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Influence of van der Waals forces on a bubble moving in a tube
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We present a theoretical study of the unsteady thin-film dynamics of a long bubble of
negligible viscosity that advances at a uniform speed in a cylindrical capillary tube. The
bubble displaces a viscous nonwetting fluid, creating a thin film between its interface and
the tube walls. The film is considered thin enough that intermolecular forces in the form
of van der Waals attractions are significant and thin-film rupture is possible. In the case
of negligible intermolecular forces, a steady-state solution exits where a film of uniform
thickness is deposited in the annular region between the bubble interface and the tube walls.
However, once intermolecular interactions are important, the interface is perturbed out of
its steady state and either (i) the perturbation grows sufficiently before reaching the rear
meniscus of the bubble such that rupture occurs or (ii) the perturbation remains small due
to weak intermolecular forces until it leaves the bubble interface through the rear meniscus.
We obtain, both numerically and asymptotically, the time scale over which rupture occurs
and thus we find a critical capillary number, depending on the bubble length and the strength
of the intermolecular forces, below which the film is predicted to rupture.
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I. INTRODUCTION

When a bubble of negligible viscosity advances in a circular tube filled with a wetting viscous fluid,
a uniform thin film is deposited between the bubble interface and the tube walls. This setup was first
studied experimentally by Fairbrother and Stubbs [1] and Taylor [2]. A theoretical framework using
the lubrication approximation was proposed by Bretherton [3], who found that the thickness of the
film varies as a two-thirds power law with the capillary number, which measures the relative strength
of viscous to surface tension forces. Through comparisons with both new and old experiments,
Bretherton [3] further argued that this theoretical estimate of the film thickness is only valid at small
capillary numbers.

Following Bretherton’s contributions, there has been extensive theoretical and experimental work
on the problem of a bubble of either negligible or finite viscosity moving in a tube and displacing
a viscous wetting fluid [4–11]. Experimental results [12], which were later verified by both theory
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FIG. 1. Bubble translating past a boundary. (a) Bubble interface with two domains highlighted: the front
meniscus and the rear meniscus of the bubble. (b) Rupture of the thin film as a perturbation advances away
from the front meniscus. (c) Rupture of the thin film as a perturbation advances towards the rear meniscus.

and numerics [13], showed the range of capillary numbers for which Bretherton’s theory is valid
for an inviscid bubble and below which the film thickness levels off and becomes independent of
the capillary number. Effects of nonwettability were first addressed by Teletzke et al. [14], who
showed numerically that there is a critical capillary number below which steady films of uniform
thickness cannot be obtained due to rupture of the film. This result was qualitatively verified by
experiments [15]. Other studies of the bubble in a tube problem have accounted for, e.g., flexibility
of the substrate, which is an important effect in medical applications such as airway closure [16–22].

In this paper we are interested in the particular situation of a nonwetting fluid surrounding the
bubble, where disjoining pressure in the form of attractive intermolecular forces can be destabilizing
(see, e.g., [14] for a review of the various disjoining pressure functions) and consequently the thin
film may rupture. We are motivated by the experimental work of Chen et al. [15], who studied the
dynamics of oil droplets advancing in a rectangular microchannel filled with water, where one region
of the channel was made hydrophobic, while the other was kept hydrophilic. Rupture was observed
in the hydrophobic region for slowly moving drops. However, once the drops were advanced at
speeds larger than some critical value, it was observed that rupture was suppressed. To this end,
we posit a simplified mathematical model to study the transition of a bubble of negligible viscosity
from a wetted to a nonwetted region in a circular tube. We solve the model both analytically and
numerically and our results provide conditions under which rupture suppression is attainable. The
bubble configuration is illustrated in Fig. 1(a); Figs. 1(b) and 1(c) show two instances where rupture
has occurred near the front or the rear meniscus of the bubble. The surface profiles are plotted from
time-dependent numerical simulations of the front and rear menisci. Here they are shown without
scale only so as to illustrate the qualitative phenomena of rupture; see Sec. IV for more details on
the numerical implementation.

Note that rupture, or adhesion, is not always a desired phenomenon, especially in applications that
involve self-cleaning surfaces [23–25]. However, in some circumstances, rupture can be beneficial,
such as in targeted drug delivery [26], or by using the adhesive properties of tumor cells to promote
separation from healthy cells [27]. The theoretical approach to thin-film rupture is typically developed
in the framework of slow viscous flow (lubrication) theory, by the addition of attractive intermolecular
forces, such as van der Waals attractions [28–31]. Self-similar analyses have been provided of
rupturing film profiles [32,33]. Also, studies have been reported of rupture delay by adding surfactants
or increasing the flexibility of the substrate supporting the rupturing film [34] and of rupture
suppression by adding an external shear to the thin film [35,36].
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We begin this study by developing the theoretical framework in Sec. II for a bubble advancing
in a tube and displacing a nonwetting fluid, where we use lubrication theory to describe the bubble
dynamics when attractive van der Waals interactions are substantial. In Sec. III we study the
steady-state profiles of the shape of the bubble as a function of a nondimensional van der Waals
parameter that characterizes the strength of the intermolecular forces. In Sec. III A the asymptotic
behavior of the steady states is analyzed for small and large values of the van der Waals coefficient
and a relation between film thickness and capillary number is found in Sec. III B. We analyze the
unsteady dynamics in Sec. IV; we begin with the case where van der Waals forces are significant
throughout the tube and we perform a linear stability analysis as well as a numerical study in
Sec. IV A. We then consider the problem of a bubble displacing a wetting fluid, when suddenly
attractive van der Waals forces are turned on. The effect on the bubble dynamics is examined as the
interface moves from a wetted to a nonwetted region in the tube and is analyzed both numerically
and asymptotically in Sec. IV B. We conclude by finding a critical capillary number beyond which
rupture is expected to be suppressed.

