaction with a moving cylinder and a stationary
cylinder are also discussed.

The paper is organized as follows. In Sec. II the physical model and numerical methods are
presented, including the problem configuration, numerical scheme, and the ghost-cell immersed
boundary method. Section III shows various numerical results for the shock interaction with a moving
cylinder. First, results are compared with those in the literature to assess the capability of the proposed
solver for handling moving boundary problems. Then the influences of two physical parameters (the
incident shock Mach number and the cylinder diameter) on shock reflection trajectory, dynamic drag
coefficient, and the cylinder movement are evaluated. We summarize in Sec. IV.

II. PROBLEM SETUP AND NUMERICAL METHODS

A. Problem configuration

In order to save computational resources, the problem is simplified to be two dimensional.
Figure 1 shows a schematic illustration of the problem. The streamwise direction is designated as
the x direction and the vertical direction naturally becomes the y direction. Initially, a cylinder with
diameter D lies at the center of the computational domain with zero velocity and a planar shock
wave (incident shock) is located upstream of it and propagates downstream along the x direction at
a speed usi . Postshock flow-field variables are denoted by the subscript L, while the subscript R is
used for preshock flow. The Mach number of the incident shock is denoted by Ms and is defined as
usi/cR , with cR the sound speed in the preshock flow.

Typical inflow boundary conditions are used at the inlet in the x direction. The velocity, density,
and temperature are specified, while the pressure is obtained by solving the equation of state for an
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FIG. 1. Schematic illustration of shock interaction with a cylinder.

ideal gas. At the outlet, the partially nonreflecting Navier-Stokes characteristic boundary conditions
proposed in [31] are imposed. Slip boundary conditions are applied at the transverse boundaries. On
the surface of the cylinder, slip, no-penetration, adiabatic boundary conditions are assumed. Rankine-
Hugoniot relations are used to connect the initial state of the preshock flow and the postshock flow.

B. Numerical scheme

Since the reflected shock wave is the major focus of the present study, the Euler equation for
nonreactive compressible flows is utilized in the present study, following previous practice [32,33].
Its two-dimensional (2D) conservative form can be expressed as

∂

∂t
u + ∂

∂x
f1(u) + ∂

∂y
f2(u) = 0, (1)

where f1 =
[

ρu

ρu2 + p

ρuv

u(E + p)

]
, f2 =

[
ρv

ρuv

ρv2 + p

v(E + p)

]
, and u =

[
ρ

ρu

ρv

E

]
. Here ρ is the density, u is the velocity in the

x direction, v is the velocity in the y direction, p is the pressure, and E is the total energy. To close
the system of equations, the equation of state for ideal gas is used here

p = ρRT = (γ − 1)[E − ρ(u2 + v2)/2], (2)

where T is the temperature of the fluid, R is the universal gas constant, and γ is the specific heat
ratio (1.4 for air).

For a moving body, its motion is coupled to the solution of the flow. The body is assumed to be
rigid without deformation. Its movement is then determined by the Newton-Euler equations

Mb dvb

dt
= Fb,

dxb

dt
= vb,

dhb

dt
= Tb, (3)
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FIG. 2. Illustration of the present ghost-cell immersed boundary method.

where the first two equations describe the translation of the body, while the last one describes its
rotation about the center of mass. Here Mb is the mass of the rigid body; xb and vb are the position
and the velocity of the center of mass, respectively, which are both functions of time; and Fb is the
surface force exerted on the body by the surrounding fluid. Since the flow is treated as inviscid,
pressure becomes the only contribution to the total drag force Fb. In addition, hb is the angular
momentum about the center of mass and Tb is the resultant torque.

Since strong discontinuity appears in the flow field, spatial discretization of the convective terms
in the Euler equations (1) is implemented by using the fifth-order WENO scheme proposed by Jiang
and Shu [34]. Compared to other Godunov class of high-resolution methods such as the monotonic
upstream centered scheme for conservation laws and the essentially nonoscillatory scheme, it has
many outstanding advantages. For example, it allows for higher-order accuracy in the interpolation
of the interface variables [35]. Time advancement for flow-field variables and variables related to the
motion of the boundary is performed simultaneously by the third-order Runge-Kutta total variation
diminishing scheme [36].

