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The mechanism of hydrodynamics-induced pairing of soft particles, namely closed
bilayer membranes (vesicles, a model system for red blood cells) and drops, is studied
numerically with a special attention paid to the role of the confinement (the particles are
within two rigid walls). This study unveils the complexity of the pairing mechanism due to
hydrodynamic interactions. We find both for vesicles and for drops that two particles attract
each other and form a stable pair at weak confinement if their initial separation is below
a certain value. If the initial separation is beyond that distance, the particles repel each
other and adopt a longer stable interdistance. This means that for the same confinement we
have (at least) two stable branches. To which branch a pair of particles relaxes with time
depends only on the initial configuration. An unstable branch is found between these two
stable branches. At a critical confinement the stable branch corresponding to the shortest
interdistance merges with the unstable branch in the form of a saddle-node bifurcation.
At this critical confinement we have a finite jump from a solution corresponding to the
continuation of the unbounded case to a solution which is induced by the presence of walls.
The results are summarized in a phase diagram, which proves to be of a complex nature.
The fact that both vesicles and drops have the same qualitative phase diagram points to
the existence of a universal behavior, highlighting the fact that with regard to pairing the
details of mechanical properties of the deformable particles are unimportant. This offers an
interesting perspective for simple analytical modeling.
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I. INTRODUCTION

In the microcirculation, it is often observed that the red blood cells (RBCs) flow in single or
multiple files forming small trains of cells, called clusters [1,2]. The arrangement and organization
of the RBCs depend on the diameter of the vessel and their concentration (hematocrit). Each RBC
interacts hydrodynamically with the other cells [3]. RBCs can also interact via another mechanism,
namely an interaction mediated by plasma proteins. The latter interaction is materialized either by
bridging between RBCs or by a depletion force. In the bridging mechanisms proteins make a real
bridge between two neighboring RBCs, while in the depletion mechanism osmosis is responsible for
the cluster formation. We have recently discussed the implication of plasma proteins in the formation
of RBC clusters in microcirculation [4]. The main objective is to gain further insight into the role
of each mechanism. Therefore this paper is be directed towards numerical study of the effect of
hydrodynamic interactions on cluster formation.

Several studies have been devoted to understanding the hydrodynamical interaction between
suspended particles in the Stokes regime. Analytical models [5,6] considered the motion of a linear
array of rigid spheres at low Reynolds number in a cylindrical tube under a pressure-driven flow
(i.e., an imposed Poiseuille flow). Wang and Skalak [5] estimated the range of the hydrodynamic
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interactions between the spherical particles to be of the order of the tube diameter. Leichtberg et al.
[6] showed that the interparticle interactions were relatively small at weak confinements, reached
a maximum at intermediate confinement, and were quickly damped out at strong confinement.
More recently, colloidal particles confined between two parallel plates in a quasi-two-dimensional
(2D) geometry have been studied experimentally and theoretically [7–9]. The complexity in
these systems arises from the difficulty to decouple the effect of Brownian diffusion from
hydrodynamic interactions. An antidrag between the moving particles attributed to a negative
hydrodynamic coupling has been reported. A change of sign of the hydrodynamic coupling
(from attraction to repulsion) in a cylindrical channel was also observed [7]. The effect of
boundaries on the hydrodynamic interactions has been studied in the case of water-in-oil drops
in quasi-one-dimensional microfluidic devices having a square section of the order of the size of the
drop, so that the drops are constrained to move along the channel axis [10–12]. This study reported on
a nonmonotonous behavior of the hydrodynamic interaction resulting from an interplay between the
plug flow and the screening of the long-range hydrodynamic interaction induced by the confinement.

Janssen et al. [13] have studied numerically pairs of rigid spheres and deformable drops driven
by a Poiseuille flow through a three-dimensional (3D) rectangular channel in the Stokes regime. Due
to the reversibility of Stokes equations, the interdistance between a pair of rigid spheres does not
evolve in time. However, for a pair of deformable drops, due to the up-stream or down-stream shape
asymmetry, hydrodynamic interaction leads to an attraction at long interdistances and a repulsion at
short interdistances. The long-range attraction was attributed to the source-quadrupole flows induced
by drop in the Hele-Shaw geometry. The pair of drops tends to the same stationary interdistance
independently of the capillary number, a measure of the flow strength, which affects only the time
needed to reach the steady state.

The rheological behavior and spatial organization of a suspension of vesicles and capsules in
two and three dimensions under shear and parabolic flows have been widely studied numerically
by several groups [14–34]. Still, a complete determination of the phase diagram of the paired states
has not yet been achieved. For example, is the branch of the stationary solutions (say, the stationary
interdistance of a pair as a function of the confinement) unique, or are there many branches? If many
branches exist, is there a coexistence domain, and how does the topology of the bifurcation diagram
evolve with parameters. The present study is focused along this question and reveals a phase diagram
of a complex nature.

