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Unsteady drag following shock wave impingement on a dense particle
curtain measured using pulse-burst PIV
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High-speed, time-resolved particle image velocimetry with a pulse-burst laser was used
to measure the gas-phase velocity upstream and downstream of a shock wave–particle
curtain interaction at three shock Mach numbers (1.22, 1.40, and 1.45) at a repetition
rate of 37.5 kHz. The particle curtain was formed from free-falling soda-lime particles
resulting in volume fractions of 9% or 23% at mid-height, depending on particle diameter
(106–125 and 300–355 μm, respectively). Following impingement by a shock wave, a
pressure difference was created between the upstream and downstream sides of the curtain,
which accelerated flow through the curtain. Jetting of flow through the curtain was observed
downstream once deformation of the curtain began, demonstrating a long-term unsteady
effect. Using a control volume approach, the unsteady drag on the curtain was estimated
from velocity and pressure data. The drag imposed on the curtain has a strong volume
fraction dependence with a prolonged unsteadiness following initial shock impingement.
In addition, the data suggest that the resulting pressure difference following the propagation
of the reflected and transmitted shock waves is the primary component to curtain drag.
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I. INTRODUCTION

An understanding of the complex physics associated with the interaction of a shock wave with
a multiphase mixture is important in many engineering applications, such as pulsed detonation
engines [1,2], mining safety [3], rocket propulsion [4], and explosive dispersion of heterogeneous
mixtures [5]. When a shock wave interacts with a multiphase mixture, momentum and energy are
exchanged between the phases. Oftentimes, these interactions involve clouds or agglomerations of
solid or liquid particles, where the momentum and energy exchange are not readily understood. The
difficulty therefore arises in that the interparticle interactions (collisions) and the aerodynamics of
the particles in the presence of a highly compressible flow (i.e., drag) combine to make accurate
predictions difficult [6]. In addition, the aerodynamic behavior of a dense gas-solid mixture cannot
be extrapolated from that of isolated particles due to the non-negligible influence of volume fraction.

A gas-solid mixture may be divided into one of three categories based on volume fraction (ϕp):
dilute (ϕp < 1%), granular (50% < ϕp), and an intermediate, dense gas-solid regime in the range
1% � ϕp � 50% [5]. In this sense, dilute mixtures form an extreme where the volume of the solid
particles is negligible in relation to the volume of the gas, such as a fine dust. In comparison, granular
mixtures contain solid particle volumes that are greater than or equal to the volume of fluid within
the mixture. In these mixtures, interactions between the particles cannot be neglected, as the particles
are, in fact, in direct contact with each other [5]. Finally, dense mixtures are those in which the solid
volume is non-negligible, but the particles are not in constant contact with each other.
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A variety of studies has been performed to model or directly measure the interaction of a shock
wave with a dilute gas-solid mixture, with many of these modeling efforts summarized by Marble [7].
Within the literature, estimation of the drag imposed on a multiphase mixture following impingement
by a shock wave has provided difficulties for a variety of reasons. It has been established for some
time that the standard drag law underpredicts the drag imposed on dilute flows. Rudinger [6] first
noted difficulty in the standard drag model’s prediction of the dispersal of particles within a dusty
cloud, a finding echoed by Sommerfeld [8], who noted that many researchers simply create a drag law
suitable strictly for their own data set. One major problem presented in the standard drag law is that it
relates the drag coefficient strictly to an empirical function of the diameter-based Reynolds number.
In contrast, many other terms have been identified as contributing to the overall drag imposed on
a dilute flow; these include quasisteady, inviscid, and lift forces [9,10] as well as compressibility
influences [11].

Many studies have been performed in order to correctly model particle drag by improving
assumptions associated with compressibility and unsteadiness effects [10,12–14]. Parmar et al. [10]
developed a model, validated with experimental work from Britan et al. [15], Sun et al. [12], and
Skews et al. [16], which showed that unsteady loading was largely limited to the transient associated
with a shock wave passing over a given particle, quickly dissipating to negligible values thereafter.
Furthermore, their study concluded that drag measurements tended to rapidly asymptote towards
quasisteady predictions. Wagner et al. [11] demonstrated that unsteady drag did not appear to
contribute to long-time drag behavior in dilute gas-solid mixtures; rather, the particle drag showed
a strong Mach number dependence, in agreement with the work of Loth [13] and Parmar et al. [10].

In comparison to dilute particle mixtures, little work has been performed on dense gas-solid
mixtures. The works of Boiko et al. [17] and Rogue et al. [18] provide two early investigations into
dense gas-solid particle regimes. Rogue et al. [18], for example, noted that interaction with these
mixtures results in the creation of a transmitted shock wave that continues to propagate downstream
through the mixture, and a reflected shock that travels back upstream of the mixture, which was also
seen by Boiko et al. [17] for their larger volume fractions. Outside of these, however, investigations
of the dispersal of dense gas-solid mixtures as a whole, and its drag in particular, are limited in
comparison to the dilute regime.

The question of particle dispersion in the dense gas-solid regime requires a definition of the
major contributors to the imposed drag. Experimental work performed by Wagner et al. [19,20]
on the interaction of a shock wave with a dense gas-solid mixture provides some insight into the
dispersal mechanism. These tests were performed on a particle curtain formed of soda-lime particles
with a diameter of 106–125 μm, resulting in a volume fraction of 20%. From high-speed Schlieren
and unsteady pressure measurements, they were able to observe the formation of a reflected and
transmitted shock wave emanating from the curtain postinteraction with the shock wave, similar
to what was seen by Boiko et al. [17] and Rogue et al. [18], along with spreading of the particle
curtain in the streamwise direction [19]. Furthermore, recent x-ray measurements by Wagner et al.
[20] have shown particle drag during the interaction to exceed quasisteady drag predicted by Parmar
et al. [10].

Using the data from Wagner et al. [19], Ling et al. [21] developed a new drag law model that
incorporated drag unsteadiness, the influence of compressibility on drag, volume fraction influences,
and interparticle interaction effects, which better reproduced the behavior of dense gas-solid mixtures
seen in the experiments of Wagner et al. [19]. Other studies have also been performed to improve
upon estimation of the dense mixture drag [22–24]; however, more data is required to refine these
estimates and broaden their applicability [21]. To this end, additional shock tube investigations of
dense mixture interactions include Kellenberger et al. [25] and the work of Theofanous et al. [26],
which focused on scaling relationships in the dense regime.