II. MATHEMATICAL FORMULATION

Consider a long bubble of negligible viscosity moving at a constant speed U through a capillary
tube of radius R, which is filled with a nonwetting fluid of viscosity μ and density ρ. The bubble
is assumed to be at least a few tube radii long. The motion of the bubble displaces the viscous
fluid, which causes the deposition of a uniform thin film in the annular region between the bubble
interface and the tube walls [cf. Fig. 1(a)]. The interfacial tension between the displaced fluid and
the bubble is denoted by γ . The deposited film has a thickness h∞ and is considered thin enough
that intermolecular forces in the form of long-range van der Waals attractions are significant and are
measured by the Hamaker constant A, which is typically of the order 10−20–10−19 J.

In the limit that the film thickness is very small compared to the tube radius, the system can be
described locally as two dimensional. Thus, we use Cartesian coordinates (x,z) and time t to describe
the spatial and temporal dynamics. The x coordinate describes lateral positions of the bubble in the
tube. We treat the front and rear menisci of the bubble separately, but will discuss the implications
of this assumption in Sec. IV A. When treating the front meniscus of the bubble, we refer to x → ∞
as the front bubble cap and x → −∞ as the uniform thin film of thickness h∞. Conversely, when
treating the rear meniscus, we refer to x → −∞ as the rear bubble cap and x → ∞ as the uniform
thin film of thickness h∞.

Following Bretherton [3], we assume that both the Weber number ρRU 2/γ and the Bond number
ρgR2/γ are very small and we therefore neglect both inertial and gravitational effects. The thickness
of the film from the tube wall, z = 0, to the bubble interface is denoted by h(x,t), and in the
limit that |∂xh| � 1, we can use the lubrication approximation to derive the equation describing
thin-film dynamics (cf. Sec. II B in Ref. [37]) in the presence of attractive intermolecular forces.
The dimensional governing equation, in a frame of reference moving with the advancing bubble, is
given by

∂th + 1

3μ
∂x

[
γ h3∂xxxh + AH(x + Ut)

2πh
∂xh

]
− U∂xh = 0. (1)

Later in Sec. IV B H(x + Ut) will be chosen to be the Heaviside step function so that a term
proportional to A switches on across x = −Ut . This will serve to model a section of the tube that
suddenly transitions from wetting to nonwetting.

Throughout the remainder of this section and the next, we assume that H ≡ 1 and hence the
intermolecular forces apply throughout the entire length of the tube. Nondimensionalizing (1) yields

∂T H + ∂X

[
H 3∂XXXH + β

H
∂XH

]
− ∂XH = 0, (2)
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where we have set h = h∞H , x = (Ca−1/3h∞)X, and t = (h∞Ca−1/3U−1)T and where the capillary
number is defined by

Ca = 3μU

γ
. (3)

In Eq. (2) we have also introduced the dimensionless van der Waals parameter

β = A

2πγh2∞Ca2/3 . (4)

Note that when β < 0, the intermolecular forces are repulsive, hence stabilizing, and the displaced
fluid wets the substrate. When β > 0, these forces are attractive, thus, the displaced fluid is
nonwetting and rupture may occur. In this work we are interested in scenarios that may lead to
rupture and hence we consider the situation of a bubble surrounded by a nonwetting fluid in a tube,
with β > 0.

III. STEADY-STATE THEORY (H ≡ 1)

Setting the time derivative in Eq. (2) to zero and integrating yields the governing steady-state
problem for H = Hs(X; β),

H 3
s H ′′′

s + β
H ′

s

Hs

− Hs = −1, (5)

with primes indicating differentiation in X. The problem has been nondimensionalized so that the
steady-state profile approaches a uniform film of unit height in the central region. Thus, for a
rescaled model near the front of the bubble, we require Hs → 1 as X → −∞. For the rear of the
bubble, Hs → 1 as X → ∞. Setting Hs = 1 + η(X), where |η| � 1, we linearize (5) to find that
the perturbation satisfies

η′′′ + βη′ − η = 0. (6)

This equation has solutions of the form exp(mX), where m is a root of the cubic equation m3 +
βm − 1 = 0. For β > 0, this cubic equation has one positive real root m1 and two complex conjugate
roots m2 and m∗

2.
Solving for the perturbation η, we find the two limiting behaviors that describe the necessary

matching conditions between the front or rear of the bubble with the central body. At the front, in
order to satisfy the uniform boundary condition when the film tends to the central body, the modes
corresponding to the roots m2 and m∗