It has been shown in a recent study that stable clusters of vesicles can form in the absence of
bounding walls under an imposed parabolic flow profile [35]. Our objective in this paper is to take
this unbounded case as a reference and see how confinement affects the hydrodynamic interactions.
We generically find repulsion at short interdistance and attraction at long interdistance. We also
find that at a long enough vesicle interdistance the interaction can change sign, become repulsive,
and then become attractive at longer interdistance. This points to the existence of an interaction
that changes sign with distance, highlighting the nontrivial effect of hydrodynamic interactions. We
further analyze the complex structure of the branches of coexisting stationary solutions. We mainly
focus this study on vesicles, as a closer biomimetic counterpart for RBCs, but we also investigate the
hydrodynamic interactions between drops in order to investigate whether or not there is a generic
pattern behind our findings and assess how sensitive the hydrodynamic interactions are to the
mechanical properties of the particles. We show that the bifurcation diagram for drops is similar to
that for vesicles (both qualitatively and almost quantitatively), pointing to an underlying universality.

A systematic 2D numerical study (based on a boundary integral formulation) is undertaken here
in order to analyze the time evolution of a pair of vesicles or a pair of drops in a pressure-driven
flow, by exploring several parameters, such as channel width, initial separation of the particles, and
the flow strength. This paper is organized as follows. In Sec. II we introduce the model in detail.
Section III presents the main results for vesicles, for both weak and strong confinement. Section IV
gives an overview of the results for drops. Section V is devoted to a discussion of the results and the
implication for real situations.
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II. THE MODEL AND THE SOLUTION METHOD

We first present the method adopted in this study to solve the motion of two hydrodynamically
interacting vesicles or drops confined between two parallel plates and subject to a Poiseuille flow. We
start by introducing the theoretical model and then discuss the numerical scheme and the precision.

A. Mechanical model for vesicles and drops

Vesicles, drops, and capsules (drops coated with polymers) are endowed with different mechanical
properties leading to different responses to external stresses. Both vesicles [36–39] and capsules
[40–42] are widely used to mimic RBCs under flow. RBC’s complex dynamics, such as tank-treading,
tumbling and vacillating breathing (aka swinging or trembling), can be reproduced by both vesicles
and capsules. Shapes exhibited by RBCs under a Poiseuille flow, such as parachute and slipper
shapes, are also captured by the vesicle and capsule models (see review [18]). Vesicles resist
bending and possess an inextensible membrane (constant area in three dimensions and perimeter
in two) but do not present a resistance to shearing, in contrast to RBCs and capsules, which are
endowed with surface shear elasticity. Nevertheless, several features exhibited by RBCs are also
captured by vesicles, such as the above-mentioned dynamics and shapes under flow.

The membrane energy of vesicles [43] is expressed in its 2D form as

Ec = κ

2

∮
c2 ds +

∮
ζ ds, (1)

where κ is the membrane bending modulus, c is the curvature, ds is the arclength element, and ζ is
a Lagrange multiplier, which enforces membrane inextensibility.

Liquid drops resist deformation by surface tension (line tension in two dimensions) forces, which
tend to restore their shape to a sphere (a circle in two dimensions). The tension energy is written as

Et = ζ0

∮
ds, (2)

where ζ0 is the surface tension. We can see, that Eq. (1) is reduced to (2) by setting κ = 0 and by
treating ζ = ζ0 as a constant representing the surface tension, which is an intrinsic quantity for drops
(while for vesicles, ζ is not intrinsic to the membrane, but is an auxiliary field to enforce a constant
local arclength and thus can change according to membrane load).

The 2D membrane force is obtained by calculating the functional derivative of the energy (1)

f =
{

κ
(

∂2c
∂s2 + c3

2

)
n − cζn + ∂ζ

∂s
t for vesicles

−cζ0n for drops,
(3)

where n and t are the outward normal and the tangent unit vectors, respectively. The details of the
derivation can be found in Ref. [44].

