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Spherical particle sedimenting in weakly viscoelastic shear flow
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We consider the dynamics of a small spherical particle driven through an unbounded
viscoelastic shear flow by an external force. We give analytical solutions to both the mobility
problem (the velocity of a forced particle) and the resistance problem (the force on a fixed
particle), valid to second order in the dimensionless Deborah and Weissenberg numbers,
which represent the elastic relaxation time of the fluid relative to the rate of translation
and the imposed shear rate. We find a shear-induced lift at O(Wi), a modified drag at
O(De2) and O(Wi2), and a second lift that is orthogonal to the first, at O(Wi2). The relative
importance of these effects depends strongly on the orientation of the forcing relative to the
shear. We discuss how these forces affect the terminal settling velocity in an inclined shear
flow. We also describe a basis set of symmetric Cartesian tensors and demonstrate how they
enable general tensorial perturbation calculations such as the present theory. In particular,
this scheme allows us to write down a solution to the inhomogeneous Stokes equations,
required by the perturbation expansion, by a sequence of algebraic manipulations well
suited to computer implementation.
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I. INTRODUCTION

In this paper we consider the mobility of a small spherical particle driven through an unbounded
viscoelastic shear flow by an external force. In a Newtonian fluid the velocity of the particle is
determined by the balance between the Stokes drag and the external force and it is unaffected by
the shear flow because of the linearity of Stokes equations. However, in a viscoelastic fluid the
disturbance flow around the particle interacts nonlinearly with the shear flow to induce viscoelastic
stresses. As a consequence, the mobility depends nonlinearly on the forcing and the shear flow.

A viscoelastic shear flow can reduce the terminal velocity of a sphere when the applied shear flow
is perpendicular to gravity [1–4]. This so-called cross-shear flow is a model system for transport
of particles in vertical cracks induced by hydraulic fracturing [5]. Experiments by van den Brule
and Gheissary [1] first demonstrated that a cross-shear flow strongly reduces the settling velocity
and that fluid elasticity is the dominant mechanism. Recently, numerical simulations by Padhy et al.
[3,6] verified an increased drag on a sphere translating through a cross-shear flow and showed that
the experimental observation is explained by a combination of viscoelasticity and the effects of the
nearby walls in the experiment. Calculations by Housiadas and Tanner [2,7] demonstrate that the
drag is increased also in an unbounded viscoelastic cross-shear flow.

These studies concern settling in a cross-shear flow in which the gravity acts along the vorticity
axis. In this case the physical system is invariant under a 180◦ rotation around the vorticity axis. This
symmetry was exploited in both the analytical and numerical calculations to reduce the number of
variables [2,3,7]. In particular, the only relevant force is the drag force and the particle only rotates
around the vorticity axis. The effect of the shear on settling is substantial in this symmetrical case
and this fact raises new questions. How are the dynamics affected when gravity acts at an angle to
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the vorticity? Are there additional forces and torques when the symmetry is broken? How does the
drag change as the angle between gravity and flow vorticity changes?

In this paper we calculate the effect of an unbounded shear flow on the terminal particle velocity
for any orientation of the external force relative to the shear. We must consequently abandon the
simplifications of the symmetrical case. We must allow for lift forces in the flow-shear plane and
for rotation around any axis. Further, since viscoelasticity is a nonlinear effect, it is not possible
to construct the general result as a linear combination of results for two independent directions.
Therefore, we must solve the general perturbation problem for the flow velocity u and viscoelastic
stress tensor � around a translating and rotating particle in a shear flow. Our calculation relies on
a perturbation theory for weak elasticity, valid to second order in the Deborah and Weissenberg
numbers. These dimensionless numbers relate the elastic relaxation time of the fluid relative to the
rate of translation and the shear rate.

Brunn [8,9] and Vishnampet and Saintillan [10] considered the first order of this problem and
found lateral migration, although their detailed results do not agree with each other. The first part of
our calculation is an independent check of their results, which we return to in Sec. IV A. Housiadas
and Tanner [11] and D’Avino et al. [12] considered the angular velocity of the sphere in the absence
of an external force and Leslie and Tanner [13] calculated the drag on a sphere in the absence of
shear flow. These two results coincide with our theory in their respective limits.

We solve the problem in tensorial form. Our solution does not refer to any coordinate
representation such as spherical coordinates. Since the governing equations and boundary conditions
are tensorial in nature, this substantially simplifies the calculations. All steps of the calculation are
algebraic and therefore well suited to computer implementation. To achieve this we introduce a basis
set of symmetric rank-n Cartesian tensors. We describe these tensors and how to calculate with them
in some detail in Sec. III, because we expect that they will be useful for treating other problems too.

We present two related calculations. The first is the mobility problem, where we impose
an external force Fext on the particle and compute the resulting particle velocity v(Fext). This
corresponds directly to the experimental protocol of, for example, van den Brule and Gheissary
[1], where they release a sphere in a cylindrical Couette device and measure the steady settling
velocity. The other question is the resistance problem, where we prescribe the particle velocity v

and compute the resulting force F(v) exerted by the fluid on the particle. This approach corresponds
to the calculations by Housiadas and Tanner [7] and numerical simulations by Padhy et al. [6].
The two are related, because given the solution to the mobility problem v(Fext) and the solution
of the resistance problem F(v), it must hold that F(v) = −Fext. In this paper we solve both the
mobility problem and the resistance problem for a freely rotating spherical particle in an unbounded
viscoelastic shear flow, with no restriction on the direction of v or Fext relative to the shear.

The rest of this paper is organized as follows. In Sec. II we describe the problem, give the
governing equations, and describe how we apply the Lorentz reciprocal theorem. In Sec. III we
explain our algebraic solution of the inhomogeneous Stokes equation in terms of Cartesian tensors
and summarize their algebraic properties. We summarize our calculation and give the final result in
Sec. IV. We discuss the results and conclude in Sec. V.