C. Treatment of the immersed boundary

The ghost-cell immersed boundary method is used to enforce proper boundary conditions on the
solid-gas interface. The method is based on the research of Mohd-Yusof [37] and Fadlun et al. [38].
The immersed boundary is treated as a sharp interface and no explicit addition of discrete forces
to the governing equations is needed. The boundary condition is achieved through the use of ghost
points, which act as stencil points for discretization of the flow field. To avoid numerical instability,
an auxiliary point called an image point (IP) is introduced for each ghost point (GP), as shown in
Fig. 2. Generally speaking, IPs do not necessarily coincide with grid points, so the flow properties
at IPs are obtained by interpolation from its neighboring grid nodes.

It is usually more difficult to deal with a moving boundary than a stationary boundary. Many
existing applications of the ghost-cell IB method for solving moving boundary problems are limited
in the regime of incompressible flow [39,40]. In the present study, we extend the ghost-cell IB
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method for compressible flow. Compared to a stationary boundary, there are two more challenges
when a moving boundary is considered. First, it is necessary to update the location of the interface
and redefine all grid nodes every time step. Furthermore, a “fresh point” may appear. Fresh points
(FPs) refer to grid points that are in the solid at the nth time step and become fluid points at the
(n + 1)th time step due to the motion of the boundary, as depicted in Fig. 2. For these points, values of
∂f1(u)/∂x and ∂f2(u)/∂y at the nth time step are unavailable and flow-field variables at the (n + 1)th
time step are usually obtained by interpolating from its neighboring grid points.

To get flow variables at IPs and FPs, the inverse distance weighting (IDW) interpolation
scheme [27] is employed. At each IP, flow variables are obtained through interpolation from the
surrounding four grid points and this interpolation procedure is similar for each FP. However, for a
FP, one of the interpolation points is the FP itself, so little modification is needed. Three neighboring
grid points are used for interpolation. Specific locations of stencil points (SPs) for interpolations of
IPs and FPs can also be found in Fig. 2.

For clarification, the detailed implementation of the ghost-cell immersed boundary method in
compressible flow can be summarized as follows:

(i) Construct the shape of the obstacle through an unstructured surface mesh [39]. For 2D cases,
the boundary can be represented by many micro line segments.

(ii) Detect the interface between the solid and the fluid. Classify grid points into fluid points and
solid points based on the two vertices and one normal vector of every surface element. At the same
time, find the FPs among the fluid points.

(iii) Determine GPs and find boundary intercept points (BPs) as well as the corresponding image
point (IP). In the present study, at least three layers of GPs are required for a complete computational
stencil since the fifth-order WENO scheme is used for spatial discretization. Boundary intercept
points are points that lie both at the boundary and at the edge of a probe that extends from a ghost point
in the direction normal to the boundary. A schematic illustration of these points is shown in Fig. 2.

(iv) Obtain flow properties at FPs through IDW interpolation from neighboring grid points.
(v) Calculate flow-field variables such as velocity and density at IPs through interpolation from

its neighboring grid nodes.
(vi) Update flow-field variables at GPs by incorporating values at their corresponding IPs and

the prescribed boundary conditions at BPs.

III. RESULTS AND DISCUSSION

In this section the results from the shock interaction with a moving cylinder are presented. First,
numerical validations are performed. Then the influences of the shock Mach number Ms and the
cylinder diameter D on the flow structure and the drag force exerted on the cylinder are studied.
Numerical simulations with different Ms (1.16, 1.28, 1.34, 1.5, 1.7, 2.0, 2.4, and 2.81) have been
conducted with D maintained at 10 mm and the mass at 0.005 kg. To study the influence of D, three
different diameters are chosen, 10, 15, and 20 mm, while Ms remains 1.16 and the mass remains
0.005 kg. Dimensionless time is defined as tr = usi t/D, where physical time t = 0 corresponds to
the instant when the incident shock gets in touch with the very front of the cylinder.

The initial conditions for preshock flow are assumed to be p = 0.05 MPa and ρ = 0.581 32 kg/m3.
The computational domain is chosen as 20D×20D to avoid wave reflections from outer boundaries
and the grid size is chosen as h = 1/160D based on the grid convergence test, which will be
introduced later. Parallel computing is utilized in the present investigation and each case requires
about 7 CPU h for 1 dimensionless time unit on 64 AMD OpteronTM processors.