Both for vesicles and for drops, the particle size Rv, which serves as the length scale of the
problem, is defined by the expression

S = πR2
v, (4)

where S is the area inside the particle contour. Here and below, we use generic term particle to
denote both drops and vesicles when there is no need to make a distinction between them. Unlike
drops, vesicles (and RBCs) are characterized by their reduced area

ν = S

π [p/(2π )]2
, (5)

an intrinsic dimensionless parameter that expresses the ratio between the actual fluid area enclosed
by the vesicle contour and the area of a disk having the same perimeter p as the vesicle. For RBCs,
the reduced volume (3D equivalent of the reduced area) lies in the range of 0.60–0.65. Accordingly,
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FIG. 1. Illustration of two vesicles driven by a Poiseuille flow and confined between two parallel walls
situated at x2 = ±W/2.

the reduced area ν is kept fixed to 0.65 in all our simulations. The equilibrium shape obtained by
minimizing (1) for vesicles with reduced volume ν = 0.60–0.65 is a biconcave shape similar to that
exhibited by a RBC at rest [45].

B. Boundary integral formulation

We consider a system of two identical hydrodynamically interacting particles driven by a
Poiseuille flow in a confined geometry between two laterally infinite plates (see Fig. 1). The fluids
inside and outside the particles have the same densities ρin = ρout = ρ and the same dynamic
viscosities μin = μout = μ. The velocity in the absence of particles (i.e., the undisturbed velocity)
is denoted by u∞ and its Cartesian components are given by

u∞
1 (x) = umax

[
1 −

(
x2

W/2

)2
]

u∞
2 (x) = 0, (6)

where x(x1,x2) is an arbitrary point in the whole domain, umax is the midplane velocity, and W is the
channel width. x1 and x2 are the cartesian coordinates of x along the flow and in the perpendicular
directions, respectively. The Reynolds number associated with a vesicle (with typical size 10 μm,
water viscosity and speed in the range of mm/s, as found in microcirculation) is of order 0.01. The
parameters for drops are chosen so that the Reynolds number remains small as compared to unity.
Thus the motion of the fluids can safely be described by the Stokes equations

∇ · σ (x) = −∇P (x) + μ∇2u(x) = 0, (7)

∇ · u(x) = 0, (8)

where σ is the stress tensor associated to the total velocity and P is the pressure. The jump in
the interfacial traction is balanced by the particle interface force f = −[σout − σin]n. Besides the
latter force balance condition, the solution of Eqs. (7) and (8) must respect the following boundary
conditions (BCs):

u(x) = 0, when x lies on the walls, (9)

lim
x→∞[u(x) − u∞(x)] = 0, (10)

uout(x) = uin(x), x ∈ ∂	i (i = 1, . . . ,Nv), (11)

where the subscripts “in” and “out” refer to the fluid inside and outside the particle, ∂	i is the
contour of the ith particle and Nv is the total number of particles. The Stokes equations can be
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converted into a boundary integral equation [46] defined over ∂	i, which reads

u(x) = u∞(x) + 1

4πμ

∑
i

∮
∂	i

G2W (x, y) · f( y) ds( y), (12)

where G2W is a Green’s function satisfying the appropriate boundary conditions (i.e. it vanishes
at the walls and at infinity), x(x1,x2) and y(y1,y2) are the target and source points, and ds is the
element of membrane arclength. The whole right-hand side in Eq. (12) is the total flow field. The
integral on the right-hand side is performed over the particles’ contours ∂	i and corresponds to the
contribution of the particles to the total velocity field. This contribution is referred to as the induced
flow field. We also focus on the flow field in the comoving frame, that is, the frame moving with the
pair of vesicles (when they reach a steady-state interdistance).

C. Numerical method

1. Dimensionless form

Most of the governing equations are the same for vesicles and drops. The difference appears only
in the interfacial force expression and in the characteristic time of shape relaxation to equilibrium.
Dimensionless quantities are denoted with a star symbol and are defined as

c∗ = cRv, s∗ = s/Rv, u∗ = uτc/Rv, x∗ = x/Rv (13)

both for vesicles and for drops. The shape relaxation time τc is taken as a time unit and is defined as

τc =
{

μR3
v

κ
for vesicles

μRv

ζ0
for drops.

(14)

For vesicles, the Lagrange multiplier is nondimensionalized as

ζ ∗ = ζR2
v/κ. (15)

The dimensionless integral equation of the velocity along the contour is given by

Cau∗(x∗) = Cau∞∗(x∗) + 1

4π

∑
i

∫
∂	i

G2W (x∗, y∗) · f∗( y∗) ds∗( y∗). (16)

The dimensionless expression f∗ of the membrane force reads

f∗ =
{(

∂2c∗
∂s∗2 + c∗3

2

)
n − c∗ζ ∗n + ∂ζ ∗

∂s∗ t for vesicles

−c∗n for drops.
(17)

In addition to the reduced area defined above for vesicles [ν = (S/π )/(p/2π )2], we have a new
dimensionless number associated to the flow in Eq. (16), which is given by

Ca =
⎧⎨
⎩

μR3
v γ̇

κ
= μR4

v

κ

umax
(W/2)2 for vesicles

μRvγ̇

ζ0
= μR2

v

ζ0

umax
(W/2)2 for drops.