The work presented here is a continuation of the work shown in Wagner et al. [19,20], making use
of a pulse-burst laser to produce time-resolved particle image velocimetry (TR-PIV) measurements
of the gas-phase velocity upstream and downstream of the particle curtain, following interaction
with a planar shock wave. The results of these measurements, along with unsteady pressures, are
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FIG. 1. The multiphase shock tube (MST) with relevant sections identified.

then used to perform a control volume analysis, which estimates the total unsteady drag imposed
on the dense gas-solid mixture as a function of time. In this sense, this study endeavors to measure
the unsteady drag imposed on the dense mixture and provide further insight into the mechanism of
particle dispersal and its relationship to the better understood single-particle drag.

II. EXPERIMENTAL SETUP

A. Multiphase shock tube

The multiphase shock tube (MST) is shown in Fig. 1. The driver section of the shock tube was
constructed from a 2.1-m-long stainless steel pipe with an inner diameter of 89 mm, supplied with
a high pressure nitrogen source. The driven section consists of square tubing, 5.2 m long, with an
inner width of H = 76 mm. The driven gas was air at an initial temperature and absolute pressure
of 300 K and 84.1 kPa, respectively.

In lieu of burst discs, a Dynamics Systems Research (Model 183–1.5–2000) fast-acting valve
was used to fire the shock tube due to its repeatability and comparably rapid turn-around time. It has
been shown that this valve is capable of producing flow conditions comparable to those achieved
from a traditional burst disk setup [27].

Experiments were conducted at three shock Mach numbers: Ms = 1.22,1.40, and 1.45 (based on
time of arrival of the shock wave at the pressure transducers), which corresponded to driver pressures
of 690, 2070, and 2760 kPa. Prior to an experiment, soda-lime particles rested on an initially closed
gate valve located above the test section of the shock tube. The experiments presented here were
performed using two separate diameter distributions (dp): 106–125 and 300–355 μm. When the gate
valve was opened, particles under the influence of gravity flowed through a beveled 3.2 mm slit in the
test section ceiling, forming a particle curtain measuring (initially) δ0 = 1.5 ± 0.2 or 3.5 ± 0.2 mm
in streamwise thickness at mid-height, depending on particle diameter distribution. Even though the
slit was held constant, two different thicknesses arose due to the change in particle diameter. The
particle curtain was measured to flow at an average rate (within 95% confidence) of 56.0 ± 0.24

064301-3



DEMAURO, WAGNER, BERESH, AND FARIAS

(a) (b)

FIG. 2. (a) Instantaneous image of the particle curtain (dp = 300−355 μm) obtained at an oblique angle;
(b) instantaneous side view of the particle curtain used to measure the curtain thickness.

and 52.6 ± 0.23 g/s, for the dp = 106−125 and 300–355 μm curtains, respectively. Note that all
uncertainties presented herein are with respect to the mean. Before firing the shock tube, the particle
curtain flowed through the test section for a second to ensure that the steady state had been reached
within the curtain. The particles exited the test section through a similar slit in the floor, where they
entered a collection reservoir.

B. Characterization of the particle curtain prior to shock arrival

An extensive set of tests was conducted to characterize and quantify the particle curtain, including
measurements of the particle velocity, mass flow rate, and curtain thickness. Assuming a constant
cross-sectional area Ac, the density of the particle curtain as a function of height y can be shown to
be

ρmix(y) = ṁmix

up(y)Ac

, (1)

where up is the velocity of the particles, ṁmix is the mass flow rate of the mixture, and the subscript
“mix” refers to properties pertaining to the gas-solid mixture. The particles were observed to free
fall at an average velocity of 0.89 m/s at mid-height; therefore they were essentially frozen in
comparison to the shock velocities. From this, it was shown that a simple free-fall equation could be
used to model the velocity of the particles, i.e., up(y) ≈ √

2g(H/2 − y), where the particle velocity
was taken to be nearly zero at the entrance slit into the shock tube test section. Because the volume
fraction (ϕp) varies across the height of the particle curtain, it was defined as that measured at
mid-height, determined from

ϕp = ∀p

∀mix
= ρmix − ρair

ρp − ρair
, (2)

where ∀ is volume and ρ is density; in Eq. (2), the subscripts “p” and “air” indicate quantities
pertaining to the particles and air, respectively.

Figure 2 shows an image of the particle curtain (dp = 300−355 μm), acquired at an oblique angle,
along with a shadowgraph image of the curtain used to measure the thickness. Note that a background
subtraction was performed in both images to highlight relevant features. Under the assumption of
a uniform particle distribution, ϕp was measured to be ∼23 ± 3% and ∼9 ± 0.5% at the center
of the curtain (106–125 and 300–355 μm particles, respectively), where the ranges correspond to
uncertainties associated with the curtain mass flow rate and thickness. For the remainder of the paper,
the particle curtain will be referred to by the associated value of ϕp. Within Fig. 2(a), gaps become
apparent within the particle curtain. The curtain shown here is ϕp = 9%; therefore the nonuniformity
is associated with the volume fraction decreasing closer to the floor of the shock tube. Note that in
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FIG. 3. Schematic of the experimental setup with axis orientation, including upstream and downstream
locations of TR-PIV measurements. The coordinate system is defined such that the origin is at mid-height and
mid-thickness of the particle curtain (indicated by the red dotted outline).

reality, the curtain initially has a streamwise Gaussian particle distribution [20,22,28]; however, for
purposes of simplicity, this was assumed to be a negligible factor.

C. Experimental measurement procedure

1. Pulse-burst PIV

Previous PIV realizations in shock tubes have typically been difficult due to low repetition rates,
allowing for only a single realization to be obtained in the millisecond test times of a shock tube
[29–32]. Recent advances and the commercialization of pulse-burst laser technology, however, have
made time-resolved PIV (TR-PIV) in high-speed flows a feasible and attractive option to overcome
this limitation [27,33]. For this study, the light source for the TR-PIV was a Quasi-Modo (Spectral
Energies, LLC) burst-mode laser, with a maximum repetition rate of 500 kHz, which provided
∼25 mJ per pulse at 37.5 kHz at 532 nm. The duration of the burst was 10.2 ms, greater than the
typical test times in the MST (about 1 ms), with each pulse width lasting 6 ns. The laser was operated
in a doublet (i.e., double pulsed) mode, where the time delay between pulses was set to �t = 4 μs
for maximum displacements of one-third the interrogation window.