A. Numerical validation

1. Piston problem

To test the code’s capability in solving moving boundary problems, the classical one-dimensional
piston problem is considered. There are two main reasons to choose this example. First, the theoretical
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FIG. 3. Results for the one-dimensional piston problem: (a) density distribution and (b) velocity distribution.

solutions are available. Second, it is a good case to test the conservation property of the current
numerical method. Initially, the space right to the piston is occupied by an ideal gas. The motion of
the piston is described by a known function x = g(t) for t > 0. If ġ(t) < 0 and g̈(t) < 0, an exact
solution can be constructed using the method of characteristics since no shocks form. Readers can
refer to [41] for more details.

In our test the piston movement is specified by the function g(t) = −t4/8 whose exact solution has
two continuous derivatives. The computational domain is set to be [–0.75 m, 1.5 m] in the x direction
(The solution does not depend on the y direction, so parameters in the y direction are relatively
unimportant.) At t = 0, the surface of the piston lies at x = 0 and the state of the undisturbed flow
on the right is set as γ = 1.4, ρ = 1.4 kg/m3, u0 = 0 m/s, and p0 = 1 Pa. General profiles of the
density and velocity distribution at different times are shown in Fig. 3 with a grid number of 400 in
the x direction. The numerical results show good agreement with the theoretical solution.

For moving boundaries, conservation is always a great concern. It should be pointed out that
the present numerical methods are not assumed to be strictly conservative. We have estimated the
mass loss or gain on different resolutions with grid numbers of 100, 200, and 400 in the x direction,
respectively. The mass loss of �m is adopted to indicate the variation, whose definition is

�m =
∣∣∑

i ρ
final
i |Ci | − ∑

i ρ
initial
i |Ci |

∣∣∑
i ρ

initial
i |Ci |

, (4)

where Ci is a measure of the volume of the computational cell. For cells that are not cut by the
surface of the piston, it is set as �x. For the cell cut by the piston, it is chosen as the distance between
the surface and the nearest grid point to the right.

Table I lists the mass error at t = 1 s. The mass loss decreases with increasing mesh solutions.
From the table we can also see that the averaged global accuracy of the present numerical scheme is
higher than second order.

TABLE I. Numerical error analysis for the piston problem.

Grid number �m O(�xn) global

100 1.63 × 10−3

200 2.87 × 10−4 2.51
400 7.36 × 10−5 1.96
average 2.24
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FIG. 4. Surface pressure coefficient under different mesh resolutions for a moving cylinder with Ms = 2.81.

2. Moving cylinder problem

In this section we test cases in which the motion of the object is determined by the surface
stress exerted on it by the fluid. To check the grid dependence, we have implemented simulations
with different grid resolutions for the case with Ms = 2.81 since it is the maximum shock Mach
number in the present study that needs the finest grid resolution. Four different resolutions are tested:
h = 1/80D for mesh 1, h = 1/160D for mesh 2, h = 1/240D for mesh 3, and h = 1/320D for mesh
4. Figure 4 shows the comparison of the computed surface pressure coefficient at tr = 4 for different
mesh resolutions. It is clear that the grid-independent solution can be achieved for a resolution of
h = 1/160D. For convenience, this mesh resolution is used for all moving cylinder cases hereafter.

The resulting norms of relative errors computed on different meshes are depicted in Fig. 5. The
local L1 and L2 norms are calculated based on the surface pressure coefficient Cp at tr = 4 when
the shock has passed the cylinder for some distance. One can conclude that the present IB method
for a moving boundary exhibits an accuracy of second order.

FIG. 5. Local norms based on the surface pressure coefficient (�x1 is chosen as the grid size of mesh 1).
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FIG. 6. Results for the moving cylinder with Ms = 1.5: (a) density contour at t = 1.5 s (top, present
numerical result; bottom, numerical result from [29]) and (b) variation of the cylinder position and velocity and
the force acting on it.

Furthermore, the moving cylinder problem with Ms = 1.5 [29,42] is investigated using the
present methodology. The cylinder moves forward driven by the incident shock. The same initial
and boundary conditions as well as computational domain setup as those of previous studies [29,42]
are maintained for a complete comparison.

Figure 6 shows the results with a grid resolution of h = 1/160D. Figure 6(a) is the density
contour at t = 1.5 s. Although a bow shock is also formed ahead of the cylinder, the flow structure
within the bow shock shows very different characteristics compared with that of stationary cases.
For stationary cylinders, contours stretched from the front part of the cylinder converge at the bow
shock. However, in moving cylinder cases, contours stretched from the front part of the cylinder
return to the surface of the cylinder itself. As the cylinder moves forward under the drive of the
shock wave, a compression wave forms in the preshock flow. The postshock flow near the reflected
bow shock is somewhat affected by it. Furthermore, the shape of the Mach stem may be modified
due to the presence of the compression wave. By comparison, we can see that the present numerical
results are in overall good agreement with those of [29].