2 must equal zero. Thus, the front meniscus asymptotes to a
uniform film as

Hs(X; β) ∼ 1 + η0 exp(m1X) as X → −∞, (7)

where η0 is an integration constant, which may be set to unity without loss of generality by exploiting
translation invariance. Thus the numerical solution for the front meniscus is found by solving (5)
subject to the far-field behavior (7). A typical solution of the curvature H ′′

s of the front meniscus is
shown in Fig. 2(a). It is observed that the curvature approaches a constant value as X → +∞ and
we define this value as κ(β) = H ′′

s (+∞). In the next section we study the asymptotic behavior of κ

as β → 0,∞.
At the rear meniscus, in order to satisfy the boundary conditions when the film tends to the central

body, the eigenfunction of (6) corresponding to m1 must equal zero. Therefore, the rear meniscus
asymptotes to a uniform film as

Hs(X; β) ∼ 1 + η̃0 exp[Re(m2)X] cos[Im(m2)X + φ] as X → +∞, (8)

where the oscillations correspond to capillary ripples at the rear cap of the bubble [3,38]. Here η̃0

and φ are integration constants and again η̃0 may be set to 1 without loss of generality. Therefore,
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FIG. 2. Variation in linearized curvature of the bubble profile for the (a) front meniscus and (b) rear
meniscus. The curvature tends to zero as the film tends towards the central region and tends to a constant
nonzero value κ(β) towards the front [in (a)] and rear [in (b)]. For the case of β = 0.2, we find that κ ≈ 0.611.

we use φ ∈ [−π,π ] as a shooting parameter and find the value φ∗ of φ such that the curvature of the
rear meniscus of the bubble is equal to that of the front, κ(β). For example, for the case β = 0.2, this
parameter is found to be φ∗ ≈ −1.4. In Fig. 2(b) we show the curvature H ′′

s of the rear meniscus for
a given β. The behavior of the curvature as a function of β is summarized in Fig. 3.

Since H ′′
s ∼ κ(β), we can redimensionalize to see that κ is related to the uniform film thickness

h∞ in the bubble by

h∞
R

= κ(β)Ca2/3. (9)

The relation in Eq. (9) provides an implicit description of how the film thickness varies as a function
of the van der Waals coefficient β for any β > 0.

A. Asymptotic behavior of κ(β)

When β = 0, Bretherton [3] had shown that h∞/R ∼ κ0Ca2/3, where κ0 ≈ 0.643. However, when
β > 0, we observe from (9) that the variation of the meniscus curvature κ must lead to a modification
of Bretherton’s result. In what follows we elucidate this effect by determining κ in the limits of large
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FIG. 3. (a) Curvature of the front meniscus as a function of the van der Waals parameter β. Numerical
results are shown as a solid curve and asymptotic approximations, from (11) and (17), are shown as dashed
curves. (b) Close-up of the region of small β showing κ0 − κ ∼ κ1β as β → 0.
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and small β. Note that in our steady-state model, we have assumed that the front meniscus sets the
curvature, which is then imposed on the rear; hence it is only necessary to perform our analysis on
the front of the bubble.

In the limit of β → 0, we expand Hs = H0 + βH1 + O(β2). Substituting the perturbation
expansion into the governing equation (5) yields, for the first two orders,

H ′′′
0 = (H0 − 1)H−3

0 , (10a)

H ′′′
1 + (

2H−3
0 − 3H−4

0

)
H1 = −H ′

0H
−4
0 , (10b)

subject to the boundary condition (7), or that H0 ∼ 1 + η0 exp(X) and H1 → 0 in the limit X →
−∞. The leading-order in Eq. (10a) is Bretherton’s original equation (also known as the Landau-
Levich equation). Numerical solutions of H0 and H1 confirm that the curvature at the front, measured
from the second derivative of Hs , is given by a series expansion in powers of β, or

κ(β) ∼ κ0 + κ1β + · · · as β → 0, (11)

where κ0 ≈ 0.643 and κ1 ≈ −0.169. Thus, when β = 0 we recover Bretherton’s result, with κ = κ0.
In order to observe the dependence of κ at larger values of β, consider the limit β → ∞. To

reincorporate the spatial variation in this limit, we introduce the stretched coordinate X̃ = X/β,
with Hs = G(X̃). The governing equation (5) then becomes

1

β3
G3G′′′ + G′

G
+ 1 − G = 0, (12)

with primes now denoting derivatives with respect to X̃. Neglecting the first term of (12) yields the
leading-order result

G ∼ [1 − exp(X̃ − X̃0)]−1, (13)

where the integration constant X̃0 corresponds to an arbitrary translation in X̃. We will refer to (13)
as the outer solution, which automatically satisfies the far-field condition G → 1 as X̃ → −∞. The
asymptotic solution (13) predicts blowup of the film thickness as X̃ → X̃0 and so we will seek a
boundary layer near the transition point X̃ = X̃0 where the dominant balance in Eq. (12) incorporates
the surface tension term.