Typical sheet-forming optics were used to shape the laser into two separate 1.5-mm-thick laser
sheets, as seen in Fig. 3, to provide for simultaneous measurement of upstream and downstream
fields of view. The laser sheets were positioned at the spanwise center plane of the shock tube
test section. A beam splitter was used to form two sheets to allow for the regions upstream and
downstream of the curtain to be measured simultaneously. Two Photron SA-Z cameras, each with
a maximum resolution of 1024 × 1024 digitized to 12 bits, were set to a resolution of 680 × 340
pixels at 75 kHz, in order to frame straddle the 37.5 kHz doublets. Images were acquired using a
pair of 105 mm camera lenses, which were set to f /11.

Seed particles were produced from mineral oil using a TSI six-jet atomizer, and were introduced
into the shock tube about 0.5 m downstream of the fast-acting valve. In situ measurements showed
that the atomizer delivered a particle size of ∼1.6 μm; this resulted in Stokes numbers ranging from
0.025–0.06, depending on flow conditions. At these Stokes numbers, the seed particles are expected
to faithfully track the flow [34]. These smoke particles were introduced into the driven section before
a run, with particle delivery terminated prior to firing the shock tube; therefore, there was negligible
seed velocity prior to initiation of a test.
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FIG. 4. Examples of raw and preprocessed seeded images, ϕp = 9%: (a) larger soda-lime particles are
present within the image; (b) the same image passed through a Fourier high-pass filter with the intensity
associated with larger particles attenuated.

Raw images were preprocessed using a Fourier high-pass filtering technique, described in
Sec. II C 2. Vector fields were processed with the LaVision DaVis 8.3 software package using a
multipass method, with an initial interrogation window size of 64 × 64 pixels with 50% overlap,
followed by two iterations performed with an interrogation window size of 32 × 32 pixels at a 75%
overlap. A Gaussian weighting function was applied to the interrogation windows. Spurious vectors
associated with soda-lime particle light scattering were removed using a vector range filter as the
soda-lime particles move much slower than the gas flow that carries the PIV particles; remaining
errors were addressed with a median filter with a 5 × 5 spatial universal outlier detector. As can
be seen in Fig. 2(b), extraneous particles were found to propagate upstream and downstream of
the curtain, away from the core curtain flow, entering the associated fields of view. While vector
validation was used to decrease the influence of the soda-lime particles on the processed vector
fields, it was first necessary to apply an image filter to the raw images to further mitigate their effect
on the processed vector fields.

2. Image filter

Due to the proximity of the two fields of view to the particle curtain, soda-lime particles from the
curtain were at times evident in either field of view. These were particles that randomly fell outside of
the bulk motion of the curtain, whether upon startup [Fig. 2(b)] or later displaced downstream once
the curtain began to deform (Fig. 6). This can be seen in Fig. 4(a), where larger particles indicate
the presence of soda lime within the seeded raw image. The raw and filtered image corresponds to
a location upstream of the particle curtain; coordinate axes (with an arbitrary origin) are placed to
indicate the streamwise and wall-normal directions. In order to mitigate the presence of spurious
vectors associated with slower-moving soda-lime particles, a high-pass filter was applied to all
images prior to processing, removing spatial frequencies up to ∼0.2 mm−1. This was accomplished
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FIG. 5. Example histograms comparing vector fields processed (a), (c) from raw, unfiltered images and (b),
(d) from filtered images for (a), (b) upstream and (c), (d) downstream fields of view. This figure corresponds to
Ms = 1.45, ϕp = 23%, at time t∗ = 78.2.

by performing a convolution of the raw image files [35,36]. An example of a filtered image can be
seen in Fig. 4(b), where the presence of the larger soda-lime particles has been greatly attenuated.
This method is in contrast to the procedure performed by Zhang et al. [37], who used a type of
algorithmic mask to remove larger particles from seeded images.

To better illustrate the effectiveness of the Fourier filter, example histograms are presented in
Fig. 5, corresponding to Ms = 1.45 (ϕp = 23%), for a time following passage of the reflected or
transmitted shock waves. This case was chosen to illustrate the effectiveness of the filter in that the
downstream field of view for this case saw the intrusion of a large number of soda-lime particles that
resulted in spurious vector calculations. The histograms associated with unfiltered data demonstrate
the presence of slower-speed realizations within the processed vector fields, which are greatly
attenuated in the filtered data. For this reason, the data presented in the subsequent sections were
preprocessed using the Fourier high-pass filter.

A few interesting features are to be noticed in the sample histograms shown in Fig. 5. Within
the upstream field of view [Figs. 5(a) and 5(b)], the filter attenuates realizations less than 0.5Uind.
The effect seen here is to narrow the variance of the histogram and increase the number of instances
measured at ∼0.7Uind. In comparison, within the downstream field of view [Figs. 5(c) and 5(d)],
instances less than 0.5Uind have once again been removed; however, the effect is an increase in
the variance within the downstream histogram [Fig. 5(d)], where measured values of velocity can
be seen to reach as high as ∼1.1Uind. In other words, inaccurate velocity realizations have been
replaced with high-velocity vectors now measurable with the high-pass filter. As will be discussed
in Sec. III B, this corresponds to resolving jetting of accelerated velocity that can be seen developing
downstream of the curtain following curtain deformation.

3. Additional instrumentation

Both upstream and downstream fields of view were offset (in the x direction) 19 mm from the
centerline of the particle curtain, as shown in Fig. 3. Therefore, Schlieren imaging was also performed
to visualize the direct interaction of the shock wave with the particle curtain. These measurements
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were not performed simultaneously with the TR-PIV; however, due to repeatability, it was possible
to synchronize the resulting Schlieren with the TR-PIV in postprocess.

The light source for the Schlieren was a Visual Instrumentation Corp. continuous-wave high-
brightness LED (Model 900415). Two 101.6-mm-diameter planoconvex lenses, both with a focal
length of 463.5 mm, were used. The first lens was used to collimate the light before entry into the test
section. The secondary planoconvex lens focused light exiting the test section onto a vertical knife
edge. Images were acquired using a Photron SA-Z camera, again with a resolution of 680 × 350
pixels, operating at a framing rate of 75 kHz, with a 105 mm camera lens.

Finally, pressure measurements were conducted using four PCB pressure sensors (Model
113B27). The PCB’s have an output range of 0–6895 kPa, a resonant frequency greater than 500 kHz,
and a sensitivity of ∼7.25 mV/kPa. These sensors were installed along the ceiling, which collected
time-resolved measurements sampled at a rate of 800 kHz. The sensors were located on either side
of the curtain (two upstream and two downstream of the curtain), placed at x = −82.4,−57.1,31.7,
and 57.1 mm, along the centerline. In addition, both the TR-PIV and Schlieren measurements were
triggered off of a single PCB sensor (Model 113B26) located 0.5 m downstream of the fast-acting
valve.