The position and velocity of the center of mass as well as the drag force acting on the cylinder are
shown in Fig. 6(b). Except for the little overestimation for the drag force for a short time duration
near the occurrence of the peak drag, the comparison with numerical results in the studies of [42]
and [29] is generally satisfactory.

B. Influences of incident shock Mach number Ms

In this section the influence of the incident shock Mach number Ms on the process of shock
interaction with a moving cylinder is presented. The discussion mainly contains three aspects. One
is the investigation of the flow structure that includes the flow field, the trajectory of the upper triple
point (TP), the time evolution of the shock detachment distance XR , and the vertical distance from
the highest point of the first reflected shock to the centerline of the rigid body, which is denoted by
YR . The other two include the analysis of the variation of the dynamic drag coefficient Cd and the
cylinder movement. Due to the symmetry of the flow structure, when studying parameters related
with flow structure such as the trajectory of the TP, the time evolution of XR and YR , only the top
half of the computational domain is presented in the paper. To illustrate the variation of TPs XR , YR ,
and Cd , they are all normalized by D. In addition, the results are compared with those computed
from cases where the cylinder remains stationary. Such rules also apply in Sec. III C.
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FIG. 7. Time evolution of the density field for a moving cylinder: (a) Ms = 1.16 and tr = 1, (b) Ms = 1.16
and tr = 2, (c) Ms = 2.81 and tr = 1, and (d) Ms = 2.81 and tr = 2.

1. Flow structure

Figure 7 shows the time evolution of the density field for cases of Ms = 1.16 and 2.81 at tr = 1
and 2, respectively. Different features are observed for different Ms . For all cases, the area with the
highest density (with the deepest red color in the contour) in the whole flow field lies near the front
of the bow shock. The area shrinks with increasing Ms and it evolves into a very thin layer near the
bow shock for the case of Ms = 2.81. The interaction between the shock wave and the compression
wave caused by the motion of the cylinder leads to a very complex process. When the incident shock
is weak, e.g., Ms = 1.16, the area of the compression wave is large enough to have an influence on
the bow shock near the TP. With increasing Ms , the area becomes smaller and the affected region
is transferred inside the bow shock where a complicated flow structure happens. Taking the case
of Ms = 2.81, for example, a new high-density area forms near the intersection of the Mach stem
and the compression wave. In addition, the strength of the compression wave has the same trend
of variability as Ms . When the incident shock wave is strong enough, the compression wave even
evolves into another new shock wave to form a very complicated wave system, as can be seen in the
case of Ms = 2.81.

064302-9



KUN LUO, YUJUAN LUO, TAI JIN, AND JIANREN FAN

FIG. 8. Flow-field results for cases with different Ms : (a) trajectories of TPs, (b) time evolution of normalized
XR , and (c) time evolution of normalized YR .

When the cylinder moves, it is hard to figure out the real location of the TP when the upper shock
system gets distorted by the compression wave. For this reason, paths of the TP after tr = 3.0 are
used for further analysis. The triple point’s movements are recorded relative to the fixed origin of
the coordinates. Figure 8(a) presents the trajectory of the TP for both moving and stationary cases
with Ms = 1.16, 1.5, and 2.81. For both cases, we can see that at a given dimensionless time, the
influence of Ms on the TP trajectory is not monotonic. When the shock is weak, its component in the
y direction first increases with Ms . However, after reaching a critical Ms , it decreases with further
increasing Ms . For a moving case with given Ms , it is found that the linear correlation is suitable to
describe the trajectory of the TP (the minimum R2 for the linear fitting is 0.9992), which is also true
in stationary cases. It is interesting to find that when comparing the trajectories of moving cylinders
to those of stationary cylinders, different trends are shown for different Ms . For Ms = 1.16−1.7,
movement of the cylinder causes the path of the TP to lie a little higher than the fitting curve for
the stationary cylinder and the amplitude decreases with increasing Ms , which results in a narrower
gap between different cases especially for Ms = 1.34−1.7. In contrast, for Ms = 2.81, the opposite
feature has been observed. As a result, the path of the case Ms = 2.81 is beneath that of Ms = 1.28.