We refer to the solution near X̃ = X̃0 as the inner solution. From a dominant balance of (12)
and (13), it is found that the correct rescaling is X̃ = X̃0 + β−1/2X̂ and G(X̃) = β1/2g(X̂). This
transforms (12) into

g3g′′′ + g′

g
− g = − 1√

β
, (14)

with primes now denoting differentiation with respect to X̂. As β → ∞, the inner solution is
expressed as an asymptotic expansion of the form g ∼ g0 + β−1/2g1 + O(β−1). The leading- and
first-order solutions satisfy the differential equations

g3
0g

′′′
0 + g′

0

g0
− g0 = 0, (15a)

g3
0g

′′′
1 + g′

1

g0
+ [

2 − 4g′
0g

−2
0

]
g1 = −1. (15b)

In order to match the inner solutions with (13) as X̂ → −∞, g0 and g1 are expanded in inverse
powers of X̂. Substitution into (15) then yields the far-field conditions

g0 = − 1

X̂
+ 6

5X̂7
+ · · · , g1 = 1

2
− 3

X̂6
+ · · · as X̂ → −∞. (16)
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FIG. 4. Relation between the normalized film thickness 
−2/3h∞/R and the scaled capillary number 
−1Ca,
given parametrically by (19). The dashed curves show the two respective asymptotic limits (20a) as β → 0 and
(21) as β → ∞.

The inner solutions g0 and g1 are numerically computed by solving (15) as an initial-value problem
subject to (16) applied at large negative X̂. The differential equations (15) are then integrated to
a large positive value of X̂ such that the curvatures g′′

0 and g′′
1 reach constant values κin0 and κin1,

respectively. Hence, the large-β asymptotic behavior of the function κ is found to be

κ = κin0

β1/2
+ κin1

β
+ · · · as β → ∞, (17)

where κin0 ≈ 0.977 and κin1 ≈ −0.657. The asymptotic results (11) and (17) are displayed as
dashed lines in Fig. 3 and are in excellent agreement with the numerical solution of the steady-state
differential equation (5).

B. Modification of the Bretherton relation

In Bretherton’s work [3], corresponding to β = 0, the normalized film thickness h∞/R scales
with Ca2/3. Our generalized relation (9) depends implicitly on both h∞/R and Ca through the van
der Waals parameter β, defined by (4). To unravel the dependence of the deposited film thickness
on the capillary number, it is helpful to define an additional dimensionless parameter


 =
(

A

2πγR2

)1/2

, (18)

which corresponds to a molecular length scale that depends only on the physical properties of the
fluid and the tube radius R. Typical values of the Hamaker constant A are in the range 10−20–10−19

J, the interfacial tension γ has an order of magnitude of about 10−2 J/m2, and R may be from a few
to a few hundred microns. Therefore, 
 is typically small, taking values in the range of 10−6–10−3.

We use (4) and (9) to express both h∞/R and Ca as functions of 
 and β, namely,


−1Ca = 1

β1/2κ(β)
, 
−2/3

(
h∞
R

)
=

(
κ(β)

β

)1/3

. (19)

As β ranges between 0 and ∞, (19) parametrically defines a functional relationship between

−2/3h∞/R and 
−1Ca, which is plotted as a solid curve in Fig. 4. This indicates that the film
thickness h∞ is an increasing function of the capillary number, as expected. The detailed behavior
may be clarified by using the asymptotic approximations of κ(β) obtained above. We point out that
the bubble must always fit in the tube and therefore the apparently unbounded increase of the film
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thickness with capillary number must be regularized for large values of Ca [39,40]. This, however,
is not analyzed in the present study.

Considering the small and large limits of β and combining (11) and (17) with (19), we obtain


−1Ca ∼ 1

κ0
β−1/2, 
−2/3 h∞

R
∼ κ

1/3
0 β−1/3 ∼ κ0

(
Ca




)2/3

for β → 0, (20a)


−1Ca ∼ 1

κin0
+ |κin1|

κ2
in0

β−1/2, 
−2/3 h∞
R

∼ κ
1/3
in0 β−1/2 for β → ∞, (20b)

where κ0 ≈ 0.643, κin0 ≈ 0.977, and κin1 ≈ −0.657. The latter equation (20b) can be rearranged to

h∞

2/3R

∼ κ
7/3
in0

|κin1|
(

Ca



− 1

κin0

)
≈ 1.442

(
Ca



− 1.024

)
for β → ∞. (21)

The dashed curves in Fig. 4 verify that the approximate relations (20a) and (21) are approached in
the relevant limits.

We can interpret the results as follows. First, Bretherton’s result is recovered when β is small,
which corresponds to the capillary number being sufficiently large, namely,


 � Ca � 1. (22)

Second, the relation between h∞/R and Ca starts to depart significantly from Bretherton’s prediction
when Ca = O(
). From (21) it is expected that in the limit β → ∞, the film thickness h∞ left behind
the front meniscus reaches zero at a finite critical value of the capillary number

Ca∗ ≈ 1.024
. (23)

As noted above, 
 typically ranges between 10−6 and 10−3. Thus, for capillary numbers smaller than
this value, no steady film will be left behind the advancing front meniscus. This result differs quite
significantly from the case where the surrounding fluid wets the substrate (β � 0). In that case, the
departure from Bretherton’s results for Ca = O(
) is characterized by a uniform film independent
of capillary number [12,13].