(18)

We refer to this number as the capillary number. Here γ̇ = 4Rvumax/W
2 is the shear rate defined as the

value of ∂u∞
1 /∂x2 at x2 = Rv/2. We recall that the shear rate in a parabolic flow is position-dependent,

unlike in a linear shear flow. Thus, the definition of the capillary number for a parabolic flow is
not unique in the literature. For example, in Ref. [47] the chosen shear rate is that at the wall and
is equal to γ̇W = 4umax/W . The ratio between the present shear rate and that in Ref. [47] is equal
to Rv/W . In a previous study [39] as a validation of the present code, we have reproduced the full
phase diagram of the vesicle shapes obtained in Ref. [47] in the plane of capillary number and the
degree of confinement. Here we shall explore the ranges of parameters where the vesicle shape is of
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parachute type only (slipper shapes are excluded from our study). Similarly, the drops are maintained
in the center of the channel in order to make an adequate comparison with the vesicle case.

The capillary number is the ratio between the flow stress and bending force density. It may
be viewed also as the ratio between the characteristic shape relaxation time τc [Eq. (14)] and the
time scale of the flow τf = 1/γ̇ . In order to have a reference for the conversion of dimensionless
units into physical ones, the following dimensional numbers for RBCs can be used: Rv = 3 μm,
μ = 10−3 Pa · s and κ = 10−19 J. This leads to a characteristic time of shape relaxation of about
τc ∼ 0.2–0.3 s. This is quite consistent with measured values for RBCs [48–50].

In this study, we quantify the hydrodynamic interactions of two particles by tracking the time
evolution of the distance between their centers of mass. Let us denote the leading particle by 1
and the following particle by 2, and let X(i)(t) = RvX∗(i)(t) denote the instantaneous position of the
center of mass of the contour of particle i at time t. Then the distance between the particles (called
interdistance below) is defined as

�X(t) = Rv�X(t)∗ = X
(1)
1 (t) − X

(2)
1 (t). (19)

Consistently, we define the velocity with which the particles approach (or separate from) each other
as

�U (t) = Rv

τc

�U (t)∗ = d�X(t)

dt
. (20)

2. Numerical method for the vesicle dynamics

The integral equation (16) is discretized using the trapezoid rule and derivatives are approximated
using a finite difference scheme. Each particle is described by a collection of equispaced Lagrangian
nodes advected by the flow. Their motion is obtained by solving the advection equation for each
material node x lying on the membrane

dx
dt

= u(x). (21)

We calculate the velocity of each discretized point on the membranes by solving the integral equation
(16), and the position of each node is updated at each time step using an explicit Euler scheme:

x(t + dt) = x(t) + u(x(t),t) dt. (22)

A tension-like parameter is introduced as a penalty parameter instead of the Lagrange multiplier ζ

[which enters both tangential and normal force; see Eq. (3)]. In other words, each material point is
linked to each of its two neighbors via a very stiff “spring” in order to enforce the local conservation
of arclength, as described in Ref. [51]. If the spring stiffness is denoted as Ttens, we can define a
time scale τtens = μ/(TtensRv). This numerical time scale is to be compared to the physical time
scale τc defined in Eq. (14) and to the flow time scale τf = γ̇ −1. τtens must be taken small enough in
comparison to τc and τf so that on the physical and flow time scales the local incompressibility of
the membrane is safely satisfied. For most practical purposes τtens = 10−4–10−3τc has proven to be
largely sufficient (see below).

There is no arclength conservation for drops. Therefore, the discretization points tend to
accumulate in some regions of the membrane while depleting in the others if the simple advection
of material points (21) is used. We resolve this challenge by applying an additional displacement of
the discretization points every time step. The displacement field is chosen to be (1) tangential to the
interface of the drop so that its shape remains the same and (2) such that the discretization points
approach the equispaced distribution of the interface.

Each membrane is described by Nmem = 120 nodes whose positions are updated each �t =
10−4τc (i.e., this corresponds to the time step). The relative errors corresponding to the area, the
perimeter and the reduced area are around 0.07%, 0.035%, and 0.0009%, respectively. The steady-
state value of the distance between the mass centers of the two vesicles �X∗

f ≡ �X∗(∞) is also
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TABLE I. Relative errors on area, perimeter, and reduced area of vesicles in Poisuille flow Nmem =
{120; 180; 240} and �t = 10−4τc. Also shown is the final distance between the mass centers of the vesicles
�X∗

f . The other relevant parameters are Ca = 10 and W = 2Rv . We obtained almost the same results for
�t = 5 × 10−5τc.