III. RESULTS AND DISCUSSION

Section III is divided into sections progressing towards estimation of the particle curtain
drag. First, Schlieren images are presented in Sec. III A to give a brief overview of the curtain
interaction. Following this, the TR-PIV measurements are discussed in Sec. III B. Finally, the TR-PIV
measurements are used, in concert with unsteady pressure measurements, in Sec. III C to estimate
the total integrated drag imposed on the curtain as a function of time. In all subsequent sections,
unless otherwise specified, data are presented with time nondimensionalized as t∗ = tUind/δ0, where
Uind is the induced velocity behind the initial shock wave.

A. Schlieren imaging of the curtain interaction

Schlieren imaging is presented in Fig. 6, highlighting particular features of the shock wave–
particle curtain interaction. As many of the features of this interaction are common across all the
three Ms and the two ϕp, only a single data set is shown here. These representative images correspond
to the Ms = 1.40 shock wave impingement on the ϕp = 9% particle curtain. The field of view here
encompasses 28 mm in the vertical direction (centered about mid-height) and 82 mm in the horizontal
direction. Note that t = 0 s corresponds to the time at which the shock wave impinges on the front
edge of the particle curtain.

The normal shock wave approaches the upstream side of the particle curtain at t∗ = −2.27
[Fig. 6(a)]; due to the large disparity between the shock wave speed and the speed of the particles
within the curtain (0.89 m/s), the particles appear to be frozen. In Fig. 6(b), the shock wave has now
reached the particle curtain, resulting in the formation of a transmitted shock wave downstream of
the curtain and a reflected shock wave that travels back upstream. Transmitted and reflected shock
waves are characteristic of interactions with dense gas-solid mixtures and have been observed by a
number of researchers previously [17–19,21].

The reflected shock wave moves slower than the transmitted shock wave in this example, as is
clear from Figs. 6(c) and 6(d). However, for the case of ϕp = 23%, it can be seen that the speeds
of the two are much more comparable. A summary of the shock Mach numbers (obtained from
measuring the time of arrival at the pressure transducers) can be seen in Table I. The uncertainties
associated with each value represent a 95% confidence range.

For the case of ϕp = 23%, the speed of the transmitted shock wave is, on average, 81.3% of the
initial shock wave versus 82.0% for the reflected shock. Likewise, for ϕp = 9%, these values are
93.0% and 81.3% for the transmitted and reflected shock waves, respectively. Over the range of
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FIG. 6. Schlieren imaging of the Ms = 1.40 shock wave interaction with the dp = 300−355 μm particle
curtain: t∗ = (a) −2.27, (b) 0.76, (c) 3.78, (d) 6.80, (e) 12.85, (f) 20.41, (g) 27.96, (h) 43.08, (i) 58.20, (j) 73.31.

conditions tested herein, these results imply that the strengths of the reflected and transmitted shocks
are more closely related to the initial volume fraction rather than the strength of the incident shock.

Referring to Eqs. (1) and (2), the particle curtain becomes more porous closer to the bottom of the
test section owing to gravitational acceleration. Therefore, the reflected shock wave is stronger where
the volume fraction is largest (at the top of the test section) and weaker where the volume fraction is
smallest (at the bottom), resulting in the inclined shock wave evident in Fig. 6(d). Although not as
readily apparent, the transmitted shock wave also is slightly inclined. It is expected that the change
in curtain volume fraction as a function of height should induce two-dimensionalities within the
gas phase upstream and downstream of the curtain, which will be explored in more detail in the
following section.

In comparison to the experiments of Wagner et al. [11], the particle curtain shown here extends
fully to the walls of the shock tube, whereas that of Wagner et al. [11] encompassed only 87% of
the test section width. The result is that the transmitted shock wave here appears thinner and does
not exhibit any apparent rippling associated with flow wrapping around the free edges of the curtain
and shock diffraction. A contact surface issuing from the downstream edge of the particle curtain
can briefly be seen in Fig. 6(c) between the particle curtain and the transmitted shock wave. This

TABLE I. Shock wave Mach numbers with percentage of Ms .

dp (μm) ϕp (%) Initial Transmitted Reflected

1.22 ± 0.02 1.05 ± 0.03 (86.1%) 1.05 ± 0.01 (86.1%)
106–125 23 1.40 ± 0.03 1.12 ± 0.02 (80.0%) 1.13 ± 0.01 (80.7%)

1.45 ± 0.02 1.13 ± 0.03 (77.9%) 1.15 ± 0.03 (79.3%)

1.22 ± 0.02 1.16 ± 0.05 (95.1%) 1.04 ± 0.03 (85.2%)
300–355 9 1.40 ± 0.03 1.29 ± 0.02 (92.1%) 1.13 ± 0.02 (77.9%)

1.45 ± 0.02 1.33 ± 0.00 (91.7%) 1.17 ± 0.04 (80.7%)
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contact surface is formed from the interface of the fluid downstream of the particle curtain and the
fluid propagating through the curtain [21].

Deformation of the particle curtain is caused by a mismatch in the gas-phase velocities and
pressures upstream and downstream of the curtain. As will be shown subsequently, the reflected shock
wave decelerates the flow upstream of the particle curtain to a magnitude slower than that downstream
of the curtain. This can be seen qualitatively, beginning in Fig. 6(e), where the downstream side of
the curtain begins moving downstream itself. By Fig. 6(f), the upstream edge of the curtain has also
begun to move in the streamwise direction, albeit at a slower rate.

Recall that the true volume fraction of the curtain (prior to impingement of the initial shock wave)
contains a Gaussian distribution in the streamwise direction, with the maximum volume fraction
centered at x/δ0 = 0, for t � 0. As was seen by Wagner et al. [20], as time increases, this absolute
maximum is shifted downstream, resulting in a skewed distribution. Along with the streamwise
widening of the particle curtain, the curtain volume fraction begins to decrease in time, creating a
decreasing resistance to gas-phase flow. At t∗ = 27.96 [Fig. 6(g)], this decreasing volume fraction
is not readily apparent; however, beginning with t∗ = 43.08 [Fig. 6(h)], light begins to penetrate
through the upstream side of the curtain, implying a localized increase in porosity. The process
continues at t∗ = 58.20 and 73.31 [Figs. 6(i) and 6(j)], where further breakdown of the particle
curtain results in increasing porosity becoming more evident within the upstream portion of the
curtain.