II. PROBLEM FORMULATION

A. Equation of motion and dimensionless parameters

We consider the steady-state motion of a spherical particle of radius a, suspended in a viscoelastic
fluid and subject to an external force Fext. For concreteness we may think of the gravitational force
Fext = 4πa3(ρp − ρf )g/3. The particle moves with center-of-mass velocity v and rotates with
angular velocity ω. Far away from the particle the flow is a simple shear flow

u∞ = � × r + Sr, (1)

063301-2



SPHERICAL PARTICLE SEDIMENTING IN WEAKLY . . .

where � is half the flow vorticity and the symmetric tensor S is the rate of strain. In a simple shear
flow the vorticity and strain are related by S� = 0 and 2|�|2 = TrSS, in contrast to a general linear
flow.

We work in dimensionless variables. The length scale is given by the particle radius a. The time
scale is given by the reciprocal of the imposed shear rate s = √

2 TrSS, which also determines
the scale of u∞ to sa. The particle and disturbance flow velocities are nondimensionalized by the
characteristic flow velocity vc past the particle. In the resistance problem, vc is simply the magnitude
|v| of the imposed velocity v. In the mobility problem we estimate the characteristic speed by
vc = F ext/aμ, related to the terminal velocity in Stokes flow under an external force of magnitude
F ext. Here μ is the total viscosity, defined precisely in conjunction with the constitutive equations
below. Stresses are made dimensionless by vcμ/a and forces by vcμa. In the remainder of this
paper all quantities are dimensionless: t ′ = st , r ′ = r/a, S′ = S/s, �′ = �/s, F′ = F/vcμa, and
so forth. We drop the primes since all quantities are dimensionless.

It follows that there are two dimensionless parameters that govern this problem, corresponding
to the translational and rotational motion of the particle compared to the relaxation time λ of the
viscoelastic fluid. The Deborah number De = λvc/a is associated with the time scale of convective
flow over the particle size. The Weissenberg number Wi = λs is associated with the shear rate. The
ratio α = Wi/De measures the relative importance of the imposed shear to the translational motion.

The perturbation theory in this paper is valid in the limit De � 1 and Wi � 1. This implies that
the elastic part of the fluid relaxes quickly relative to the rate at which it is deformed by the moving
particle and the shear flow. In the following we expand in De and treat the ratio α as an O(1) quantity.
However, in the end we give the result in terms of De and Wi. We note that the choice between 1/s

and a/vc for the characteristic time scale is arbitrary up to factors of α = Wi/De, which we assume
to be O(1).

We neglect the effects of fluid inertia. This requires that the viscous relaxation time of the fluid
is shorter than the elastic relaxation time λ so that we can neglect effects of inertioelastic coupling.
More precisely, the particle Reynolds number Rep = ρf vca/μ � De. This condition is equivalent
to ρf a2/μ � λ.

We write down the dimensionless governing equations with respect to a frame moving with the
steady center-of-mass velocity v. In this frame the fluid pressure p and velocity u satisfy

∇ · σ = 0, σ = −pI + (1 − μr )[∇u + (∇u)T] + μr�, (2a)

∇ · u = 0. (2b)

The viscoelastic stress tensor � is modeled by the steady Oldroyd-B constitutive equations [14].
They describe a suspension of elastic dumbbells, which is one of the simplest models of an elastic
polymer suspension that exhibits a normal stress difference in a shear flow. The equations are

� + De[(u · ∇)� − (∇u)� − �(∇u)T] = ∇u + (∇u)T. (3)

The parameter μr = μp/(μs + μp) is the relative contribution to the total viscosity from the elastic
polymers, relative to the solvent viscosity μs . We define the total viscosity μ = μs + μp.

The flow problem in Eqs. (2) and (3) is completed by the no-slip boundary condition on the
particle surface Sp and that it approaches u∞ as |r| → ∞:

u = αω × r, r ∈ Sp, u → αu∞ − v, |r| → ∞. (4)

The force and torque on the particle are given by

F − Fext =
∫

Sp

σ · d S, (5)

T =
∫

Sp

r × σ · d S. (6)
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We do not consider any external torques in this paper and so T ext = 0. We compute the forces on
the particle, or the resulting velocities, with the Lorentz reciprocal theorem [15]. We outline how to
apply it to our problem in the following section.

B. Reciprocal theorem

In the context of perturbation theory, the Lorentz reciprocal theorem relates certain integral
quantities such as the force or torque to order n + 1, given the detailed flow solution to only order n

[15,16]. For non-Newtonian flows in particular, the method has been used to calculate, for example,
lateral migration [17] and orbit drift of nonspherical particles [18]. In this section we state the
theorem as applicable to our problem and notation.

We define the Newtonian part of the stress by σN = −pI + [∇u + (∇u)T] and the extra stress
σE = μr{� − [∇u + (∇u)T]} so that σ = σN + σE . The flow equation of motion (2a) is therefore

∇ · σN = −∇ · σE. (7)

The Lorentz reciprocal theorem for an arbitrary Stokes flow (ũ,σ̃ ) and the flow defined in Eq. (2)
reads [15] ∫

S

ũ · σN · d S =
∫

S

u · σ̃ · d S +
∫

V

ũ · ∇ · σNdV . (8)

Here V is any volume outside the particle and S denotes the surfaces bounding V . The vector
d S = ndS, where n is the surface normal pointing out of V . Using σ = σN + σE , it follows from
(8) that ∫

S

ũ · σ · d S =
∫

S

u · σ̃ · d S +
∫

S

ũ · σE · d S −
∫

V

ũ · ∇ · σEdV . (9)

In the first two surface integrals in (9) we identify the hydrodynamic force and torque on the particle,
as given in Eq. (6). We take ũ to be the Stokes flow around a spherical particle translating with
velocity ṽ and rotating with angular velocity ω̃ in an otherwise quiescent fluid. We write this auxiliary
flow as ũ = Mvṽ + Mωω̃ and we also know that F̃ = −6π ṽ and T̃ = −8π ω̃. Finally, upon taking
the size of the volume V to infinity and inserting the boundary conditions (4) into Eq. (9), we find