Nmem
(S−S0)

S0
(%) (p−p0)

p0
(%) (ν−ν0)

ν0
(%) �X∗

f

120 0.07 0.035 0.0009 5.83
180 0.03 0.015 0.0004 5.83
240 0.017 0.008 0.0003 5.83

reported (see Table I). The calculations are performed on a cluster consisting of 32 dual-core AMD64
processors with 24 GB RAM per node. OpenMP directives are used to parallelize the matrix-vector
product computation. The time needed to complete 106 iterations as a function of the number of
cores is reported in Fig. 2(a) using two vesicles in a channel of width W/Rv = 2 and a Ca = 10.
Similarly, we have plotted the required run time to complete 2 × 105 steps using 12 cores as a
function of the number of vesicles [see Fig. 2(b)]. It is important to underline that some of the cases
reported in the phase diagram in the result section ran over more than two weeks on a 12-core node
since we decided to avoid using any cutoff or periodic boundary conditions in our system due to
the long-range nature of the hydrodynamic interaction. The use of the appropriate Green’s function
(that vanishes on the walls) allowed us to avoid finite size effects, since we can consider literally an
infinite domain along the flow direction.

3. Numerical method for the velocity field inside and outside the particles

The velocity field in the fluid domains (inside and outside the particles) obeys the same boundary
integral equation as that on the membrane [Eq. (12)], where now x is a location of any point in the
(x1,x2) plane. Once a steady-state configuration is reached (the final shape as well as the vesicle
interdistance), the velocity field is evaluated as a postprocessing task. We introduce a regular square
grid (with a certain degree of refinement; the mesh size can be taken significantly smaller than ds

if need be). Since the Green’s function is singular when the target point coincides with the source
point, a small stripe (of order ds in width) around the membranes is excluded from the fluid domain
in order to ensure a good behavior of the velocity field. The lattice points are in general not on
the membrane, and we need only to evaluate the distance between the source point (lying on the

FIG. 2. Total run time (in seconds) required to compute 106 iterations as a function of the number of cores
(a). The total run time needed to reach 2 × 105 steps as a function of the number of vesicles using 12 cores (b).
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FIG. 3. The pair interdistance as a function of time for different initial conditions (initial interdistance).
W = 20Rv and Ca = 10. Note that the horizontal axis is represented in log scale.

membrane) and the target point (lying on the square grid). For each point x, the velocity field is
evaluated by using Eq. (12), where the integral along the membrane is performed exactly in the same
way as in the previous section.

III. RESULTS FOR VESICLES

In this section, simulations of a pair of vesicles in channels of different widths are performed.
Unless indicated otherwise, vesicles are initialized as elongated ellipses with major axis parallel to
the flow direction. We quantify the hydrodynamic interaction between the vesicles by tracking the
interdistance �X∗ We investigate the role of the confinement, the capillary number, and the initial
configuration (shapes and interdistances of vesicles) on the final state. We shall see that in some
cases, there are several coexisting stationary interdistances for a given value of confinement and
capillary number.

A. Weak confinement

A previous study has been devoted to the cluster formation in the absence of walls [35]. We
first study the behavior of a pair of vesicles in weak confinement in order to check that we can
capture almost the same result. We have analyzed the time evolution of a pair of vesicles in a channel
having a width W = 20Rv , which corresponds to weak confinement. We find that the steady-state
interdistance is equal to about 2.53Rv for W = 20Rv . This result compares well with that obtained
in an unbounded flow [35] where the steady-state interdistance is of about 2.4Rv .

We have analyzed systematically the behavior of a pair of vesicles for different (but still
weak) confinements and different initial conditions. Figure 3 shows a typical behavior of the
pair interdistance as a function of time for different initial separations, which are denoted as
�X∗

init ≡ �X∗(0) in that figure. We see there that different initial conditions lead to the same
final state. Figure 4 shows the final configuration of the pair of vesicles as well as the induced flow
field, that is the total flow field from which we subtract the imposed Poiseuille flow. The total flow
field is also shown.