IV. UNSTEADY SOLUTIONS

So far, we have shown that for a bubble moving in a tube and subject to attractive van der
Waals forces, steady-state free-surface profiles may exist for β > 0. For β sufficiently small, the
central film thickness will follow relation (9). For β sufficiently large, however, steady-state profiles
with a constant-height central region may not exist for sufficiently small capillary numbers; this
threshold is difficult to specify precisely [cf. (9)] due to the fact that it likely involves the global flow
characteristics of the bubble and channel. Thus, in the following numerical analysis, we will focus
more so on the physically relevant (and tractable) regime of small to moderate β.

The next question is whether such steady-state solutions remain stable or become unstable once
they are evolved in time. Our efforts in this section are divided into two parts. In Sec. IV A the
stability of the bubble is studied using numerical simulations of the central thin-film and meniscus
regions, where van der Waals forces are assumed to be substantial throughout the entire length of the
tube. Here we confirm the dependence of the rupture time Tr on β. Then, in Sec. IV B we propose a
model where the bubble moves from a wetted region (β = 0) to a nonwetted region (β > 0) in the
tube. Here we show that the rupture time differs from that obtained in the case where van der Waals
forces are significant everywhere in the tube.
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A. Evolution of a bubble subject to van der Waals attractions everywhere (H ≡ 1)

Let us consider the linear stability of the time-dependent equation (2) about a base state that
consists of a uniform film. Perturbing the film, we set H = 1 + ε exp(ikX + ωT ) and linearize for
infinitesimal perturbations in the limit ε � 1. This yields the dispersion relation

ω = −k4 + βk2 + ik (24)

between the linear growth rate ω and the wave number k. The result is essentially the same as the
dispersion relation obtained for a stationary film subject to viscous, surface tension, and van der
Waals forces [36] except for the addition of a traveling-wave term ik. Thus, according to (24), linear
theory predicts that the film is stable for β � 0 and unstable to long-wave perturbations for any
β > 0. Moreover, from (24), we find that the most rapidly growing mode, i.e., the wave number kc

that maximizes Re(ω), corresponds to respective wavelengths and growth rates of

λc = 2π/kc = 2π
√

2/β, Re(ωc) = −k4
c + βk2

c = β2/4. (25)

We conclude that wavelengths of order β−1/2 or longer are expected to be unstable and that the
characteristic time for the instability to occur should be proportional to β−2. In order to verify this
basic stability calculation and to demonstrate how the rupture time can be controlled by adjustments
to the van der Waals parameter, we design the following simplified numerical experiment.

A bubble displaces a nonwetting fluid that is present throughout a tube. The evolution of the
bubble is thus described by (2), or equivalently (1) with H ≡ 1. We impose that it begins from

H = Hs(X; β) at T = 0, (26)

where Hs(X; β) describes the shape of either the front or rear meniscus at steady state [cf. Sec. III].
In order to avoid modeling the entire topology of the bubble, we assume that, through its evolution,
the film profile remains quasistatic near the front or rear. In the case of modeling the front of the
bubble, we impose that

H → 1, ∂XH → 0 as X → −∞ (towards central region), (27a)

H ∼ Hs(X; β) as X → +∞ (towards meniscus). (27b)

To model the rear, the limits in X are swapped. Condition (27b) requires that the curvature of
the profile, ∂XXH , match with H ′′

s ∼ κ(β), which corresponds to the linearized curvature of the
meniscus. Our model assumes that the front and rear menisci are static during the instability regime
and do not interact with one another. Thus, the evolution primarily occurs in the central region of
the bubble. We return to discuss the possibility of numerical simulations of the full bubble topology
in Sec. V.

To solve the time-dependent formulation, an implicit-explicit numerical scheme is used, which
computes nonlinear terms of H in Eq. (2) explicitly, while the linear terms of H and its derivatives
are treated implicitly for increased stability. Centered differences are employed in both the spatial
and temporal coordinates. We use a uniform spatial grid with step size �X (typically between 10−2

and 10−3) and an adaptive time step that decreases with the growth of the maximum traveling-wave
amplitude (typically between 10−3 and 10−8). Further details of this numerical scheme are presented
in Appendix B in Ref. [41] or Appendix A in Ref. [42].

When the initial condition (26) is evolved in time, a perturbation appears near the front meniscus
and grows in amplitude as it travels towards the central body of the bubble. If the amplitude grows
sufficiently, rupture occurs. Figure 5(a) shows a typical result corresponding to evolution near the
front meniscus for the case β = 0.5. Simulations are run for different values of β (typically ranging
from 0.1 to 1). For each run, we observe the time it takes for rupture to occur, Tr .

