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Turbulent heat transport regimes in a channel
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In this paper we focus on the turbulent transport of a scalar through a channel. The scalar
flux and the corresponding scalar concentration gradient along the channel allow us to
define a Nusselt number and a Grashof number. While the relation between the large-scale
velocity field and the input energy rate show perfect inertial (turbulent) behavior, three
different regimes can be distinguished, with different scalings between Nusselt and Grashof
numbers.
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I. INTRODUCTION

In the past decade, scalar free convection in a tiltable channel appeared as an interesting model flow
for evidencing the base mechanisms of convection [1–11]. Different regimes have been evidenced
depending on the angle ψ between the channel axis and the vertical one, the Prandtl (or Schmidt)
number ν/κ , or the amplitude of density differences. Here ν is the kinematic viscosity of the fluid
and κ the diffusion coefficient of the active scalar.

The typical geometry is schematized in Fig. 1. A channel connects two chambers. The chambers
have different temperatures in the case of heat transport and different scalar concentrations in the
other cases. For the sake of clarity, we will concentrate on heat transport, speaking of temperature
instead of scalar concentration and heat flux instead of scalar flux, but all what follows can be easily
translated into the other language.

The Boussinesq equations are written

∂tvi + vj∂jvi = −∂ip

ρ
− giαϑ + ν∂j ∂jvi, (1)

∂tϑ + vj∂jϑ = κ∂j∂jϑ, (2)

∂jvj = 0, (3)

where g is the gravitation acceleration, p the pressure, and ρ the density of the fluid. Within this
Boussinesq approximation [12], the equations are the same, whether ϑ is the temperature (thermal
case) or the solute concentration (scalar case). The last case generally allows us to work with large
Prandtl (indeed Schmidt) numbers Pr, but caution must be taken to avoid mixed temperature and
concentration effects (the Soret effect). Apart from these effects, a difference between these two
cases can only come from non-Boussinesq effects, supposedly avoided in the experiments of interest
here. The origin of ϑ is such that its mean value on the channel is zero. Also, α is the coefficient of
thermal expansion.
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FIG. 1. Sketch of the typical cell showing the definition of the coordinates and of the inclination angle ψ .

The channel is sufficiently long to assume translational invariance along its axis (the z direction).
Then the only characteristic length is d, the diameter of the channel for a circular one, its width for
a square one. In these conditions, a uniform mean temperature (or scalar concentration) gradient
develops along the channel:

β = −d〈ϑ〉
dz

, (4)

where 〈·〉 stands for the local statistical average. The flow is governed by two nondimensional
numbers, the Prandtl number Pr and the Grashof number

Gr = gαβd4

ν2
. (5)

Sometimes, the Rayleigh number Ra = Gr Pr is used instead of Gr.
We are interested in the turbulent case, where the mean diffusive heat flux is negligible compared to

the convective one. Multiplying Eq. (1) by vi and averaging, in a globally stationary flow (∂t 〈·〉 = 0),
it is easy to show that the kinetic energy input rate per unit mass ε is simply related to the heat flux
Qi [12],

ε = −giα〈ϑvi〉 = −giα
Qi

Cp

, (6)

where Cp is the heat capacity per unit volume; ε can also be expressed as

ε = ν〈∂ivj ∂ivj 〉, (7)
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which gives a useful evaluation for the typical small-scale velocity gradients

√〈∂ivj ∂ivj 〉 =
(

ε

ν

)1/2

. (8)

A characteristic of the inertial regimes is that the large-scale velocity fluctuations, at constant
inclination angle, scale as [6,7]

Ut =
(

Qdgα

Cp

)1/3

, (9)

where d is the channel diameter and Q = Qz is the average of Qz on the cross section of the channel.
In the same regimes, in Eq. (1), inertial terms as ∂tvi , vj∂jvi , or ∂ip/ρ equilibrate with giαϑ .