ṽ · (F − Fext) + ω̃ · T = − 6π ṽ · v + 8παω̃ · (� − ω) + ṽ ·
∫

Sp

σE · d S + ω̃ ·
∫

Sp

r × (σE · d S)

− ṽ ·
∫

V

MT
v∇ · σEdV − ω̃ ·

∫
V

MT
ω∇ · σEdV . (10)

The surface integrals “at infinity” do not contribute and the remaining surface integrals are only
over the particle surface. This is well known for the disturbance quantities, say, σE(u) − σE(u∞),
because the integrands decay faster than 1/r2 [16]. The potentially problematic terms are those from
σE(u∞) that are independent of r . However, Mv is an even function of r , so the surface integral
vanishes by symmetry. On the other hand, Mω integrated over the sphere is an antisymmetric tensor
that vanishes upon contraction with the symmetric stress tensor.

Because ṽ and ω̃ may be chosen arbitrarily, we have two separate theorems for the force and
torque:

(F − Fext) = −6πv +
∫

Sp

σE · d S −
∫

V

MT
v∇ · σEdV , (11)

T = 8πα(� − ω) +
∫

Sp

r × (σE · d S) −
∫

V

MT
ω∇ · σEdV . (12)
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In this paper we do not consider external torques and therefore T = 0 implies

ω = � + 1

8πα

∫
Sp

r × (σE · d S) − 1

8πα

∫
V

MT
ω∇ · σEdV . (13)

The reciprocal theorem may be used to solve either the resistance problem or the mobility
problem. For the resistance problem we take Fext = 0 and use Eq. (11). For the mobility problem
we require the total force F = 0 and find

v = 1

6π
Fext + 1

6π

∫
Sp

σE · d S − 1

6π

∫
V

MT
v∇ · σEdV . (14)

The integrands in Eqs. (11)–(14) are functions of the yet unknown σE . In Sec. IV we evaluate these
integrals by calculating σE perturbatively.

As a final note, Eq. (11) is equivalent to the integral theorem Ho and Leal [17] used to compute the
lateral drift of a spherical particle in wall-bounded flow. Their Eq. (2.22) follows from our Eq. (11)
because

∫
S

ũ · σE · d S −
∫

V

ũ · ∇ · σEdV =
∫

V

σE : ∇ũ dV . (15)

However, we evaluate the two integral contributions in Eq. (11) separately, because they give the
contributions from two different physical mechanisms. The surface integral represents the extra
polymer stress acting directly on the particle surface [see Eq. (61) and (67) in Sec. IV]. The volume
integral represents the indirect effect that the polymer stress modifies the flow field, which in turn
modifies the viscous stress on the particle.

III. METHOD: T TENSORS

In this section we introduce a basis set of symmetric rank-n Cartesian tensors T nl
i1i2..in

. Each of
these basis tensors is a linear combination of spherical harmonics Ym

l with a particular value of
the angular momentum quantum number l, but different modes m. Therefore, the Cartesian tensors
share many useful properties with the spherical harmonics. For example, surface integrals vanish
unless l = 0 and tensors with different values of l are orthogonal with respect to integration over the
unit sphere and they have known Fourier transforms.

Because of their direct relation to the spherical harmonics, the T tensors are an alternative basis
for Lamb’s general solution for Stokes flow [15]. However, as explained in detail below, a rank-n T

tensor is also closely related to the rank-n polyad r̂i1 r̂i2 · · · r̂in of a unit vector r̂ . Together with the
radial functions 1/rm, these polyads are the building blocks of the familiar multipole expansion for
Stokes flow, for example, the Stokeslet δij /r + r̂i r̂j /r or the rotlet εijk r̂j /r2. Therefore, the T tensors
stand as an alternative between Lamb’s general solution in spherical coordinates and the Cartesian
multipole expansion. Although any calculation may in principle be performed in any of these
representations, we found that the basis described here is suitable for implementation in computer
algebra. In particular, it enables us to write down particular solutions to inhomogeneous Stokes
equations in tensorial form, without any explicit coordinate representation and without explicitly
solving differential equations.

In this section we use index notation to avoid any ambiguity. When appropriate we use the vector
notation Tnl , remembering that Tnl is rank n and symmetric in all indices.
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A. Definition

We consider the rank-n polyad r̂i1 r̂i2 · · · r̂in of a unit vector r̂ . Any given polyad is a smooth
function defined on the sphere and may be expanded in the spherical harmonics

r̂i1 r̂i2 · · · r̂in =
∞∑
l=0

m=l∑
m=−l

cnlm
i1i2···inY

m
l . (16)

For our present purposes it is not necessary to calculate the expansion coefficients cnlm
i1i2···in , but we

may deduce the following important fact. The left-hand side is a polynomial of order n and every
term in the sum on the right-hand side is a polynomial of order l, so we conclude that cnlm

i1i2···in = 0 if
l > n. Therefore,

r̂i1 r̂i2 · · · r̂in =
n∑

l=0

m=l∑
m=−l

cnlm
i1i2···inY

m
l . (17)

We define the tensor T nl
i1i2···in as the inner sum in Eq. (17), so

T nl
i1i2···in ≡

m=l∑
m=−l

cnlm
i1i2···inY

m
l (18)

and therefore by construction

r̂i1 r̂i2 · · · r̂in =
n∑

l=0

T nl
i1i2···in . (19)

We complete the definition by T 00 = 1.

B. Properties of the T tensors

1. Symmetry

From the expansion (19) it is clear that any T tensor is symmetric in all indices. By definition
only tensors with l � n are nonzero:

T nl
i1i2···in = 0, l > n. (20)

Further, the polynomial on the left-hand side of Eq. (19) has parity (−1)n under inversion of r̂ and
every term on the right-hand side has parity (−1)l . Therefore, Tnl is nonzero only if both n and l are
even or if both n and l are odd.