B. Time-resolved PIV measurements of the flow upstream and downstream of the curtain

TR-PIV of the gas phase upstream and downstream of the particle curtain can provide further
insight into (1) the unsteady drag on the curtain and (2) whether the height distribution of the curtain
volume fraction could result in two-dimensionalities within the gas phase.

Processed vector fields of the gas phase

Color contours of streamwise velocity (u) with in-plane streamlines at seven separate times
are shown in Fig. 7 (ϕp = 23%) and Fig. 8 (ϕp = 9%), for Ms = 1.40. Here, the velocity fields
are normalized by the induced velocity behind the initial shock, to facilitate comparison between
upstream and downstream fields of view. White spaces within the vector fields correspond to either
a lack of measured data or vectors that fall outside of the velocity threshold (±∼0.5Uind). Because
PIV was not possible at the location of the particle curtain (due to reflections from extraneous
soda-lime particles), Schlieren imaging is added to Figs. 7 and 8 to show the motion of the shock
waves between the two PIV fields of view. The flow features are generally the same for all three
Mach numbers within a given particle size; therefore, only two of the six cases are shown.

As was described in Sec. III A, an initially planar shock wave can be seen approaching the particle
curtain for t∗ < 0 [Figs. 7(a), 7(b), 8(a), and 8(b)]. Once again, following arrival of the shock wave
at the upstream edge of the curtain, reflected and transmitted shock waves are formed, each moving
away from the curtain edges [Figs. 7(c) and 8(c)]. As the transmitted shock wave enters into the
downstream field of view, the induced flow behind it initially appears rather steady in time (compared
to later times), as seen in Figs. 7(d) and 8(d), respectively.

In comparing Fig. 7(e) with Fig. 8(e), it is readily apparent that the transmitted shock wave in
the ϕp = 23% curtain is much weaker than in the ϕp = 9% curtain, given that the transmitted shock
induces a slower flow downstream of the curtain. To better illustrate this, the resulting shock wave
Mach numbers are shown in Table I. It should be pointed out here that evidence of an instability or
nonuniformity is apparent within Fig. 7(e). This “dent,” which appears within the Schlieren images,
appears to have been a random (i.e. nonrepeatable) occurrence and did not appear within the TR-PIV
measurements. Furthermore, the analysis that follows in the later sections made use of the average
of three runs; therefore, errors associated with the presence of such random nonuniformities are
reflected in the uncertainty propagation that is performed in the later sections.
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FIG. 7. TR-PIV color contours of (unsteady) streamwise velocity with in-plane streamlines for Ms = 1.40,
ϕp = 23%, upstream and downstream of the particle curtain, with associated Schlieren at t∗ = (a) −24.7
(−0.1867 ms), (b) −7.05 (−0.053 ms), (c) 10.60 (0.080 ms), (d) 14.10 (0.1067 ms), (e) 31.70 (0.240 ms),
(f) 63.50 (0.480 ms), (g) 74.10 (0.560 ms).
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FIG. 8. TR-PIV color contours of (unsteady) streamwise velocity with in-plane streamlines for Ms = 1.40,
ϕp = 9%, upstream and downstream of the particle curtain, with associated Schlieren at t∗ = (a) −9.83
(−0.1733 ms), (b) −2.27 (−0.040 ms), (c) 3.78 (0.0667 ms), (d) 8.31 (0.1467 ms), (e) 15.87 (0.280 ms),
(f) 27.96 (0.493 ms), (g) 35.52 (0.627 ms).
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Once again, the transmitted and reflected shocks are both noticeably inclined. Interestingly, as is
more evident in Figs. 7 and 8, the reflected shock wave becomes increasingly more inclined with
increasing distance from the particle curtain. This is due to the stronger portions of the reflected
shock (near the ceiling) traveling faster than the weaker portions (nearer the floor). The inclined
reflected and transmitted shock waves imply that a small wall-normal velocity component should be
generated within the gas-phase flows, as evidenced from the in-plane streamlines in Figs. 7(e), 7(f),
8(e), and 8(f). Importantly though, the relatively straight streamlines at most times in the figures
suggest a relatively one-dimensional flow.

The reflected shock wave induces a wall-normal velocity directed towards the floor of the test
section, upstream of the curtain. Similarly, a stronger positive wall-normal velocity is consistently
formed downstream of the particle curtain, associated with the inclined transmitted shock wave. The
wall-normal velocity appears transient, with the streamlines straightening out a time step or two
later. This effect is especially clear within the upstream field of view.

In addition to the wall-normal velocity, an acceleration of the downstream induced flow, i.e.,
jetting through the particle curtain, is consistently seen [Figs. 7(e)–7(g) and Figs. 8(e)–8(g)]. This
jetting is associated with acceleration of flow as it moves through the porous curtain. When the shock
wave impinges on the particle curtain, the reflected shock, propagating back upstream, increases
the pressure upstream of the particle curtain, while reducing the upstream gas-phase velocity.
Downstream of the curtain, the pressure is lower in comparison to the upstream pressure (implied
by larger velocities and by the presence of twice-shocked flow upstream of the curtain), resulting
in a favorable pressure difference that accelerates flow through the curtain. The pressure difference
that sets up across the curtain causes the curtain to spread, further reducing the volume fraction.
Therefore, when jetting of flow through the curtain appears, it begins closer to the floor of the shock
tube, where the volume fraction is initially the lowest, and gradually rises towards mid-height. If the
volume fraction were perfectly uniform, then the flow would appear to uniformly accelerate. The
occasional appearance of smaller velocities towards the floor can be attributed to random turbulent
fluctuations and nonuniformities that may exist within the particle curtain.

Unsteadiness downstream of the particle curtain increases as a function of time, as shown in
Figs. 7(e)–7(g) and Figs. 8(d)–8(g). One question that arises is whether or not this is a measure of
small-scale unsteadiness induced by flow through the interstitial spacing within the curtain. Initially,
the length scales associated with particle-induced turbulence are of the order of ∼0.1 or 0.3 mm,
depending on dp. In contrast, the vector resolution of the data in Figs. 7 and 8 is ∼0.8 mm; therefore,
assuming the length scale of the largest turbulent eddy is of the order of dp, these vector fields lack
the spatial resolution necessary to properly resolve turbulent length scales less than or equal to the
vector resolution.