This means that large-scale temperature fluctuations scale as U 2
t /gαd. In spite of this great unity

in the scaling behavior, three different regimes have been observed concerning the relation between
the temperature (or scalar concentration) gradient β along the channel and the heat flux Q and thus
between the Nusselt number

Nu = Q

Cpκβ
(10)

and the Grashof number Gr.
Note that, in all the experiments, the flux Q is imposed and the gradient β measured. However,

in numerical simulations [9,10], β is imposed and the flux Q is measured. At large Grashof number,
every one [5,7,10,11] agrees with

Nu

Pr
∝ Gr1/2 (11)

[sometimes expressed as Nu ∝ (RaPr)1/2]. At lower Grashof number, Riedinger et al. [8] evidenced
a regime

Nu ∝ Gr2 (12)

without precision on the Prandtl number (Pr) dependence. Recently, Pawar and Arakeri [13] observed
a regime

Nu

Pr
∝ Gr0.3. (13)

The purpose of this paper is to explain these regimes and to precisely determine their Pr
dependence. We will show that the Gr0.3 regime can be intermediate between the two other ones and
disappears for Pr < 1. We call this regime the Batchelor regime (for reasons that appear below). In
a similar way, the soft-turbulence regime (Gr2) should disappear for Pr � 1. Following Riedinger
et al. [8], we call the Nu ∝ Gr1/2 regime the hard-turbulence [14] regime. We develop our arguments
in the following section.

II. EVALUATION OF β

In this section we consider the flow as anisotropic, with a hot side going up and a cold side going
down and stationary nonzero x profiles of the mean temperature and the mean axial (z) component
of the velocity, as it is when the inclination angle ψ is sufficiently large. We explicitly consider the
vertical case as the limit of the inclined case when ψ goes to zero. We are conscious that, in the
vertical case, the flow is helicoidal, with a zero mean velocity [11], but we consider it as a slow
precession of the anisotropic flow around the z axis [6].

Our evaluation of β will be based on two different expressions for the entropy production per unit
volume Ṡ. On the one hand, this entropy production can be related to the microscopic dissipative
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temperature gradients

Ṡ = Cpκ
〈∂iϑ∂iϑ〉

T 2
, (14)

where the absolute temperature T = T0 + 〈ϑ〉 and T0 is the mean temperature of the channel. On
the other hand, from a macroscopic point of view,

Ṡ = −Qi∂iT

T 2
. (15)

The temperature T can be written as

T = T0 − βz + �(x), (16)

where �(x) is the transverse (x) profile of temperature. The scalar product of the heat flux and the
mean temperature gradient is written

Qi∂iT = Qx

d�

dx
− βQz. (17)

Due to the conservation of energy, the transverse flux Qx is related to the mean z velocity profile
Uz(x) through [8]

dQx

dx
= CpβUz. (18)

Thus, in all the inertial ranges, Qx scales as CpβUtd. As for �, Eq. (1) implies that it scales as
U 2

t /gαd. In the end, using the definition of Ut , Eq. (9), Qx
d�
dx

, scales as

CpβU 3
t

gαd
= βQ. (19)

Comparing Eqs. (14), (15), and (17) gives a formal expression for β,

β = K1Cpκ
〈∂iϑ∂iϑ〉

Q
, (20)

where K1 is a constant whose value is the same in all the inertial regimes, whether Batchelor, soft,
or hard turbulence, but which can depend on the inclination angle ψ .

Calling θ = ϑ − 〈ϑ〉 the temperature fluctuation and neglecting the average gradients compared
to the instantaneous ones, 〈∂iϑ∂iϑ〉 can be evaluated as the mean-square fluctuation at the temperature
dissipative scale 〈θ2〉D , divided by this dissipative scale ηθ squared:

〈∂iθ∂iθ〉 � 〈θ2〉D
η2

θ

. (21)

The evaluation of 〈θ2〉D and ηθ will differ, depending if the Prandtl number is larger or smaller
than 1.

A. Small Prandtl number

Let us first assume that the Reynolds number is sufficient to have a Kolmogorov velocity inertial
range, between the velocity correlation scale � and the velocity dissipation scale η. At small Prandtl
number, the temperature dissipative scale is larger than the velocity one: ηθ > η. Here ηθ is such
that the typical stirring frequency at this scale equals the dissipation frequency

v(ηθ )

ηθ

� Ut (ηθ/�)1/3

ηθ

� κ

η2
θ

, (22)

where we assimilate the typical large-scale velocity with Ut , for the sake of simplicity in this order
of magnitude evaluation. Clearly, this hides a constant that depends on the inclination angle ψ .
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This qualitatively means that, at scales lower than ηθ , due to the rapidity of diffusion, stirring
is unable to enhance the temperature gradients. The temperature dissipative scale ηθ can then be
expressed as