2. Integrals

Any two T tensors are orthogonal with respect to integrals over the unit sphere S, because the
spherical harmonics enjoy this property:∫

S

T
nl1
i1i2···inT

ml2
i1i2···imdS = 0, l1 
= l2. (21)

It follows that ∫
S

T nl
i1i2···indS =

∫
S

T nl
i1i2···inT

00dS = 0, l 
= 0. (22)

3. Cartesian rank

Taking a trace, i.e., contracting any two indices, of a T tensor lowers its rank n by 2:

T nl
i1i2···inδin−1in = T

n−2,l
i1i2···in−2

. (23)
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This follows from Eq. (19) and the orthogonality property (21). An important consequence is that
T ll

i1i2···il is traceless:

T ll
i1i2···il δil−1il = 0. (24)

Conversely, for l � n − 2, we raise the Cartesian rank n by

T nl
i1i2···in = 2

n(n + 1) − l(l + 1)

(
δi1i2T

n−2,l
i3i4···in + · · · + δin−1inT

n−2,l
i1i2···in−3

)
. (25)

The parentheses in the numerator of Eq. (25) contain n(n − 1)/2 terms, one for each unique pairing
of the n indices. We have not proven Eq. (25) for general values of n and l, but it is straightforward to
work out the cases l = n − 2, l = n − 4, and so on, by taking a trace of Eq. (25) and using Eqs. (23)
and (24) repeatedly. We have checked all values of n and l that are used in our calculations in this
paper.

4. Dimensionality

The tensor T ll is a rank-l Cartesian tensor. In general, it could have 3l unique elements (in
three spatial dimensions). In contrast, there are only 2l + 1 spherical harmonics Ym

l of degree l,
corresponding to the values m = −l, . . . ,l. However, we have shown that T ll is symmetric and
traceless. A symmetric tensor of rank l has (l + 1)(l + 2)/2 unique elements and it has l(l − 1)/2
unique traces that we require to vanish. These conditions leave exactly 2l + 1 degrees of freedom
for a symmetric and traceless rank-l Cartesian tensor. This is the reason we refer to the T tensors
as a basis set. The coefficients cllm

i1i2···il in Eq. (18) are the elements of the rotation matrix between
the two basis sets T ll and Ym

l . We claim that this transformation is unitary for a certain choice of
normalization of the spherical harmonics. In other words, it is in fact a proper rotation. However,
we have not proven this for general values of l, but we confirmed that it is true up to l = 8 by brute
force calculation of cllm from the definition Eq. (18) (see the Appendix).

5. Multiplication

The product of two T tensors follows directly from (19) as a recurrence relation

T
l1l1
i T

l2l2
j =

l1+l2∑
J=0

T
l1+l2,J
i j −

l1−2∑
j1=0

l2−2∑
j2=0

T
l1j1

i T
l2j2

j −
l1−2∑
j1=0

T
l1j1

i T
l2l2
j −

l2−2∑
j2=0

T
l1l1
i T

l2j2

j . (26)

Here i and j are shorthand for i1 · · · in and j1 · · · jn. We use Eq. (26) in practical calculations, but there
is also a largely unexplored connection to quantum angular momentum algebra and Clebsch-Gordan
coefficients. In particular, it can be shown (see the Appendix) that

T
l1l1
i T

l2l2
j =

l1+l2∑
J=|l1−l2|

A
l1l1l2l2J
i j k T JJ

k (27)

for some coupling tensor A independent of r̂ .

6. Relation to polyads

We convert any polyadic expression into T tensors by replacing r̂i → T 11
i and applying Eq. (26)

until no products remain. Conversely, any T tensor is expressed as a polyadic by recursively using

T nn
i1i2···in = r̂i1 r̂i2 · · · r̂in −

n−2∑
l=0

T nl
i1i2···in (28)
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and Eq. (25). The first few tensors are

T 00 = 1, T 11
i = r̂i T 20 = 1

3δij , T 22
ij = r̂i r̂j − T 20

ij

T 31
ijk = 1

5 (δij r̂k + δik r̂j + δjkr̂i), T 33
ijk = r̂i r̂j r̂k − T 31

ijk T 40
ijkl = 1

15 (δilδjk + δikδjl + δij δkl)

T 42
ijkl = 1

7 (r̂k r̂lδij + r̂j r̂lδik + r̂i r̂lδjk + r̂j r̂kδil + r̂i r̂kδjl + r̂i r̂j δkl) − 2
21 (δilδjk + δikδjl + δij δkl)

T 44
ijkl = r̂i r̂j r̂k r̂l − T 42

ijkl − T 40
ijkl . (29)

7. Differentiation

In order to calculate using only algebraic manipulations on the T tensors, we must know how
the gradient operator ∇, where ∇i = ∂/∂ri , acts on them. We will show that the action of ∇ is to
scatter a tensor of degree l into a linear combination of tensors with degrees l − 1 and l + 1 [given
in Eq. (34)]. We will briefly describe how to compute the coefficients of this linear combination, for
any l.

Consider the differential operator T nl
i (∇), defined by taking the polynomial rlT nl

i (r̂) and replacing
the components of r with the partial derivatives ∂/∂ri . Hobson’s theorem on differentiation [19,20]
explains that any such differential operator built from a harmonic polynomial acts on radial functions
in a particularly simple way. In our case we use his result to find

T nl
i (∇)ra = bl

ar
a−lT nl

i (r̂), (30)

with

bl
a =

l−1∏
k=0

(a − 2k). (31)

Therefore, the general J th-order derivative is

T NJ
i (∇)rmT nl

j (r̂) = 1

bl
m+l

T NJ
i (∇)T nl

j (∇)rm+l . (32)

The product T NJ
i (∇)T nl

i (∇) is given by Eq. (27) and the general formula follows from Eq. (30). In
this paper we only consider first-order derivatives that correspond to J = 1, because ∂/∂ri = T 11

i (∇).
For J = 1 the general formula (32) and Eq. (27) give

∂

∂ri

rmT nl
j (r̂) = 1

bl
m+l

∇2A
11nl,l−1
ijk T

l−1,l−1
k (∇)rm+l + 1

bl
m+l

A
11nl,l+1
ijk T

l+1,l+1
k (∇)rm+l , (33)

which becomes, using Eqs. (30) and (31),

(m + l + 1)A11nl,l−1
ijk T

l−1,l−1
k (r̂)rm−1 + (m − l)A11nl,l+1

ijk T
l+1,l+1
k (r̂)rm−1. (34)

To evaluate Eq. (34) in our computer program we compute the product rm−1T 11Tnl ≡
αrm−1T l−1,l−1 + βrm−1T l+1,l+1 using (26) and replace the coefficients by α → (m + l + 1)α and
β → (m − l)β.