This is only true within the initial transient. As time increases, turbulent length scales associated
with the jetting grow within the downstream field of view as the curtain further deforms, creating
larger interstitial spaces and allowing the resulting unsteadiness to begin to take shape within the
processed vector fields. With increasing distance downstream of the curtain, these jets entrain flow
from their surroundings and each other. Therefore, the jetting seen in Figs. 7(g) and 8(g) represent
larger scale motions than particle-induced turbulence. On the other hand, if the interstitial spacing
were to remain small, then the observed jetting would instead appear spatially uniform owing
to limited spatial resolution inherent in the PIV measurements. The oblique view of the particle
curtain shown in Fig. 2(a) indicates that some nonuniformity exists, which leads to small differences
between individual runs; however, the conclusions presented here are drawn from multiple runs per
test condition. Therefore, the conclusions should not be impacted by run-to-run differences.

Regarding three-dimensionalities within the particle curtain, spanwise-oriented TR-PIV was used
to assess the spanwise dependency of the flow. An example of this is given in Fig. 9 for Ms = 1.40,
ϕp = 9%, where the vector field corresponds to a field of view downstream of the particle curtain, at
y/δ0 = 5.7. Note that as this measurement is located above the field of view corresponding to Fig. 8,
the velocities shown here are reduced owing to the higher volume fraction. Across the times shown,
Fig. 9 indicates relatively little spanwise (z direction) dependency in the flow field downstream of
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FIG. 9. TR-PIV color contours of (unsteady) streamwise velocity with in-plane streamlines downstream
of the particle curtain for Ms = 1.40, ϕp = 9%, taken in an x − z oriented plane at y/δ0 = 5.7; t∗ = (a) 9.83
(0.173 ms), (b) 24.94 (0.440 ms), and (c) 40.1 (0.707 ms).

the curtain, although turbulent fluctuations appear to be present. As a result, the control volume
analysis that is to follow will assume that there is a negligible spanwise influence on the flow.

C. Estimation of particle curtain total drag

1. Time traces of the unsteady measurements

The unsteady streamwise velocity (averaged across the height of the measurement domain) and
the time-resolved pressure data upstream and downstream of the ϕp = 9% curtain at x/δ0 = ±16.30
are shown in Fig. 10 for the Ms = 1.40 case. For use in the subsequent calculations of the curtain
drag, polynomials are fit to the unsteady data, as shown in Fig. 10 (linear for the velocity data and fifth
order for the pressure data). These polynomials were used in order to facilitate a means of applying
the analysis in the subsequent sections, namely, computing derivatives and matching values at given
times. For the velocity term, it was assumed that the acceleration was nearly constant within the time
frame of interest, as evidenced by Fig. 10(a). The curve fits were determined using unsteady data
taken from three separate runs; for simplicity, they are presented here superimposed on time traces
representing the average of these multiple runs. For the velocity data, this simplified operations
such as taking time derivatives. The polynomial fits applied to the velocity data encompassed times
corresponding to the passage of the reflected shock wave upstream of the curtain until just before
the spreading of the particle curtain enters into the downstream field of view.

The pressure (P ) curve fits were performed using a much longer length of time, to smooth out
fluctuations and capture the overall unsteady trend to the pressure. As can be seen in the downstream
pressure trace, the PCB registers increasing values, which reach a maximum around t ≈ 3 ms. This
increase in pressure is associated with passage of the bulk of the particle curtain. For this reason,
along with limitations mentioned in the velocity data, the analysis was limited (in all cases) to t < 1
ms. Early in the upstream pressure trace, a series of (relatively) low frequency oscillations can be
seen at t < 2 ms. These oscillations have not been incorporated into the analysis.

The transmitted shock is seen to reach the downstream sensor faster than the reflected shock
reaches the upstream sensor, as can be seen in both Figs. 10(a) and 10(b). The TR-PIV measurements
encompass a time span of t < 2 ms; it is clear from Fig. 10 that within this time, the pressure upstream
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FIG. 10. Time traces and associated curve fits of the upstream and downstream (a) streamwise velocities
(37.5 kHz) and (b) pressure taps (800 kHz), for Ms = 1.40, ϕp = 9%. The time traces represent the average of
three runs.

of the curtain is in fact larger than the pressure downstream, in agreement with the appearance of
jetting evident in Figs. 7 and 8.

2. Control volume approach and derivation

A goal of this study was to resolve the unsteady drag (D) imposed on the particle curtain
as a function of time. To do so, a control volume approach was used to estimate the total drag.
A schematic of the control volume is provided in Fig. 11. The pressure sensors were placed at
constant locations corresponding to x/H = ±0.72 along the top surface of the test section. The
parameters entering the control volume were defined from the TR-PIV and the unsteady pressure
measurements. Estimation of the unsteady drag was performed starting with the momentum equation.
The streamwise momentum equation is

�Fx = [P1(t) − P2(t)]Ax − D(t) = ∂

∂t

∫∫∫
ρ(t)u(t)dxdydz + ©

∫∫
ρ(t)u2(t)dydz. (3)

Here, P is taken to be constant along the height of the test section. The first term on the right-hand
side of Eq. (3) represents the rate change of momentum within the control volume, whereas the second
term on the right-hand side represents the flux of momentum across the boundaries of the control
volume. The cross-sectional area Ax is defined here as �zH . For simplicity, unsteady terms will be
implied for the remainder of the derivation, i.e., D ≡ D(t).

Integrating Eq. (3) results in

D = (P1 − P2)Ax + (
ρ1u

2
1 − ρ2u

2
2

)
Ax − ∂

∂t

∫∫∫
ρudxdydz. (4)

Equation (4) can be simplified further if u is assumed constant across the height of the test section
(i.e., an average value) in order to reduce the noise within the measurement. In addition, a functional
form of ρu is necessary to solve the remaining integral. This is done by assuming a linear relationship
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FIG. 11. Schematic of the control volume method.

for ρu:

∂

∂t

∫∫∫
ρudxdydz = Ax

∂

∂t

∫
ρudx ≈ Ax

∂

∂t

∫ [
ρ2u2 − ρ1u1

�x
(x − x1) + ρ1u1

]
dx.

Further simplification results in

D = Ax

[
(P1 − P2) + (

ρ1u
2
1 − ρ2u

2
2

) − �x

2

∂

∂t
(ρ1u1 + ρ2u2)

]
. (5)

The previous measurements have shown that the induced flow fields upstream and downstream of
the particle curtain are, in fact, two dimensional; however, since the flows are streamwise dominated,
the use of Eq. (5) should provide a reasonable estimate of the unsteady drag.

The terms in Eq. (5) represent the change in momentum and pressure across the particle curtain.
The pressure difference across the boundaries of the control volume is given by

(P1 − P2)Ax = �PAx.