ηθ � �

(
κ

Ut�

)3/4

. (23)

In Kolmogorov’s approach, the temperature fluctuation at the scale ηθ is written [17]

〈θ2〉D � 〈θ2〉
(

ηθ

�

)2/3

. (24)

According to Eq. (1) and the resulting equilibrium between the buoyancy term giαϑ and the inertial
terms [see the discussion after Eq. (9)], the mean-square temperature fluctuation 〈θ2〉 in an inertial
regime can be written

〈θ2〉 = K2
U 4

t

(gα�)2
, (25)

where again K2 is a constant whose value is the same in all the inertial regimes, but which can
depend on the inclination angle ψ . Using Eqs. (21) and (23)–(25), we have thus the estimate for
〈∂iθ∂iθ〉,

〈∂iθ∂iθ〉 � K2
U 4

t

(gα�)2

(
ηθ

�

)2/3 1

η2
θ

= K2
U 4

t

(gα�2)2

(
ηθ

�

)−4/3

(26)

= K2
U 4

t

(gα�2)2

Ut�

κ
= K2

U 5
t

κ(gα)2�3
, (27)

and for β, using Eqs. (9) and (20),

β � K1K2
κdgα

U 3
t

U 5
t

κ(gα)2�3
= K1K2

U 2
t d

gα�3
. (28)

Combining Eqs. (28) and (9), the Nusselt number Nu is given by

Nu

Pr
= Q

Cpνβ
= U 3

t

dgανβ
. (29)

We now can write, using Eq. (28),

Nu

Pr
�

(
βgα�3

K1K2d

)3/2 1

dgανβ
=

(
1

K1K2

)3/2(
�

d

)9/2(
gαβd4

ν2

)1/2

= A Gr1/2, (30)

where A is a constant that can depend on the inclination angle ψ . We thus find, as expected, the
hard-turbulence (HT) regime.

At lower Reynolds numbers, the temperature dissipative scale ηθ joins � [17]. We simply have to
make ηθ = � in Eq. (26):

〈∂iθ∂iθ〉 � K2
U 4

t

(gα�2)2
. (31)

Then

β � K1K2
κdgα

U 3
t

U 4
t

(gα�2)2
= K1K2

κUtd

gα�4
(32)
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and

Nu

Pr
�

(
βgα�4

K1K2dκ

)3 1

dgανβ
=

(
1

K1K2

)3(
�

d

)12(
gαβd4

ν2

)2(
ν

κ

)3

= B Pr3Gr2, (33)

where B is a constant that can depend on the inclination angle ψ . This is the soft-turbulence (ST)
scaling. It coincides with the absence of inertial range for the scalar, but not for the velocity: as
ηθ > η, we yet have � > η. The two scalings above can be presented as

Nu = A(Gr Pr2)1/2, Nu = B(Gr Pr2)2, (34)

which shows that in a diagram of Nu versus Gr Pr2 all the data corresponding to different (small)
Prandtl numbers should merge on a single curve (at constant inclination angle ψ).

B. High Prandtl number

When the Prandtl number is large, the high-Reynolds-number situation is different. Indeed, the
Kolmogorov inertial range is followed by a Batchelor range of scales [20] in which the temperature
fluctuations remain approximately constant. The temperature dissipative scale ηθ is now smaller
than the velocity one η:

v(ηθ )

ηθ

= v(η)

η
�

(
ε

ν

)1/2

=
(

U 3
t

dν

)1/2

� κ

η2
θ

. (35)

On the other hand,

〈θ2〉D � 〈θ2〉
(

η

�

)2/3

� K2
U 4

t

(gα�)2

(
ν3d

U 3
t �4

)1/6

. (36)

Using Eqs. (20), (21), (35), and (36), we have

β � K1K2
gαd

U 3
t

(
U 3

t

dν

)1/2
U

7/2
t ν1/2d1/6

(gα�)2�2/3
= K1K2

U 2
t

gαd2

(
d

�

)8/3

(37)

and using Eq. (29),

Nu

Pr
= U 3

t

dgανβ
� 1

dgανβ

(
gαβd2

K1K2

)3/2(
�

d

)4

= C Gr1/2, (38)

where C is fixed at constant inclination angle ψ . This is the HT regime.
At lower Reynolds number, η reaches �, there is no Kolmogorov inertial range, but the velocity

gradients continue to smooth down, and the temperature dissipative scale ηθ continues its growth as
[see Eq. (35)]