8. Fourier transform

We use a symmetric convention for the Fourier transform

Ff (k) ≡ 1

(2π )3/2

∫
R3

d3r e−ir·kf (r), (35)

F−1f (r) ≡ 1

(2π )3/2

∫
R3

d3k eir·kf (k). (36)
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The Fourier transform of rmT nl
i (r̂) follows directly from that of the functions rmY

μ

l (θ,ϕ) given in
Ref. [21]. For all values of m and l that appear in the present calculation

FrmT nl(r̂) = �ml

km+3
T nl(k̂), m 
= l + 2j ; m 
= −(l + 3) − 2j ; j = 0,1, . . . (37)

�ml = (−i)l2m+3/2 
(

m+l+3
2

)


(
l−m

2

) . (38)

When m = l + 2j , rmT nl(r̂) is a polynomial in the components of r and its Fourier transform is the
Dirac delta function and its derivatives. The case m = −(l + 3) − 2j is more complicated, involving
logarithms [21]. Neither of these cases arises in this paper.

C. Particular solution for the inhomogeneous Stokes equation

Consider the inhomogeneous Stokes problem

−∂ip + ∇2ui = fi, ∂iui = 0, (39)

where we assume that fi is a linear combination of T tensors. The Fourier transform of Eq. (39) is

−ikiFp − k2Fui = Ffi, kiFui = 0, (40)

where k = |k|. This algebraic equation is solved by

Fp = −kjFfj

ik2
, (41)

Fui = − 1

k2
(δij − k̂i k̂j )Ffj , (42)

where k̂i ≡ ki/k is a unit vector. In terms of T tensors, the Fourier space Green’s function is

− 1

k2
(δij − k̂i k̂j ) = 1

k2

(
T 22

ij (k̂) − 2

3
δij

)
. (43)

The procedure to find the solution ui is therefore to (i) compute the Fourier transform of fi using
Eq. (37), (ii) multiply with the Green’s function (43) using Eq. (26), and (iii) inverse Fourier transform
the product again using Eq. (37). In this paper we never need an explicit expression for the pressure
p, but if needed it is computed in the analogous way from Eq. (41).

IV. RESULTS

In this section we give the solutions to both the mobility problem (Sec. IV A) and the resistance
problem (Sec. IV B) for a freely rotating spherical particle in an unbounded viscoelastic shear flow,
with no restriction on the direction of v or Fext relative to the shear.

A. Mobility problem

Here we consider a particle moving under the effect of an external force. The particle velocity v

is a function of De and Wi to be determined and to that end we require that the total force F = 0.
We proceed with a regular perturbation expansion in De:

u = u(0) + Deu(1) + De2u(2) + · · · , p = p(0) + Dep(1) + De2p(2) + · · · ,

ω = ω(0) + Deω(1) + De2ω(2) + · · · , v = v(0) + Dev(1) + De2v(2) + · · · ,

� = �(0) + De�(1) + De2�(2) + · · · .
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At each order �(k) is given by an algebraic equation and u(k) by an inhomogeneous Stokes equation
(except for the lowest order, which is homogeneous). To lowest order De0 we have, from Eq. (3),

�(0) = ∇u(0) + (∇u(0))T (44)

and therefore σE(0) = 0. From Eqs. (14) and (13) we have then

v(0) = 1

6π
Fext, ω(0) = �. (45)

To order De0 the flow satisfies

−∇p(0) + ∇2u(0) = 0, (46)

u(0) = αω(0) × r, r ∈ S u(0) → αu∞ − v(0), |r| → ∞. (47)

At order De1 Eq. (3) gives

�(1) = −[(u(0) · ∇)�(0) − (∇u(0))�(0) − �(0)(∇u(0))T] + ∇u(1) + (∇u(1))T, (48)

where u(0) is known, but u(1) is still unknown. Consequently,

σE(1) = −[(u(0) · ∇)�(0) − (∇u(0))�(0) − �(0)(∇u(0))T]. (49)

The reciprocal theorem (14) gives

v(1) = 1

6π

∫
Sp

σE(1) · d S − 1

6π

∫
V

MT
v∇ · σE(1)dV = −αμr

6π
� × Fext, (50)

ω(1) = 1

8πα

∫
Sp

r × (σE(1) · d S) − 1

8πα

∫
V

MT
ω∇ · σE(1)dV = 0. (51)

At this order the shear flow and the disturbance from the external forcing interact to create a lateral
drift perpendicular to both the direction of forcing and the vorticity. The drift arises from both the
extra stress on the particle surface and the viscous stress induced by the viscoelastic medium. The
lateral drift (50) was first calculated by Brunn [8]. Our Eq. (50) agrees with his when accounting
for the erratum [9] and letting his κ11

0 = −2κ22
0 , which corresponds to the second-order fluid limit

of the Oldroyd-B model. The mobility derived by Vishnampet and Saintillan [10] is different from
Eq. (50). In particular, they report a contribution proportional to SFext. The O(Wi) contribution to
the angular velocity vanishes, in agreement with all the previous results [8–10].