Likewise, the difference in momentum flux across the same boundaries is(
ρ1u

2
1 − ρ2u

2
2

)
Ax = �(ρu2)Ax.

Finally, the change in momentum within the control volume as a function of time is

�xAx

2

∂

∂t
(ρ1u1 + ρ2u2) = ∂(ρu)

∂t
�xAx.

To solve Eq. (5), it is necessary to have measurements of the pressure upstream and downstream
of the curtain, along with the corresponding densities (two thermodynamic state variables). With
regards to the pressure measurements, the curve fits of Fig. 10 were used to provide interpolated
values at time steps that corresponded with TR-PIV measurements.
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After the initial shock wave has passed, a series of compression waves propagate downstream;
likewise, an expansion fan also moves upstream [21], resulting in changes to both the pressure and
the fluid density upstream and downstream of the curtain, as a function of time. To estimate these
changes to the fluid density, an isentropic relationship was used,

ρ(t + �t)

ρ(t)
=

[
P (t + �t)

P (t)

](1/γ )

. (6)

Here, γ is taken to be the ratio of specific heats. In applying Eq. (6), it is assumed that the
postshock flows are relatively adiabatic and that the compression and expansion processes are
reversible; therefore, this equation represents an idealized estimation of the density derived from the
unsteady pressure measurements assuming isentropic conditions.

Note that this is an estimate of the true unsteady density distribution as a function of time, where
an incompressible assumption would not be valid. Furthermore, it was assumed that although the
interaction with the particle curtain is not without losses, the changes to the density associated
with expansion and compression waves emanating from the particle curtain are nearly isentropic
processes at these modest Mach numbers. In addition to the use of Eq. (6), the initial value of the
density was determined from the isentropic compressible flow equations, following determination
of the reflected or transmitted shock wave Mach numbers.

3. Calculation of total drag

The resulting drag on the curtain, in both dimensional and nondimensional forms, is shown in
Fig. 12 for Ms = 1.22,1.40, and 1.45. Uncertainty bars have been added to the curves to display the
estimated precision and bias errors of the drag calculations.

The precision errors were estimated by performing a propagation of uncertainty analysis on each
drag curve, assuming errors associated with scatter within experimental data, along with error in the
curve-fitting process. The standard deviations associated with each curve fit were defined using

εξ =
√∑

(ξi − ξf i)2

ν
, (7)

where ξi represents the raw data points, ξf i is the curve fit, and ν is the degrees of freedom for each
curve fit [38].

The primary source of bias uncertainty stems from the use of pressure sensors at the top of
the measurement volume. The inclined shocks that emanate from the curtain, particularly those
upstream, suggest a pressure difference across the height of the test section to exist at least at early
interaction times. From the shock angles shown in Figs. 7 and 8, this bias uncertainty is estimated
to be about 3% of a given pressure value. The potential error associated with this discrepancy is
small compared to the magnitude of the contribution of the pressure compared to the other drag
components. Therefore, the conclusions associated with this analysis are not impacted by this bias
uncertainty.

The combined bias and precision uncertainties of each parameter are listed in Table II. Propagation
of the bias uncertainties, along with the precision uncertainties, was carried out according to

εD =
√∑(

εξj

∂D

∂ξj

)2

+
(

εb,P

∂D

∂P

)2

+
(

εb,u

∂D

∂u

)2

, (8)

where εb,P and εb,u represent the bias uncertainties and εD represents the total uncertainty in the drag
[38]. The uncertainty bars shown in Fig. 12 represent standard error values, i.e., ±εD/

√
3, where 3

is the number of independent runs performed. Therefore, these drag estimates are presented within
68% confidence.

As seen in Fig. 12(a), the drag in each case starts out at an initially large value that rapidly
asymptotes towards what appears to be a constant value as the fluid properties and velocities
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FIG. 12. (a) Estimation for the change in drag as a function of time. (b) Same as (a), but with values
nondimensionalized by induced values behind the initial shock wave. (c) Values nondimensionalized by the
average of unsteady values on either side of the curtain.

equilibrate on either side of the curtain. For the cases corresponding to ϕp = 9%, the drag can be
seen to approach zero (within the uncertainty of the error bars). As Ms increases, the difference
between the drag curves for the two volume fractions increases. Additionally, the uncertainty bars
on the drag curves increase with both volume fraction and Ms .

In addition to the dimensional quantities of Fig. 12(a), Fig. 12(b) displays the same drag
information presented in a nondimensionalized form. Normalization was carried out using values
of velocity and density corresponding to the passage of the initial shock, defining the coefficient of

TABLE II. Uncertainties (εξj ) associated with velocity, pressure, and density.

dp (μm) Ms εu1 (m/s) εu2 (m/s) εP1 (kPa) εP2 (kPa) ερ1 (kg/m3) ερ2 (kg/m3)

1.22 6.7 8.6 3.4 2.0 0.04 0.05
106–125 1.40 13.8 13.0 4.9 3.9 0.05 0.03

1.45 9.9 10.7 6.1 5.4 0.23 0.07

1.22 3.0 3.8 1.8 1.8 0.02 0.02
300–355 1.40 7.6 6.4 3.5 3.3 0.03 0.05

1.45 9.2 13.1 4.4 6.9 0.05 0.03
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drag, CD = D/ 1
2ρindU

2
indAx . The values of density and velocity behind the initial shock wave were

chosen for nondimensionalization, as they are useful as predictable quantities from theory, rather
than quantities that require measurement of each flow field.

Comparing Figs. 12(a) and 12(b), the three drag curves for each volume fraction appear to nearly
collapse when nondimensionalized [relative to the disparate trends in Fig. 12(a)]. The effect of
volume fraction is most apparent in this nondimensional form from the offset that exists between
the ϕp = 23% and 9% cases. Here, the larger values of CD are associated with the higher volume
fraction. In these data, the volume fraction of the particle curtain was a function of the size of the
particles used. Therefore, it is not possible with this data set to decouple the influence of the particle
size from that associated with the volume fraction.

In addition to the nondimensionalization presented in Fig. 12(b), Fig. 12(c) restates the drag data,
with time and drag normalized by the average of the unsteady flow conditions on either side of the
particle curtain, i.e.,

|ρ(t)u2(t)| =
√[

ρ1(t)u2
1(t)

]2 + [
ρ2(t)u2

2(t)
]2

(9)

and

|u(t)| =
√

[u1(t)]2 + [u2(t)]2, (10)

where the subscripts 1 and 2 refer to upstream and downstream of the curtain, respectively. Using the
unsteady values of velocity and density, the collapse of the drag curves appears to be more significant
than using the shock-induced values of Fig. 12(b). Once again, the effect of ϕp can be seen from the
offset apparent between the two sets of drag curves, along with the trend of the drag decreasing with
increasing time. While this normalization appears to arrive at a more complete collapse of the data,
its usefulness is limited in that knowledge of the change in flow conditions with time is necessary
for implementation.