κ

η2
θ

�
(

U 3
t

dν

)1/2

. (39)

In the absence of inertial range, 〈θ2〉D � 〈θ2〉 and, using Eqs. (20) and (21),

β � K1K2
gαd

U 3
t

U 4
t

(gα�)2

(
U 3

t

dν

)1/2

= K1K2
U

5/2
t

gαν1/2d3/2

(
d

�

)2

. (40)

As in the previous cases, we can extract the expression of Ut versus β,

Ut �
(

gαβν1/2d3/2

K1K2

)2/5(
�

d

)4/5

, (41)
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and use it in the expression of Nu/Pr,

Nu

Pr
= U 3

t

dgανβ
�

(
1

K1K2

)6/5(
gαβd4

ν2

)1/5(
�

d

)12/5

= E Gr1/5, (42)

where E is fixed at constant inclination angle ψ . While the resulting exponent (0.2) differs from the
Pawar et al. [13] one (0.3), these regimes nicely correspond in other aspects. Indeed, plotting Nu/Pr
versus Gr, all Prandtl number merge on a single curve, as observed by Pawar et al. Moreover, as this
regime occurs between Gr1/2 and Gr2 (see below) regimes, it appears as an inflection point whose
slope hardly reaches the asymptotic one. We call this regime the Batchelor regime. Finally, if the
Prandtl number is not too high in such a way that ηθ reaches � [17] while the flow is always in a
turbulent inertial regime, ηθ cannot grow further. Then

〈∂iθ∂iθ〉 � 〈θ2〉
�2

(43)

and, using Eqs. (9), (20), and (25),

β � K1K2
gαd

U 3
t

U 4
t

(gα�)2

κ

�2
= K1K2

Utκ

gαd4

(
d

�

)4

. (44)

Then, using Eq. (29),

Nu

Pr
= U 3

t

dgανβ
�

(
1

K1K2

)3(
gαβd4

κ2

)2
κ

ν

(
�

d

)12

= B ′Gr2Pr3, (45)

where B ′ is a constant at constant inclination angle ψ . This is the moderate Prandtl soft-turbulence
scaling, which can also be written Nu = B ′(Gr Pr2)2, and it is identical to the small Prandtl soft
turbulence (B ′ = B).

III. DISCUSSION AND CONCLUSION

Let us thus sum up the succession of inertial regimes, starting from the highest Grashof numbers
and going down. When the Prandtl number is low, the HT regime corresponds to the relation

Nu = A(Gr Pr2)1/2. (46)

At lower Grashof number, but sufficient to have an inertial regime, we should have the ST regime,
where

Nu = B(Gr Pr2)2. (47)

The transition corresponds to the temperature dissipative scale reaching the large correlation scale
[17]. On a Nu versus Gr Pr2 diagram, all the (small) Prandtl numbers should merge on the same
curve. When the Prandtl number is large, which is typically the case for dilute solutions of salt, the
highest Grashof numbers again correspond to the HT regime

Nu

Pr
= C Gr1/2. (48)

At lower Grashof number, but sufficient to have an inertial regime, we should have the Batchelor
regime

Nu

Pr
= E Gr1/5. (49)

The transition corresponds to the velocity dissipative scale reaching the large correlation scale, thus
to the Kolmogorov inertial range vanishing. On a Nu/Pr versus Gr diagram, all the (high) Prandtl
numbers merge on the same curve. At even lower Grashof number, but always sufficient to have an
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FIG. 2. Open and closed circles, squares, stars, and crosses are data extracted from Pawar and Arakeri’s
article [13]. Brine experiment results, with Pr � 600, are shown as closed orange circles [13], open green
squares [11], and magenta crosses [21]. They correspond to our high Prandtl numbers. Heat experiment results,
with Pr � 6, are shown as open red circles [13] and closed triangles [22] and open triangles [8]. They correspond
to our moderate Prandtl numbers. Note that the latter are for ψ = 5◦ while all the other data shown are for
the vertical case. Numerical study results, with Pr = 1, are shown as blue stars. They correspond to the limit
between small and moderate Prandtl numbers. The data of [22], once their Grashof number is multiplied by
16/π 2, show good agreement with that of Pawar and Arakeri [13], despite the difference in the cross sections.
Solid lines correspond to hard turbulence, dashed lines correspond to the Batchelor regime, and the blue dotted
line corresponds to the soft turbulence (for the 5◦ case, from Ref. [8]). The green dash-dotted line shows Pawar
and Arakeri’s interpretation, which fits the data as well, but could be influenced by the lowest Gr data that could
correspond to the transition toward soft turbulence (with moderate Prandtl number; see Fig. 3).

inertial regime (thus for moderate Prandtl numbers), we should find again the ST regime, Eq. (47).
Again, the transition corresponds to the temperature dissipative scale reaching the large correlation
scale [17].