In order to further analyze the time evolution of vesicle pairs, we have studied systematically
the behavior of the relative velocity of the two centers of mass of the pair of vesicles �U ∗ as
a function of their interdistance �X∗ by considering different initial interdistances. A positive
value of �U ∗ means that the two vesicles repel each other, while a negative value means they
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FIG. 4. The induced flow field for a pair of vesicles in a weakly confined flow (a), W = 20Rv . We also
represent the flow in the frame moving with the vesicle called hereafter “comoving frame” (b). A zoom in the
comoving frame in the region located between the cells reveals the absence of bolus in case of W = 20Rv

where the final interdistance is about 2.4Rv (c); and the presence of quasicircular bolus for W = 13Rv, where
the final interdistance is of about 3.4Rv (d).

attract each other. A stationary interdistance corresponds to �U ∗ = 0. Figure 5 shows �U ∗ as a
function of the dimensionless interdistance between centers of mass, �X∗. We observe a repulsion
at short interdistance and an attraction at long interdistance. There exists one stationary interdistance
characterized by �U ∗ = 0 (denoted as 1 within a dark circle in Fig. 5). This stationary solution is
unique and independent of the choice of the initial shapes explored so far (Fig. 6). Furthermore, this
stationary solution is unambiguously stable since for longer interdistances the velocity is negative
meaning the vesicles attract each other, while for shorter interdistances, the relative velocity is
positive and the vesicles repel. Generally, if the relative velocity crosses zero by going from positive
to negative values (as �X∗ increases), we have a stable stationary solution.

We performed this study for several other weak confinements and determined the corresponding
stationary interdistances. Figure 7 shows the branch of stationary interdistance �X∗ as a function
of W/Rv . The stationary interdistance weakly depends on confinement and remains close to about
3Rv .
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FIG. 5. The relative velocity as a function of the interdistance; W = 18Rv , and Ca = 10.

B. Strong confinement

Let us now examine the generic behavior under strong confinement. Consider the case W = 3Rv .
Looking at the evolution of the interdistance as a function of time, we find that the vesicle pair settles
into a bound, stable steady state for several initial conditions. Two examples are illustrated in Fig. 8.
The first noticeable feature is a significantly larger stationary interdistance for W = 3Rv than for
weak confinement: the stationary interdistance of about 5Rv for W = 3Rv is about two times the
value found for weak confinement (about 2.5Rv). A first interpretation would suggest the screening
of the hydrodynamical interaction by the confining walls. However, since the screening is felt both
in attraction and repulsion, this reasoning is a priori not justified, leaving unclear the mechanism by
which confinement would shift both attraction and repulsion zones.
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FIG. 6. The relative velocity as a function of the interdistance; W = 18Rv , and Ca = 10. Starting from
different initial shapes, the pair of vesicles converges to the same stationary solution. The labels (A), (B), (C),
and (D) correspond to the initial shapes depicted in the right figure.
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FIG. 7. The branch of solution representing the stationary interdistance as a function of the channel width.

To approach a more rigorous interpretation, let us first analyze the velocity field in a strong
enough confinement regime. Figure 9 shows the induced flow field for two confinements W = 6Rv

and W = 3Rv , as well as the flow field in the comoving frame (the frame moving with the pair).
The main difference is that the flow lines which extend far away in the case of weak confinement
(see Fig. 4) are cut off by the effect of the walls in the case of strong confinement. As we shall see
below, this partially hints to a weaker interaction magnitude. As for the weak-confinement case, we
also analyze the relative velocity as a function of the interdistance. The result is shown in Fig. 10.
We obtain a stable stationary solution, which results for a short-range repulsion and long-range
attraction. We find that the relative velocity amplitude is significantly smaller than that obtained for
a weak confinement (compare with Fig. 5). This can be traced back to the screening effect of the
walls which weaken the interaction. We perform this study for several confinements to determine the
corresponding steady-state solution. Figure 11 shows the branch of stationary interdistance �X∗ as
a function of W/Rv . In contrast to the weakly confined case (also shown in Fig. 11), the stationary
interdistance strongly depends on confinement and varies from about 4Rv up to about 32Rv . We

FIG. 8. The interdistance of a pair of parachute-like vesicles as a function of time for different initial
interdistances �X∗

init = 3.9 (solid line) and �X∗
init = 6 (symbols). (b) The effect of the initial shape of vesicles

in the pair on the steady-state solution is shown for ellipses (symbols) and parachutes (solid line). W = 3Rv ,
Ca = 10. Note that the horizontal axis is represented in log scale.
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FIG. 9. The flow field in a comoving frame (a), (c) and the induced flow (b), (d) field for a pair of vesicles
for W = 6Rv and W = 3Rv .

have a new solution branch for small values of W (the leftmost branch in Fig. 11), distinct from the
one discussed above for large W (the rightmost branch in Fig. 11). We have two distinct branches,
one presenting a stationary interdistance that increases with W and the other whose stationary
interdistance decreases with W . We shall now dig further into the structure of the phase diagram.