The shock detachment distance XR refers to the distance from the front of the reflected shock
wave to the leading edge of the cylinder along the x axis. Variation of normalized XR under different
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FIG. 9. History of the drag coefficient Cd for cases with different Ms .

Ms in both the moving and stationary cases is shown in Fig. 8(b). It is easy to see that at a given
dimensionless time, the location of the front of the reflected shock wave gets closer to the front of the
cylinder. Such a trend can be seen in both cases. However, the discrepancies produced by the variation
in Ms shrink evidently in moving cases. For any moving case with given Ms , linear regression seems
to be appropriate to approximate the time evolution of the normalized shock detachment distance
(minimum R2 for linear fitting increases to 0.9997). This is different from the stationary cases where
the linear feature is only reserved in cases with weak incident shock.

At a given dimensionless time, a negative influence of Ms on normalized YR is observable in
moving cases. For any moving case with given Ms , a linear feature is observed, with a minimum R2

up to 0.9999. These two features can also be found in stationary cases. Actually, whether the cylinder
moves or remains stationary has little influence on the history of normalized YR , especially when the
incident shock is very weak, as can be seen in Fig. 8(c). For example, when Ms = 1.16, nearly no
difference can be observed from the two cases. Only for larger Ms do discrepancies become more
apparent.

2. History of the dynamic drag coefficient Cd

The dynamic drag coefficient is defined as Cd = Fd/0.5ρLu2
LD. Figure 9 shows the history of

the drag coefficient Cd for cases with different Ms . The overall maximum drag values of moving
cylinders are lower than those of stationary cylinders with earlier occurrence. Such a phenomenon
can be attributed to the reduction of the relative motion between the shock and the cylinder. More
notable differences between moving and stationary cases are observed for smaller Ms . For moving
cylinders, after the descending stage, the drag immediately converges to a constant without the
negative valley observed in cases with a stationary cylinder even for cases with small Ms . The
difference in time when drag force begins to converge to a stable value under different Ms for
moving cases is much less noticeable compared with stationary cases. Due to the earlier occurrence
of the peak and quicker transition to the stable value, the whole dynamic process becomes much
shorter when the cylinder is moving.

Since the interaction process is highly unsteady, it is of interest to find a correlation to predict
the value and the occurrence of the drag peak. To obtain a full correlation for the maximum drag
coefficient with different Ms and D, the method of separation of variables is applied. First, only the
effect of Ms is considered in this part. Then the effect of D will be incorporated in the next section.
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FIG. 10. Maximum Cd and exponential regression for a moving cylinder under different Ms .

The maximum Cd against Ms is plotted in Fig. 10. The scatters can be well fitted using the
following exponential relation:

Cdmax = 2047.0603e−4.8822Ms + 1.8558. (5)

The different occurrence time against Ms is summarized in Fig. 11. A piecewise feature can be
observed. For weak shock with Ms = 1.16−1.4 and Ms = 1.4−1.5, the occurrence of the maximum
drag can be regarded as varying linearly with Ms . However, for larger Ms , it varies more smoothly
with Ms and the linear assumption is not applicable under such a circumstance.

FIG. 11. Occurrence time of maximum Cd for a moving cylinder under different Ms .
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FIG. 12. Plot of (a) the x component of the velocity and (b) displacements in the x direction and third-order
polynomial fittings.

3. Cylinder movement

As a result of the unsteady drag force, the cylinder accelerates rapidly, with velocity increasing
from zero to a relative high value immediately when the shock hits the front of it. Some time
after the shock has passed, the cylinder maintains a relative constant velocity to the postshock
flow.

The influence of Ms on the cylinder velocity is plotted in Fig. 12(a). The cylinder velocity is
normalized by sonic speed cR in the preshock flow. Only cylinder movement in the x direction
is taken into account since the incident shock moves in the x direction and cylinder displacement
in the y direction is nearly nondetectable. When a stronger shock interacts with the cylinder, the
acceleration process tends to be longer with a higher steady-state velocity. In most cases, the
cylinder velocity approaches a subsonic value smoothly. However, for a strong shock such as
Ms = 2.81, the cylinder velocity becomes supersonic in the postshock flow and little oscillation
can be found even at a later stage during the investigated time. This indicates that the postshock
flow becomes more unstable when Ms is large to a certain extent.

Based on the variation of cylinder velocity, the cylinder trajectory is thought to be able to be
reconstructed using third-order polynomial fitting (the minimum R2 is 0.9992). Shown in Fig. 12(b)
is the time series of the cylinder location and its corresponding regression. Good agreement affirms
our analysis, which is consistent with the conclusion drawn in [17].