With σE(1), v(1), and ω(1) given by Eqs. (49)–(51), we can write down the inhomogeneous Stokes
problem for u(1),

−∇p(1) + ∇2u(1) = −∇ · σE(1), (52)

subject to

u(1) = αω(1) × r, r ∈ S u(1) → −v(1), |r| → ∞. (53)

First we compute a particular solution u(1)p(r) as explained in Sec. III C. The flow field u(1)p satisfies
the inhomogeneous equation (52), but not the boundary conditions (53). We next solve for a Stokes
flow u(1)h that satisfies the homogenous equation

− ∇p(1)h + ∇2u(1)h = 0 (54)

and the boundary conditions

u(1)h = ω(1) × r − u(1)p, r ∈ S u(1)h → −u(1)p, |r| → ∞. (55)

By construction u(1) = u(1)h + u(1)p.
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At order De2 we have, from Eq. (3),

�(2) = σE(2) + ∇u(2) + (∇u(2))T, (56)

with

σE(2) = −[(u(0) · ∇)�(1) − (∇u(0))�(1) − �(1)(∇u(0))T

+ (u(1) · ∇)�(0) − (∇u(1))�(0) − �(0)(∇u(1))T], (57)

where u(0), u(1), �(0), and �(1) are all known. The reciprocal theorem at order De2 gives

v(2) = 1

6π

∫
Sp

σE(2) · d S − 1

6π

∫
V

MT
v∇ · σE(2)dV , (58)

ω(2) = 1

8πα

∫
Sp

r × (σE(2) · d S) − 1

8πα

∫
V

MT
ω∇ · σE(2)dV . (59)

We first consider the angular velocity ω(2). The angular velocity due to the surface integral in Eq. (59)
vanishes, so the induced viscous stress alone explains the rotation rate at this order. The full result
for the angular velocity, to second order in De and Wi, takes the form

ω = � − Wi2
μr

2
� + De2 5μr (910μr − 1941)

96 096

1

(6π )2
Fext × SFext. (60)

The numerically largest contribution is the O(Wi2) slowdown of the rotation around vorticity. This
contribution agrees with an earlier analytical result [11] that also explains numerical simulations
[12]. The O(De2) contribution shows a coupling between the external force and rotation rate, through
the strain. It is numerically small, but may be important because it describes a rotation around an
axis other than �.

For the particle velocity v(2) the surface integral of the extra stress on the particle evaluates to∫
Sp

σE(2) · d S = α2μr

[
2

3
(μr − 1)� × � × Fext − 1

3
� × SFext

]
. (61)

We see that this contribution may affect the velocity along Fext, but in particular it gives another
lateral drift in a direction perpendicular to the O(Wi) lateral drift calculated above.

Next we evaluate the volume integral in (58) and this gives the final result for v to second order
in De and Wi:

6πv = Fext − Wiμr� × Fext

+ μr

(
De2 143μr + 258

25 025

|Fext|2
(6π )2

+ Wi2
5(237 005μr − 291 618)

378 378
|�|2

)
Fext

+ Wi2μr

(
(μr − 1)� × � × Fext + 3

2
� × SFext + 183 339 − 286 735μr

126 126
SSFext

)
.

(62)

The induced viscous stress, given by the volume integral, contributes to the same terms as the extra
stress on the surface shown in Eq. (61). In addition, there is yet another velocity proportional to
SSFext and a component in the direction of Fext.

The second-order contribution to the velocity directly proportional to Fext consists of one term
proportional to De2 and one proportional to Wi2. The velocity along Fext increases as De increases,
but the numerical prefactor is small. The important result is that the velocity decreases with increasing
shear rate, as observed in experiment [1]. We discuss this effect for an inclined shear flow in Sec. V.
In the next section we solve the resistance problem that can be directly compared with earlier
calculations for the cross-shear flow.
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B. Resistance problem

The calculation for this problem is very similar to that of the mobility problem, so we omit most
details. Here we consider a freely rotating sphere moving at velocity v through a shear flow and
calculate the resulting hydrodynamic force F and angular velocity ω. The crucial differences from
the mobility problem are that Fext = 0 and v is a constant, independent of De.

The zeroth-order problem is the corresponding Stokes problem, which determines u(0) and σE(1).
The reciprocal theorem (13) gives

ω(0) = �,

ω(1) = 1

8πα

∫
Sp

r × (σE(1) · d S) − 1

8πα

∫
V

MT
ω∇ · σE(1)dV = 0.

(63)

The first-order flow problem has a different boundary condition from that of the mobility problem,
because v is independent of De. The first-order equations are

−∇p(1) + ∇2u(1) = −∇ · σE(1), (64)

subject to

u(1) = αω(1) × r, r ∈ S u(1) → 0, |r| → ∞. (65)

The reciprocal theorem (11) gives

F(0) = −6πv,

F(1) =
∫

Sp

σE(1) · d S −
∫

V

MT
v∇ · σE(1)dV ,

F(2) =
∫

Sp

σE(2) · d S −
∫

V

MT
v∇ · σE(2)dV ,

ω(2) = 1

8πα

∫
Sp

r × (σE(2) · d S) − 1

8πα

∫
V

MT
ω∇ · σE(2)dV .

(66)

The contributions from the surface and volume integrals are similar to those of the mobility problem.
Specifically,

1

6π

∫
Sp

σE(2) · d S = α2μr

(
−2

3
� × � × v − μr

3
� × Sv

)
. (67)

After evaluating the volume integrals in Eq. (66), we find for the resistance problem with velocity v

F
6π

= −v − Wiμr� × v + μr

(
De2 143μr + 258

25 025
|v|2 + Wi2

5(237 005μr − 291 618)

378 378
|�|2

)
v

+ Wi2μr

(
−� × � × v + 3

2
� × Sv + 183 339 − 286 735μr

126 126
SSv

)
, (68)

ω = � − Wi2
μr

2
� + De2 5μr (910μr − 1941)

96 096
v × Sv. (69)

As expected, the expression for the resistance force (68) is similar to the expression for the mobility
velocity (62) with Fext replaced by −6πv. However, they differ in a term Wi2μ2

r� × � × v. This
difference arises because of the lateral force at O(Wi) for the following reason. In the mobility
problem the particle is allowed to relax this lateral hydrodynamic force by drifting sideways.
However, in the resistance problem we essentially force the fluid through the boundary conditions,
with the lateral force required to keep the particle moving with the prescribed velocity v. This
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forcing, or lack thereof, at O(Wi) is what gives the differing term at O(Wi2). Upon substitution of
the mobility velocity (62) into the expression for the resistance force (68) we find F = −Fext to
second order in De2 and Wi2, as advertised in the Introduction.