In Fig. 2 we represent various data, extracted from Refs. [8,13,22], on a log-log plot of Nu/Pr
versus Gr. The data of Ref. [13] all correspond to a circular channel, the characteristic length d

being the diameter. The data of Refs. [8,22] correspond to a square channel, d being one side of the
square. Thus, we multiplied this last d by

√
4/π in such a way that πd2/4 always represents the cross

section of the channel. It is equivalent to multiplying their Grashof numbers by 16/π2. The agreement
between the series of data of Refs, [13] (open circles) and [22] (closed triangles) is then good. These
data should correspond to moderate Prandtl numbers, obtained with water, the scalar being the
temperature.

Closed circles [13], open squares [11], and crosses [21] correspond to brine experiments, with a
large Prandtl number (Pr = 600). As remarked in Ref. [13], they nicely merge with the previous ones
in this diagram, both in the high-Gr HT regime (Nu/Pr ∝ Gr1/2) and in the lower Gr one. The latter
fits as well with the predicted Gr0.2 (Batchelor regime) as with the Gr0.3 proposed by [13]. However,
the lower Grashof open circle data, which influence the Gr0.3 choice, could correspond to a transition
toward the soft turbulence, which is better visible with the ψ = 5◦ data (open triangles [8]).

Unfortunately, we have no experimental data really corresponding to small Prandtl values. The
numerical simulation [10] (stars in Fig. 2), which correspond to Pr = 1, has larger error bars than
the experiments and should anyway lay at the frontier between small and moderate Prandtl numbers.
This range should be carefully examined in future studies.

All these data help to propose a map of the different regimes, at least for the vertical case
(see Fig. 3). The transition toward the laminar regime at the lowest Gr is assumed to correspond to a
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Nu/Pr = CGr1/2
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BGr2Pr3Laminar

FIG. 3. Schematic diagram showing the various regimes in the plane (Gr,Pr) on a logarithmic scale. The
diagram corresponds to the vertical case, which allows considering that the laminar to turbulent transition occurs
at the same Reynolds number Re, whatever Pr. Considering that Re � Utd/ν = (NuGr/Pr)1/3 in all the inertial
regimes, we obtain Gr = const for the laminar-Batchelor (B) transition and GrPr = const for the laminar–soft-
turbulence transition. For the other transitions, we identify the two expressions of Nu on both sides, which gives
Gr = const for the Batchelor–hard turbulence transition, GrPr2 = const for the soft-turbulence–hard-turbulence
one, and GrPr5/3 = const for the soft-turbulence–Batchelor one. The existence of the moderate Prandtl number
range, where the soft-turbulence, Batchelor, and hard-turbulence regimes follow one another when raising Gr
at constant Pr, is clear from this diagram. The exact positions of the two triple points T1 and T2 need to be
experimentally determined precisely, but an order of magnitude estimation could be Pr = 10 and Gr = 2×103

for T1 and Pr = 1 and Gr = 105 for T2.

fixed Reynolds number. In the adjacent inertial regime, the Reynolds number always correspond to

Re ∝ Utd

ν
= (Nu Gr/Pr)1/3. (50)

All the other frontiers are determined by the continuity of Nu. They merge at two triple points,
which we tentatively place at T1 (Pr = 10 and Gr = 2×103) and T2 (Pr = 1 and Gr = 105). The
moderate Prandtl numbers correspond to the range between T1 and T2, 1 � Pr � 10.

We find thus all the observed regimes [8,13] if we identify the predicted exponent for the Batchelor
regime (0.2) to the observed one [13] (0.3). Moreover, these regimes nicely underline the existence
of the Kolmogorov or Batchelor ranges of scales and their clear-cut transitions.
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