It is important to point out that the drag shown here exhibits prolonged unsteadiness in comparison
to the dilute mixture drag measurements shown by Parmar et al. [10]. The dilute drag was shown
to have unsteadiness that appeared to rapidly approach quasisteady values following passage of the
initial shock wave. In comparison, the drag shown from this data set is much more prolonged, in
agreement with Ling et al. [21]. However, as the drag estimates were obtained after the passage of
the reflected shock wave, these data were not able to resolve the initial transient spike in drag [21].

4. Contributions to drag

In order to appreciate the contribution of each of the terms of Eq. (5), Figs. 13 and 14 show the
components of drag as a function of time for the three Mach numbers, for ϕp = 23% and ϕp = 9%
cases, respectively. Note that the two higher Mach number cases (Ms = 1.40, 1.45) for ϕp = 23%
[Figs. 13(b) and 13(c)] truncate much earlier than their ϕp = 9% counterparts; the velocity and
pressure data were truncated at the point in time when a large number of particles began to enter the
downstream field of view. For the ϕp = 23% particle curtain, this happened much earlier than for
ϕp = 9%.

In each case, trends appear to approach zero with increasing time, again due to conditions on
either side of the curtain equalizing as the curtain deforms. In the case of Ms = 1.22 [Figs. 13(a)
and 14(a)], the change in momentum flux and rate change of momentum terms both appear to reach
nearly zero values relatively early, compared to the other two Mach numbers. In this case, the drag
appears to be almost wholly associated with the pressure drop across the curtain.

In comparison to Ms = 1.22, the remaining two Mach numbers [Ms = 1.40,1.45; Figs. 13(b),
13(c), 14(b), and 14(c)] behave much more similarly. In these instances, both the momentum flux and
rate change of momentum terms are non-negligible. As time increases, the rate change of momentum
within the control volume approaches zero from initially large positive values. In contrast, the change
of momentum flux increases rapidly towards zero. In agreement with the Ms = 1.22 case [Figs. 13(a)
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FIG. 13. The three components of drag (as a function of time) for ϕp = 23%, Ms = (a) 1.22, (b) 1.40,
(c) 1.45.

FIG. 14. The three components of drag (as a function of time) for ϕp = 9%, Ms = (a) 1.22, (b) 1.40,
(c) 1.45.
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TABLE III. Percent contribution of Ax�x∂(ρu)/∂t at beginning of curve.

ϕp (%) Ms Ax�x∂(ρu)/∂t (%)

1.22 10.4
23 1.40 14.7

1.45 20.5

1.22 22.4
9 1.40 33.1

1.45 28.9

and 14(a)], these Mach numbers both indicate that the largest contributor to the total drag is the
pressure difference. This is in agreement with Theofanous et al. [26], who showed that the trajectory
of the particle curtain appeared to be governed by the pressure difference.

As a result of the data shown here, determination of the curtain drag based solely on pressure
information appears to provide an overestimate. This is in agreement with Ling et al. [21], whose
results stated that the pressure gradient within the curtain was not sufficient for estimation of the
curtain drag. With increasing Ms , the contribution of the rate change of the momentum within the
control volume to the total drag becomes larger. An example of this is shown in Table III, which
gives the percent contribution of this term at the start of each drag curve. As evident, the percentage
contribution of this term can also be seen to increase with decreasing ϕp.

Regarding the inverse relationship between ϕp and the percentage contributions seen in Table III,
the reason for this can be determined from Figs. 13 and 14. For ϕp = 9%, the pressure difference
across the curtain is less severe than for ϕp = 23%, as lower volume fractions present a reduced flow
resistance. In contrast, the pressure differences seen for ϕp = 23% are much greater, providing a
larger contribution to the total drag. As to the growth in the importance of rate change of momentum
within the control volume with Ms , this term is proportional to the rate of change in the gas-phase
density. The direct relationship with this term, as seen in Table III, indicates a (logical) growing
importance of compressibility effects with Ms .

IV. CONCLUSIONS

Experiments were conducted using TR-PIV with a pulse-burst laser and high-speed pressure
sensors to make time-resolved measurements of the gas-phase velocity upstream and downstream of
a particle curtain following impingement by a shock wave. These measurements provided the data
necessary for estimating the unsteady drag imposed on the particle curtain immediately following
the shock wave interaction. The particle curtain was formed from soda-lime particles free falling
through a 3.2 mm slit, resulting in a curtain with a volume fraction of 23% or 9% at mid-height,
depending on the particle diameter. Three separate tests of the shock wave–particle curtain interaction
were measured, at shock Mach numbers corresponding to Ms = 1.22,1.40, and 1.45. In addition,
time-resolved pressure measurements made upstream and downstream of the particle curtain allowed
for the determination of the total drag on the curtain as a function of time.

When the initial shock wave impinged on the particle curtain, an upstream-propagating reflected
shock wave and a downstream-propagating transmitted shock wave were created, which altered the
pressures on either side of the curtain. The variation of the particle curtain volume fraction as a
function of height caused the reflected shock wave to be inclined away from the particle curtain,
whereas the transmitted shock wave was slightly inclined back towards the curtain, leading to the
formation of two-dimensionalities within the respective induced gas-phase velocity fields.

The pressure difference between the upstream and downstream sides of the curtain accelerated
flow through the curtain, resulting in an increase in downstream gas-phase velocity. This was
accompanied by a jetting of flow through the interstitial spaces of the curtain that could be seen
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downstream of the curtain once the curtain began to deform. Furthermore, as time increased, the
pressure difference across the curtain decreased, which is the source of the long-term unsteady drag
in dense gas-solid mixtures.

Estimation of the unsteady particle curtain drag was accomplished using a control volume
approach. It was observed that the favorable pressure difference established by the reflected or
transmitted shock waves is the dominant drag term, consistent with the conclusions of Theofanous
et al. [26]. Upon normalization, the data appeared to approach a similar trend, decreasing with
increasing time as conditions on either side of the curtain equalize. The data here agree in many
regards with the work by Ling et al. [21], who showed a prolonged unsteadiness within the particle
curtain drag, in comparison to that observed within dilute gas-solid mixtures. It is seen that in the
case of the two volume fractions tested, the drag is a function of volume fraction.
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