The drag term proportional to De2 is the drag in the absence of shear. This term was first calculated
by Leslie and Tanner [13] in the context of sedimentation in a quiescent fluid. Our coefficient matches
theirs when μr = 1 and their ε = β = 0.

For the cross-shear flow, v is parallel to �, so � × v = Sv = 0. For this case only the first and
third terms on the right-hand side of Eq. (68) remain. This expression agrees with the analytical
result of Housiadas and Tanner [7] and therefore with Padhy et al. [3] as shown in their Fig. 7.

V. SUMMARY AND DISCUSSION

We have derived analytical results for the linear and angular velocities of a particle driven through
a viscoelastic shear flow by an external force, valid to second order in De and Wi, given in Eqs. (62)
and (60). We found three qualitatively different corrections to the predicted velocity in a Newtonian
fluid. First, at O(Wi) there is a drift proportional to � × Fext, that is, perpendicular to the forcing
and vorticity. Second, the resulting velocity along the forcing is modified at O(De2) and O(Wi2).
The numerical prefactor of the De2 contribution is small, so in practice only the O(Wi2) effect is
important. These terms correspond to the effect of the imposed shear flow. Third, at O(Wi2) there is
yet another lateral drift, perpendicular to the first one. Even for Wi = 0.5 this second drift may be
as strong as the O(Wi) drift, but it points in another direction. The relative importance of these three
effects depends strongly on the direction of external forcing relative to the orientation of the shear
flow.

There are two mechanisms that contribute to these corrections. First, the extra stress acts directly
on the particle, giving a force and a torque. Second, the extra stress acts on the fluid, which modifies
the flow and indirectly gives a force and a torque via the viscous and pressure terms. The lateral
drift at O(Wi) is a combination of these two mechanisms [Eq. (51)]. The decreased velocity of a
sphere sedimenting in a cross-shear flow, however, is due to the indirect increase of viscous stress
and the direct contribution from the extra stress vanishes [Eq. (61)]. This observation is in qualitative
agreement with the observations of numerical simulations [3]. When the forcing is at an angle to the
vorticity vector, the correction is typically a combination of the two mechanisms.

The angular velocity around the vorticity slows down at O(Wi2), in agreement with earlier results
[11,12]. However, at O(De2) we also find a coupling between the strain and translation that induces a
rotation around the axis Fext × SFext. The prefactor is quite small, but the effect could be important
because it describes rotation around an axis other than �.

Settling in inclined shear flow. Equation (62) is valid for any orientation of the forcing relative
to the shear flow, described, for instance, by two angles relative to the vorticity and flow directions.
In the remainder of this discussion we focus on the concrete example of a particle settling under
gravity, Fext = mg, with the particular set of orientations so that gravity lies in the plane spanned by
the vorticity axis and the flow direction (see Fig. 1). This situation corresponds to settling between
two far-apart shearing walls, parallel to the walls, but where the shearing is at an angle to gravity.
We denote by ϕ the angle between g and the vorticity (see Fig. 1).

We show the resulting settling velocity as a function of Wi in Fig. 2 for ϕ = 0, 45◦, and 90◦. When
ϕ = 0 we recover the cross-shear result and the lateral drift vanishes. As the angle of inclination
increases the settling velocity increases, diminishing the shear-induced drag increase described for
ϕ = 0 in Refs. [1,3,7]. When gravity acts along the flow direction ϕ = 90◦, the settling velocity is
almost the same as that given by Stokes law, only slightly higher. The direction of the O(Wi) lateral
drift is along the − ŷ direction (see Fig. 1). For finite ϕ and small Wi this drift is the dominant feature
of the particle velocity. However, even for larger Wi the magnitude of this drift is comparable to the
reduction in settling velocity when ϕ = 45◦. The additional O(Wi2) drift is in the third independent
direction, given by Fext × ŷ (Fig. 1). For Wi ≈ 0.5 it is comparable in magnitude to both the
reduction in settling velocity and the O(Wi) drift.
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x̂

ŷ

−ẑ,Ω

ϕ

F ext

FIG. 1. Inclined shear flow geometry discussed in Sec. V. In this example the external force lies in the
plane spanned by the vorticity axis and the flow direction. This situation corresponds to settling between two
far-apart shearing walls, parallel to the walls, but where the shearing is at an angle to gravity. We denote by ϕ

the angle between Fext and vorticity.

The direction of the O(Wi) lateral drift can be understood by considering how the elastic fluid
is stretched in the vicinity of the sphere. In Fig. 3 we show the trace of the first-order elastic stress
tensor Tr �(1)(r) around the sphere. This trace indicates how strongly the dumbbells are stretched
by the lowest-order Newtonian flow. The figure shows a center cross section of the particle, viewed
along the direction of external forcing. In the cross-shear flow ϕ = 0, the stretching is a complicated
function of the spatial variables, but perfectly symmetric around the sphere (top row in Fig. 3).
Therefore, there is no net force on the particle. However, as the external forcing is tilted, the particle
is forced to move along the flow direction. Now the particle surface moves opposite to the undisturbed
flow on one side and along the undisturbed flow on the other. This asymmetry results in different
stretching of the dumbbells on the two sides, as illustrated for ϕ = 45◦ in the second row of Fig. 3.
This stress contributes to the particle drift both directly, by forcing the particle surface, and indirectly,
by forcing the suspending fluid and thereby inducing additional viscous drag.