C. Influence of cylinder diameter D

1. History of the dynamic drag coefficient Cd

When changing the cylinder diameter, the flow structure does not change much. However, D

becomes an important factor contributing to the variation of Cd when the cylinder is driven by the
incident shock, as can be seen in Fig. 13. Here Cd reaches a maximum value of 9.1068, 8.3164,
and 7.7033 at tr = 0.18, 0.13, and 0.13 for D = 10, 15, and 20 mm, respectively. It is clear that the
maximum drag comes earlier for a larger cylinder with a higher value. Furthermore, a steady state
can be achieved faster when increasing D.

For moving cylinders, both D and Ms have effects on Cd . The relation between maximum Cd and
Ms has been obtained through Eq. (5). Here we conduct a further investigation about the influence
of D. In Eq. (5) the value of D is set equal to 10 mm. Thus, D = 10 mm is taken as the base case.
Here we use Db to represent 10 mm. The ratio of the maximum Cd to that of the base case is denoted
by Cdr . Through various attempt, we find polynomial regression to be the best fit for the relation
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FIG. 13. History of the drag coefficient Cd for cases with different D.

between Cdr and D:

Cdr = 0.0390 ×
(

D

Db

)2

− 0.2710 × D

Db

+ 1.2320 (6)

Thus, taking Ms and D into consideration, the correlation to predict the maximum Cd for a
moving cylinder under different Ms can be expressed as

Cdmax = (2047.0603e−4.8822Ms + 1.8558) ×
[

0.0390 ×
(

D

Db

)2

− 0.2710 × D

Db

+ 1.2320

]
. (7)

The influence of D is included only considering the case with Ms = 1.16. We also test other
cases to prove its dependability. Table II shows comparisons between simulated results and solutions
from Eq. (7) for various cases. The maximum error is within 10%. Good agreement validates the
proposed correlation.

TABLE II. Comparisons between simulation and correlation results.

Ms D (mm) Cdmax 1 (simulation) Cdmax 2 (correlation) Relative error (%)

1.34 10 4.6692 4.8064 2.939
1.34 15 4.2631 4.3895 2.964
1.34 20 3.9482 4.0662 2.989
2.0 10 2.0550 1.9734 –3.970
2.0 15 1.8654 1.8022 –3.386
2.0 20 1.7335 1.6695 –3.691
2.8 10 1.7184 1.8582 8.14
2.8 15 1.5652 1.6970 8.42
2.8 20 1.4486 1.5720 8.52
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FIG. 14. Plot of the x component of the velocity for different D.

2. Cylinder movement

As for cylinder movement, a larger cylinder accelerates faster in the flow, as can be seen in
Fig. 14. Although the states of the postshock flow remain the same for the three cases and the drag
coefficient decreases with increasing D, the total drag force exerted on the cylinder actually grows
with increasing D. This proves that variations in D cannot result in matched discrepancies in the
total drag force. Generally speaking, in a case when the mass of the cylinder is fixed, we can make
it larger to help it move and make it smaller to prevent its motion.

IV. CONCLUSION

In the present paper, the shock interaction with a moving cylinder was numerically studied. The
numerical solver was based on the conjunction of the fifth-order WENO scheme and a ghost-cell
immersed boundary method. The study intended to analyze the influences of the shock Mach
number and cylinder diameter on the shock reflection trajectories, the dynamic drag coefficient, and
the cylinder movement.

Both the shock Mach number Ms and cylinder diameter D have a strong effect on the interaction
process. At a given dimensionless time, the trajectory of the TP varies nonmonotonically with Ms

while both normalized XR and normalized YR decrease with increasing Ms . For any moving case
with given Ms and D, the trajectory of the TP, the time evolution of the normalized XR , and the time
evolution of the normalized YR can all be described using linear regression. This is very different
from stationary cases. Details of the difference between moving and stationary cases have also been
illustrated in the paper.

Besides the complex flow structure, we also investigated the variation of the dynamic drag
coefficient Cd and the movement of the cylinder. Considering the effects of Ms and D, we proposed
correlations to predict the peak drag coefficient. Although the application of the present correlation
may be restricted, it reveals approximate trends how the maximum drag coefficient depends on param-
eters such as D and Ms , which is very helpful for further investigation to expand it to a broader range.
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