Note that the initial perturbation leading to growth in Fig. 5(a) is due to a mismatch between the
exact steady-state profile (applied to a semi-infinite domain and with a gradient tending to infinity
at the front meniscus) and our numerical approximation of Hs applied on a truncated domain. Other
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FIG. 5. (a) Evolution to rupture for the case of the central film near the front meniscus, with β = 0.5 at
T = 56.95 (dashed curve), T = 83.65 (solid curve), and T = 88.84 (thick solid curve). (b) Evolution of the
rear meniscus with β = 0.2 at T = 0 (dashed curve), T = 40.3 (solid curve), T = 74.4 (thick solid curve).
The initial profile is perturbed with an additional localized sinusoidal perturbation. The film does not rupture;
at large time, it is indistinguishable to graphical accuracy from the unperturbed initial state.

perturbations can be used. For example, we may begin from the steady state, plus a small localized
sinusoidal perturbation added to the central region. In Fig. 5(b) the rear of the bubble is modeled
at β = 0.2. Here the initial condition is shown as a dashed curve and includes the sinusoidal
perturbation. The perturbed region is shown to grow and advect towards the rear of the bubble,
where it is absorbed into the meniscus. As time is further increased, the film settles to its numerically
exact steady state. Thus, in the case of the rear meniscus, for sufficiently small perturbations or
sufficiently small β, rupture is suppressed. For the front meniscus, rupture always occurs as long as
the computational domain of the central body is sufficiently long.

The graph of rupture time Tr as a function of β is shown in Fig. 6 for two initial conditions of the
front meniscus. Here it is confirmed that Tr ∼ α/β2 as predicted from the linear stability analysis.
Different small perturbations affect the prefactor α of the rupture trend but not the power law. In
the figure, the slower rupture trend (Tr ≈ 5.1β−2) corresponds to beginning at the approximated
steady state; the faster trend (Tr ≈ 21.9β−2) corresponds to beginning from the steady state plus a
localized sinusoidal perturbation [see Fig. 5(b) for example of such a perturbation]. The points in
the figure are confirmed to converge as the domain size is extended or if finer spatial and temporal
discretizations are used.

Based on these numerical results, we summarize as follows: Given a value 0 < β � 1, a traveling-
wave perturbation moves from the front meniscus towards the rear and grows until either (i) rupture
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FIG. 6. Rupture time Tr plotted against β. Within the range of β shown, the rupture time is proportional
to β−2. The slower trend (stars) corresponds to beginning at the approximated steady state; the faster trend
(circles) corresponds to beginning from the steady state plus a localized sinusoidal perturbation.

occurs in the central region of the bubble or (ii) the wave reaches the rear meniscus, where the van
der Waals forces are minimal, and rupture is suppressed.

The numerical simulations of this section only provide a simplified model of the full bubble
dynamics on account of two limiting assumptions. First, the bubble is assumed to begin from
a preexisting quasi-steady-state. Second, the bubble’s global configuration within the channel is
largely ignored. However, given that the time scale for rupture is O(1/β2) in the limit of small
perturbations, it can be verified from the dispersion relation of (24) that a localized disturbance is
expected to rupture a distance O(1/β2) from its initial conception. Thus, based on this simplified
model, it can be expected that bubbles with a nondimensional length much less than O(1/β2) will
remain stable.

B. Evolution of a bubble subject to van der Waals forces in one section of the tube

As noted in Sec. IV A above, when van der Waals forces are significant throughout the entire
length of the tube, the time it takes for a quasistatic bubble to rupture is proportional to β−2. Now
we consider a situation where the destabilizing disjoining pressure is only present in one section of
a tube (Fig. 7). We find how the rupture time varies as a function of the van der Waals coefficient β

and hence estimate the critical capillary number above which rupture is expected to be suppressed.
We thus use the dimensional governing equation (1) and choose H to be the Heaviside step function
so that the term proportional to A switches on across x = −Ut .

FIG. 7. Schematic showing the section of a tube where the disjoining pressure is switched on. The bubble
translates across a section of the surface where the wetting state changes (from wetting to nonwetting). This is
modeled as a step transition in the thin-film equation (1).
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FIG. 8. Schematic of the film deposited behind the front meniscus as it crosses from the wetting to the
nonwetting section of the tube.

Note that when t is negative and before the front meniscus has reached x = −Ut , there is no
disjoining pressure effect and the problem reduces to Bretherton’s model [3]. In this case, the film
thickness is given by (9) with κ = κ0 ≈ 0.643 and we now use this thickness specifically when
nondimensionalizing (1). The definition (4) of β is replaced by a new dimensionless parameter

β̃ = A

2πγR2κ2
0 Ca2 = 
2

κ2
0 Ca2 , (28)

where 
 is defined by Eq. (18), and we introduce new dimensionless variables

h(x,t) = (κ0R Ca2/3)η(ξ,T ), x = (κ0R Ca1/3)ξ, t = (κ0R Ca1/3U−1)T . (29)

Then, from (1) the governing system for the front meniscus becomes

∂T η + ∂ξ

[
η3∂ξξξ η + β̃

H(T + ξ )

η
∂ξη − η

]
= 0. (30a)

η → 1 as ξ → −∞, ∂ξξ η → κ0 as ξ → +∞, (30b)

η → Hs(ξ ; 0) as T → −∞. (30c)