Method. In this paper we also introduced the tensors T nl
i1i2···in (Sec. III). These tensors are a basis

suitable for symbolic calculations of tensorial quantities in spherical geometry. In particular, they
allow us to write down solutions to inhomogeneous Stokes equations in tensorial form, without
any explicit coordinate representation and without explicitly solving differential equations. The

0.0 0.2 0.4 0.6 0.8 1.0

Wi

0.7

0.8

0.9

1.0

6
π
v

F

ϕ = 0◦

ϕ = 45◦

ϕ = 90◦

0.0 0.2 0.4 0.6 0.8 1.0

Wi

−0.10

−0.05

0.00

6
π
v

Y

0.0 0.2 0.4 0.6 0.8 1.0

Wi

−0.10

−0.05

0.00

6
π
v

X

FIG. 2. Shear-dependent velocity of a sphere forced by an external force in the flow-vorticity plane, for a
different angle of attack ϕ between the forcing Fext and the vorticity axis. The cross-shear flow corresponds to
ϕ = 0, whereas the force is along the flow direction when ϕ = 90◦. (a) Velocity along Fext. (b) Lateral drift in
the shear direction ŷ. (c) Lateral drift perpendicular to the shear direction. The parameters are μr = 0.3 and
De = 0.1.
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yϕ = 0

TrΠ(1)(r) Tr(Π(1)(r) − Π(1)(−r))

x

yϕ = 45◦

x
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0.0
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0.3

0.6

0.9

1.2

FIG. 3. Trace of the first-order viscoelastic stress �(1) around a particle driven by an external force through
a shear flow. All panels show a center cross section of the particle, viewed along the direction of external
forcing. In these panels y indicates the shear direction and x indicates the direction perpendicular to both Fext

and ŷ (see Fig. 1). The left column shows the full stress field and the right column shows its asymmetric part
under inversion of r . The top row shows the stress field when the external forcing is aligned with vorticity and
the bottom row shows the same when the external forcing is at angle ϕ = 45◦ to vorticity. In all panels α = 1
(implying Wi = De). The trace of �(1) is independent of μr , which follows from Eq. (48) because the flow
field u is incompressible.

calculation in this paper demonstrates the power of our method for treating tensorial equations such as
the coupled rank-2 constitutive equation (3) and the rank-1 flow equation (2). Nevertheless, there are
many open questions regarding the algebraic properties of the T tensors. Most importantly, we have
shown that the product T l1l1 T l2l2 is given by a linear combination of T JJ with |l1 − l2| � J � l1 + l2,
analogous to the product of two spherical harmonics (see the Appendix). However, further work
must be done to determine the properties of the coefficients in this linear combination, to determine
the general expression for differentiation, and to prove the general case of Eq. (25).

Our tensor formalism can also be extended to other geometries. Nearly spherical geometry can be
treated by perturbation theory. Other geometries can be treated by the method of images [22,23]. For
example, the flow around a spheroid in unbounded flow is given by a finite distribution of multipoles
[23]. However, the radial functions are no longer simply rm, but integrals I n

m = ∫ c

−c
ξn/|r − ξn|mdξ ,

where n is the direction of the spheroid and c is a shape-dependent constant [23,24]. Their algebraic
properties must be worked out in order to use the formulas in Sec. III, e.g., for the Fourier transform.
For wall interactions, or other many-center problems, it is possible to derive a translation theorem
that expresses |r − r ′|mTnl(r − r ′) as an infinite series of |r|mTnl(r) and |r ′|mTnl(r ′) [20], which
restores the linearity of the problem.
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APPENDIX: MULTIPLICATION OF T TENSORS

We use following normalization of the spherical harmonics:

Ym
l (θ,ϕ) =

√
√

π
2−l l!(l − m + 1)

(l + 1
2 )(l + m + 1)

P m
l (cos θ )eimϕ. (A1)

With this normalization we conjecture that the transformation between T ll
i and Ym

l is unitary:

T ll
i =

∑
m

cllm
i Ym

l , Ym
l =

∑
i

cllm
i T ll

i . (A2)

We have checked this relation up to l = 8 by explicitly calculating the cllm. The most convenient
way to calculate is to express r̂ in the complex basis ê−1,ê0,ê1, related to êx,êy,êz by the complex
rotation

Rx,−1 = 1√
2
, Rx,0 = 0, Rx,1 = − 1√

2
,

Ry,−1 = i
1√
2
, Ry,0 = 0, Ry,1 = i

1√
2
,

Rz,−1 = 0, Rz,0 = 1, Rz,1 = 0,

so that

cnlm
i1···in =

∑
νi=−1,0,1

Ri1ν1 · · · Rinνn
cnlm
ν1···νn

. (A3)

In this basis

r̂ν = T 11
ν = Y ν

1 (A4)

and therefore

r̂ν1 · · · r̂νn
=

n∑
L=0

l∑
m=−L

cnJM
ν1···νn

YM
J =

n−1∑
l=0

l∑
m=−l

cn−1,lm
ν1···νn−1

Ym
l Y

νn

1 . (A5)

Because of the orthogonality of the spherical harmonics, this leads to a recurrence relation for the
coefficients

cnJM
ν1···νn

=
n−1∑
l=0

l∑
m=−l

cn−1,lm
ν1···νn−1

g(l,m,1,νn,J,M), (A6)

where g is the Gaunt coefficient for integrals of the spherical harmonics,

g(l1,m1,l2,m2,J,M) =
∫

S

Y
m1
l1

Y
m2
l2

Y
M

J dS. (A7)

Provided this unitary transformation, we have

T
l1l1
i T

l2l2
j =

l1+l2∑
J=|l1−l2|

A
l1l1l2l2J
i j k T JJ

k , (A8)

063301-16



SPHERICAL PARTICLE SEDIMENTING IN WEAKLY . . .

where

A
l1l1l2l2J
i j k =

l1∑
m1=−l1

l2∑
m2=−l2

J∑
M=−J

c
l1l1m1
i c

l2l2m2
j cJJM

k g(l1,m1,l2,m2,J,M). (A9)
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