C. Full phase diagram

We broaden our investigation in order to clarify the overall structure of the topology of the phase
diagram. First, we analyze the basin of attraction of each branch by exploring a wider range of
initial conditions. We begin our discussion with the weak-confinement case. In the previous section,
we saw that different initial conditions led to the same final solution. Exploring wider and wider
regions of initial conditions reveals a different scenario. Keeping the same confinement W = 13Rv ,
as above, we find that beyond a certain initial pair interdistance, the solution no longer converges to
the same value. Figure 12 (left) shows the time evolution of the interdistance, which is still evolving
after 25 000τc but converges ultimately to a value of about 23Rv . For different initial conditions
(shorter initial interdistances), we have seen a final interdistance of about 3.4Rv [Fig. 12 (right)].

FIG. 10. The relative velocity as a function of the interdistance; W = 3Rv , and Ca = 10.
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FIG. 11. The branch of solution representing the stationary interdistance as a function of the channel width
for a strong confinement.

This clearly demonstrates the coexistence of two different stable solutions. In general, two stable
solutions should be separated by an unstable solution. We seek to determine the location of the
unstable branch by analyzing the relative velocity as a function of interdistance, as before.

Our results are shown in Fig. 13. The locations where the relative velocity of the vesicles vanishes
are indicated by points marked 1, 2, and 3. Points 1 and 3 correspond to a stable interdistance,
whereas point 2 corresponds to an unstable one. Since the relative velocity in the vicinity of point
3 is very small, we zoom in to reveal the structure of the dependence of the relative velocity on the
interdistance. Another systematic analysis done by varying the confinement (i.e., W ) allows us to
show the full diagram of stationary solutions (like points 1, 2, and 3) as a function of W . The results
are summarized in Fig. 14. We see that the branch for weak confinement undergoes a fold singularity
in the form of a saddle-node bifurcation, in which a stable solution (represented by solid line) merges
with an unstable solution (dashed line). The branch arising at strong confinement continues to exist
(as a stable solution) beyond the saddle-node point and does not show, for the values of W explored

FIG. 12. The pair interdistance as a function of time for different initial interdistance: �X∗
init = 10 (left);

and 2.2, 7.5, and 7.75 (right). Ca = 10 and W/Rv = 13. Note that the horizontal axis is represented in log
scale.
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FIG. 13. Normalized relative velocity as a function of the interdistance for W/Rv = 13. Panels (a)–(c)
show successive zooms. Solid dots and open circles represent, respectively, stable and unstable fixed points. A
succession of stable and unstable fixed points is observed.

so far, any sign of disappearance. Theoretically, this branch may either continue to exist for any W ,
or it may undergo a fold singularity, one of the scenarios expected from catastrophe theory. Since
for weak confinement the relative velocity becomes too small to be of practical interest, the question
of the behavior of the branches at long interdistances is only academic. We shall thus not dwell here
any farther on this issue.

Finally, let us say few words on the strength of interaction as a function of confinement. As can
be expected, confinement reduces the strength of the interaction by screening. To understand the
difference in the pairing mechanism at large and small channel widths we first consider a pair of
vesicles in two different channels of widths 6Rv and 15.25Rv . The time evolution of the interdistance
in each channel is shown in Fig, 15. We looked at characteristic time needed to reach the steady
state for different channel widths finding that, for the channel of width W = 6Rv , the interdistance
reduces by approximatively 1.4Rv in a time 7000τc, whereas in a channel of width W = 15.25Rv ,
the interdistance reduces by 7.2Rv in only 120τc. Considering that the typical time τc for RBC is
about 0.1 s gives a time of about 10 min in the first case and 10 s in the second one. We must note
that in reality there are always fluctuations and imperfections keeping the cells from remaining in
the same lateral position. For example, if the leading cell is slightly off-centered its velocity may be
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FIG. 14. The full set of branches of stationary interdistance as a function of the channel width. Solid lines
represent stable branches, whereas dashed lines unstable ones.

FIG. 15. Time evolution of the interdistance between two vesicles in different channel widths. (a) and
(b) W = 15.25Rv . (c) and (d) W = 6Rv . In panels (b) and (d), different initial shapes ellipses (symbols) and
parachutes (solid line) are used. Note that the horizontal axis is represented in log scale.
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FIG. 16. Stationary interdistance as a function of the channel width for different capillary numbers (a). The
phase diagram for Ca = 10 and Ca = 100 (b). Role of the initial shape (solid lines are ellipses and dashed
lines are parachutes) on the time evolution of the pair interdistance for Ca = 5 and W/Rv = 12, 13 and 14
corresponding to the transition area (c). Same as (c) but for W/Rv = 12 and Ca = 10, 25, and 100 (d). Note
that the horizontal axis is represented in log scale in panels (c) and (d).