We are interested in solutions of the problem (30) in the physically relevant regime where
β̃ � 1. When T is large and negative, η approaches Hs(ξ ; β = 0), which is the steady solution to
Bretherton’s problem introduced in Sec. III. On the other hand, when T � 1, we expect the solution
near the front meniscus to become quasisteady again, but now with a thinner deposited film due to
the attractive intermolecular forces. The asymptotic analysis of Sec. III A implies that the resulting
decrease in the deposited film thickness is small when β̃ � 1, so the value of η left behind the front
meniscus decreases from 1 to approximately 1 − ν, where the small parameter ν is defined by

ν = |κ1|
κ0

β̃ = |κ1|
κ3

0


2

Ca2 ≈ 0.636

2

Ca2 � 1. (31)

We deduce that the situation for T > 0 is as depicted schematically in Fig. 8. The deposited film
thickness transitions from 1 to 1 − ν in an O(1) neighborhood of the point ξ = −T where the tube
wall switches from wetting to nonwetting. In the subsequent evolution, we expect the deposited film
to lose stability, due to the attractive van der Waals forces, and ultimately rupture. However, the
linear stability analysis of Sec. IV A informs us that, in the physically relevant regime where β̃ is
small, the dominant length and time scales for the instability are both much larger than those used
in the nondimensionalization (29).
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FIG. 9. (a) Numerical solution η(ζ,τ ) of the problem (33) with ν = 0.1 and τ = 0,3,6,7.2404. (b) Solution
plotted versus the similarity variable ζ/τ 1/4 for τ = 0.001,0.01,0.1; the dashed curve shows the similarity
solution (34).

To follow the progress of the instability, we therefore shift to a frame that follows the transition
point ξ = −T while rescaling to reflect the relevant length and time scales as follows:

ξ + T = β̃−1/2ζ, T = β̃−2τ. (32)

Equation (30a) is thus transformed to

∂τη + ∂ζ

[
η3∂ζζζ η + H(ζ )

η
∂ζ η

]
= 0. (33a)

Initial and boundary conditions are found by matching with the large-T solution of (30a), as sketched
in Fig. 8. Following the rescaling (32), the transition between the deposited thicknesses η = 1 and
η = 1 − ν occurs in a vanishingly small neighborhood of ζ = 0 in the limit as β̃ → 0. Therefore,
the initial film profile appears effectively discontinuous across ζ = 0 and we therefore impose the
boundary and initial conditions

η → 1 as ζ → −∞, (33b)

η → 1 − ν as ζ → +∞, (33c)

η = 1 − νH(ζ ) at τ = 0. (33d)

1. Numerical solution in the traveling frame

For each given value of ν, we solve the problem (33) numerically using the method of lines
(see, e.g., [43]). A sample solution is shown in Fig. 9(a), with ν = 0.1. The discontinuous initial
condition is instantaneously smoothed out, as illustrated in Fig. 9(b), and it can be verified that
η(ζ,τ ) approaches the similarity solution

η(ζ,τ ) ∼ 1 − νf (ζ/τ 1/4) as τ → 0, (34a)

f (z) = 1

2
+ �(5/4)z

π
1F3

(
1

4
;

1

2
,
3

4
,
5

4
;

z4

256

)
+ �(−1/4)z3

96π
1F3

(
3

4
;

5

4
,
3

2
,
7

4
;

z4

256

)
, (34b)

where � and 1F3 denote, respectively, the Gamma function and the generalized hypergeometric
function. This solution corresponds to related problems of capillary leveling of a thin film [44]; an
analogous similarity solution arises in studies of the deformation of an elastica in a viscous fluid
[45]. In Fig. 9(a), as τ increases, the instability starts to take effect in ζ > 0, where the disjoining
pressure term is present. We observe wavelike disturbances that grow in amplitude, culminating in
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FIG. 10. (a) A log-linear plot of the normalized rupture time τrup versus the scaled van der Waals parameter
ν. The circles show the results obtained from numerical solutions of (33); the solid curve shows the asymptotic
prediction (38) with C = 0.3. (b) Numerical solution of (33) with ν = 0.0001 and τ = 40; the dashed curve
shows the large-τ asymptotic solution 1 − νη1, with η1 given by Eq. (36).

rupture of the film after a finite time τrup ≈ 7.24, computed numerically. This rupture time can be
determined analytically in the limit of ν → 0, and we perform this calculation next.

2. Asymptotic rupture time

As shown by the numerical results in Fig. 10(a), the rupture time τrup increases as the value of ν

decreases. To examine the limiting behavior as ν → 0, we set η = 1 − νη1 + O(ν2) in Eq. (33) and
we find that η1 satisfies the linear partial differential equation

∂τη1 + ∂ζζζζ η1 + ∂ζ [H(ζ )∂ζ η1] = 0, (35a)

along with the boundary and initial conditions

η1 → 0 as ζ → −∞, η1 → 1 as ζ → +∞, η1 = H(ζ ) at τ = 0. (35b)

The solution η1(ζ,τ ) can be found by taking a Laplace transform in τ . The resulting inversion
integral is unwieldy but may be analyzed in the limit of large τ by using the method of steepest
descents. A lengthy calculation (given in Appendix A in Ref. [41]) leads to the following asymptotic
approximation for the solution when ζ > 0 and τ � 1:

η1(ζ,τ ) ∼ 1 + 1√
π τ 3/2

exp

(
τ

4
− ζ 2

8τ

)[
(4 + ζ ) sin

(
ζ√
2

)
−

√
2(2 + ζ ) cos

(
ζ√
2

)]
. (36)

In Fig. 10(b) we illustrate the accuracy of this approximation by plotting the numerical solution of
(33) for η(ζ,τ ) with ν = 0.0001 and τ = 40 (solid curve) along with the approximation (36).