FIG. 17. Relative velocity as a function of interdistance in weak confinement W/Rv = 18 for different
capillary numbers. The dashed (grey), solid (blue), and dash-dotted (green) lines are for Ca = 10, 100, and 200,
respectively.
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FIG. 18. The velocity field in the comoving frame of a pair of drops (c), (d) and vesicles (a), (b) in a weakly
confined flow (W = 20 and 13 Rv). Ca = 10 for the vesicles and Ca = 0.3 for the drops.

sensibly different from that of the following cell, so that the characteristic time needed to reach the
bound state may be on a significantly shorter time scale than 10 s.

D. Effect of the capillary number

In this section we describe the effect of the capillary number on the main results. We consider
a pair of cells with four different capillary numbers Ca = {5,10,25,100} and flowing in channels
of widths ranging from 2Rv to 20Rv (≈ 6–60 μm for RBCs). Figure 16 depicts the stationary
interdistance as a function of the channel width for different capillary numbers (we do not show the
full branch as before due to computational cost, and especially because we do not see any significant
changes). Globally, the capillary number seems to not significantly affect the behavior of the pair.
For vesicles, higher values of Ca can be reasonably reached, such as 2000. For a vesicle of radius
20 μm, a channel radius of 200 μm, and a velocity of 1 cm/s, one finds approximately Ca 
 1600.
By assuming that the relative velocity scales with Ca (as shown in Fig. 17), one finds that the relative
velocity is of about 100Rv/τ ∼ 1Rv/s, which is not devoid of experimental testability.
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FIG. 19. Stationary interdistance for two drops as a function of the channel width. Ca = 0.3.

IV. RESULTS FOR DROPS

Since most of the behaviors observed for vesicles are also observed for drops, we give only a
brief discussion of the phase diagram for drop pairs. We have checked, as for vesicles, that initial
shapes do not affect the final state. Drops can break up into several smaller drops when subject to a
strong enough shear flow. The same effect occurs in Poiseuille flow. For this reason, it was important
to choose the capillary number for which the drops remain stable. We chose Ca = 0.3. Figure 18
shows the steady state of a pair of drops and the corresponding flow lines. Unlike the vesicle case,
drops exhibit recirculation zones inside in the form of two counterrotating vortices. In addition, the
velocity field at the interface is not constant along the contour as the drop interface is compressible.

The question naturally arises of whether or not the apparent difference in the overall flow patterns
as compared to vesicles results in different phase diagrams. We have explored in a very systematic
way the existence of branches of stationary solutions. The results are summarized in the phase
diagram in Fig. 19. This phase diagram is strikingly similar to that obtained for vesicles (Fig. 14).
Not only is there a qualitative similarity but also the stationary interdistances obtained for drops in
each confinement are close to those found for vesicles. The emergence of these strong similarities
between the two systems points to the existence of a universal feature, where the details of the
physical system do not matter too much. This lack of sensitivity of the hydrodynamic interaction
to the mechanical properties of the interacting particles provides a prospect for further theoretical
analysis.

V. CONCLUSION

This study reports on a complex phase diagram regarding hydrodynamic interaction between two
vesicles or two drops in a confined pressure-driven flow. It is found that several branches of stationary
solutions coexist. An interesting fact is that vesicles and drops behave in the same way, despite the
different nature of the underlying physics between the two systems. This offers a useful basis for
analytical modeling of the main features of the pairing process. As we have pointed out, for some
branches of the phase diagram, the relative velocity of the pair of particles may become very small, in
particular, due to the exponential decrease of the hydrodynamic interaction with interdistance. Thus
other branches for longer interdistances may exist but be quite difficult to resolve numerically due to
the smallness of interactions. While the existence of higher branches is an interesting fundamental
question in itself, the very small amplitude of hydrodynamic interactions at long interdistances
reduces the significance of this question for practical applications.
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It would be interesting in the future to extend this study to the 3D case both for vesicles and RBCs.
Another extension of this work is the analysis of many cells and more precisely how the stable size of
a cluster evolves as a function of confinement. It has been reported in Ref. [35] that in an unconfined
Poiseuille flow, the cluster size depends on the flow strength: increasing the flow strength allows
cluster of larger sizes to remain stable. It would be interesting to draw general conclusion about
cluster stability in the presence of walls in order to complement the already existing literature on this
topic [32]. A study of the stability of clusters would provide valuable information about the nature
of modes that destabilize them, as studied recently in Ref. [34]. Another important question is to
analyze the interplay between hydrodynamic interaction and that due to plasma proteins (following
our previous study [4]) and to study how the structure of the phase diagram reported here evolves in
this case.
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