Equation (36) implies that the maximum value of η1 occurs when ζ ∼ 2τ−1/2 and is given
approximately by

η1max(τ ) ∼ 2

√
3

πe

eτ/4

τ
as τ → ∞. (37)

When τ is so large that the perturbation η1 becomes of order 1/ν, the asymptotic ansatz η ∼ 1 − νη1

ceases to be valid and one must resort to numerical solution of the full governing equation (33a).
However, we can anticipate that the subsequent nonlinear evolution and rupture take place over an
O(1) time scale. We can therefore invert (37) to obtain an estimate for the normalized time τrup taken
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for the film to rupture, namely,

τrup ∼ 4 ln(1/ν) + 4 ln ln(1/ν) + C, (38)

where C is an O(1) constant. The solid curve in Fig. 10(a) demonstrates that (38) provides a very
good fit for the behavior of τrup as ν → 0, with C ≈ 0.3.

3. Prediction of the critical capillary number

By reversing the nondimensionalization (29), we infer from (38) the corresponding dimensional
rupture time, namely,

trup = κ0R Ca1/3

β̃2U
τrup = κ5

0 R Ca13/3


4U
τrup. (39)

As discussed in Sec. IV A, if trup is greater than the transit time over the length of the bubble L/U ,
then the free-surface disturbance will be swept up by the rear meniscus before rupture has time to
occur. Thus, by setting trup = L/U we can find the value of the critical capillary number Cacrit above
which rupture is expected to be suppressed, i.e.,

L

R
= κ5

0 Ca13/3
crit


4
τrup ≈ 0.88

Ca13/3
crit


4
ln

(
Cacrit




)
. (40)

The result in Eq. (40) indicates that the critical capillary number beyond which rupture is
suppressed increases with increasing bubble length. This is qualitatively consistent with the
experimental observations of Chen et al. [15]. However, we note that a quantitative comparison is not
attempted due to the differing assumptions between our mathematical model and the experiments.

V. SUMMARY AND DISCUSSION

In this paper we considered the unsteady motion of an inviscid bubble advancing at a constant
speed in a cylindrical capillary tube and subject to destabilizing van der Waals forces. Analytical
expressions for the steady-state film profile Hs(X; β), depending on the dimensionless van der Waals
parameter β, were derived in the limiting cases of large and small β. A simplified numerical model
was used to examine the growth of instabilities near the front or rear meniscus. Beginning from near
the steady state, small perturbations are advected towards the rear of the bubble. Their amplitudes
grow until a rupture instability occurs. Both the time scale and length scale of rupture are O(1/β2);
notably, this indicates that for bubbles much shorter than this length, the instability travels into the
rear before rupture occurs.

We also analyzed how the Bretherton steady state (with β = 0) is modified when attractive van der
Waals forces become significant through a sudden transition from wetted to nonwetted substrates.
Again, our asymptotic analysis demonstrated that if the bubble length is sufficiently small, then
rupture is not expected to occur [cf. (40)].

As noted in Sec. IV B 3, while our asymptotic and numerical models agree qualitatively with
the experimental observations of Chen et al. [15], a quantitative comparison is difficult due to the
differing assumptions between our model and the experimental measurements. Our mathematical
model describes a very long bubble of negligible viscosity in a circular tube, where the front and rear
menisci do not interact with each other. On the other hand, the experiments measure a viscous drop
of small finite length in a rectangular channel, where interaction between the front and the rear is
inevitable. Thus, we highlighted the need to (i) perform an experimental investigation of a bubble of
negligible viscosity in a tube over a large range of bubble lengths, (ii) include viscous effects in our
mathematical model to study the possible ways this can affect rupture dynamics, and (iii) develop
a full numerical and analytical model that allows for arbitrary bubble lengths and shapes (and thus
more complex interactions between the front and rear menisci).
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In the instances that rupture cannot be completely suppressed through modification of the flow
velocity, there are other ways to delay its onset. For example, Matar and Kumar [34] show that
both the addition of surfactants and increased substrate flexibility will affect the time scale for
rupture. Other studies have sought to understand the dynamics of thin-film flow on general curved
surfaces [46–48] and, for example, the recent work of [49] demonstrates that substrate curvature can
prevent the classical Rayleigh-Taylor instability from occurring. It would be expected that similar
considerations can be made for the situation of rupture instabilities. Given the particular importance
and desirability of rupture in certain industrial applications (e.g., drug delivery [26]), we highlight
the importance of developing a better understanding of the dynamics of bubble or droplet rupture in
more general environments and geometries.
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