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The relation between self-preservation (SP) and the Kolmogorov similarity hypotheses
(Kolmogorov, The local structure of turbulence in incompressible viscous fluid for very
large Reynolds numbers, Dokl. Akad. Nauk SSSR 30, 301 (1941) [Proc. R. Soc. London A
434, 9 (1991)]) is investigated through the transport equations for the second- and third-order
moments of the longitudinal velocity increments [δu(r,t) = u(x,t) − u(x + r,t), where x,
t , and r are the spatial point and the time and longitudinal separation between two points,
respectively]. It is shown that the fluid viscosity ν and the mean turbulent kinetic energy
dissipation rate ε (the overbar represents an ensemble average) emerge naturally from
the equations of motion as controlling parameters for the velocity increment moments
when SP is assumed. Consequently, the Kolmogorov length scale η [≡(ν3/ε)1/4] and
velocity scale vK [≡(νε)1/4] also emerge as natural scaling parameters in conformity with
SP, indicating that Kolmogorov’s first hypothesis is subsumed under the more general
hypothesis of SP. Further, the requirement for a very large Reynolds number is also relaxed,
at least for the first similarity hypothesis. This requirement however is still necessary to
derive the two-thirds law (or the four-fifths law) from the analysis. These analytical results
are supported by experimental data in wake, jet, and grid turbulence. An expression for
the fourth-order moment of the longitudinal velocity increments (δu)4 is derived from the
analysis carried out in the inertial range. The expression, which involves the product of
(δu)2 and ∂δp/∂x, does not require the use the volume-averaged dissipation εr , introduced
by Oboukhov [Oboukhov, Some specific features of atmospheric turbulence, J. Fluid Mech.
13, 77 (1962)] on a phenomenological basis and used by Kolmogorov to derive his refined
similarity hypotheses [Kolmogorov, A refinement of previous hypotheses concerning the
local structure of turbulence in a viscous incompressible fluid at high Reynolds number,
J. Fluid Mech. 13, 82 (1962)], suggesting that εr is not, like ε, a quantity issuing from the
Navier-Stokes equations.

DOI: 10.1103/PhysRevFluids.2.054606

I. INTRODUCTION

The Kolmogorov theory for very-large-Reynolds-number homogeneous and isotropic turbu-
lence [1] has not only stood as a milestone in the theory of turbulence, but has served and continues
to serve as a benchmark for any new theoretical development. Kolmogorov theory encapsulated
two similarity hypotheses (SHs), which were enunciated for f , the probability distribution function
(PDF) of the velocity increments δui(r,t) = ui(x,t) − ui(x ′,t); x and x ′ are two independent points
and r = x − x ′. We briefly reproduce these hypotheses here for convenience.

First similarity hypothesis (SH1). For locally isotropic turbulence, the distributions of f are
uniquely determined by the quantities ν and ε.

Second similarity hypothesis (SH2). When the separation r is much larger than η, the distributions
of f are uniquely determined by the quantity ε and do not depend on ν, where ν is the fluid viscosity,
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ε is the dissipation rate of the mean turbulent kinetic energy (the overbar denotes ensemble averaging;
note that in the case of measurements it represents time averaging), and η is a length scale defined
by Kolmogorov and obtained on dimensional grounds. For convenience, we henceforth drop the
variables t , x, x ′, and r , keeping in mind that ui = ui(x,t) and u′

i = ui(x ′,t). It is instructive, within
the context of this work, to follow Kolmogorov’s empirical analysis prior to the enunciation of
SH1. He first transformed the variables ri (the space separation between two points) and t (the
time). Namely, he defined the dimensionless variables ri/ l and t/σ , where l and σ are, respectively,
length and time characteristic scales. Then he normalized δui , ν, and ε as follows: δu′

i = δuiσ/l,
ν ′ = νσ/l2, and ε′ = εσ 3/l2. This, after enunciating the first hypothesis, allowed him to obtain l =
η = √

νσ = (ν3/ε)1/4, σ = √
ν/ε, ν ′ = 1, and ε′ = 1. We immediately see that the (Kolmogorov)

scaling velocity is vK = η/σ = (νε)1/4.
A clear distinction should be made between the Kolmogorov SHs and the asymptotic theoretical

results further deduced, such as the two-thirds [(δu)2 � (εr)2/3] and four-fifths [(δu)3 � (4/5)εr]
laws. Kolmogorov formulated the scaling laws only after enunciating his similarity hypotheses in
his first paper. In a subsequent paper [2], he deduced the four-fifths law from the equations of
motion, without any reference to his similarity hypotheses, but with the assumption of sufficiently
large Reynolds numbers. This law serves as benchmark for any turbulence theory at high Reynolds
number [3].

As pointed out in Ref. [4], Kolmogorov adroitly avoided alluding to the Navier-Stokes equations
in his first paper when he proposed his two similarity hypotheses. Further, [5] pointed out that
these hypotheses cannot be rigorously proved, i.e., derived purely analytically from general laws of
mechanics. More recently, [6] also stated that SH1 cannot be formally proven in any deductive way.
This lack of rigorous theoretical support for these SHs leaves open the issue of their validation or
invalidation, particularly considering that they are formulated for very high, if not infinite, Reynolds
numbers. The latter requirement makes their testing practically impossible both experimentally and
numerically. The current general consensus is that these SHs require corrections due to the spatial
fluctuating nature of ε (i.e., the small-scale intermittency). While many correction models have
been proposed, these corrections too are based on phenomenological arguments and it remains to be
determined whether or not they comply with the Navier-Stokes equations.

Batchelor [7] was the first to discuss Kolmogorov theory and the similarity hypotheses in the
context of the Navier-Stokes equations and showed that the hypotheses are fully consistent with
the Navier-Stokes equations. It is important to stress that he did not formulate these hypotheses
from the Navier-Stokes equations. Instead, he considered SHs and Navier-Stokes equations as two
different concepts and showed that they may be compatible. He nevertheless did recognize that
Kolmogorov theory requires some form of self-preservation (SP). The hypothesis of self-preserving
development of a turbulent flow assumes that all physical phenomena of the motion are reflected by
terms in transport equations for any turbulent quantity that admits similar forms at all stages, the
differences being described by changes of velocity and length scales that are functions of time (in
decaying turbulence) or of position in the flow direction [8]. Lin [9] followed Batchelor and applied
SP analysis to the von Kármán–Howarth equation [10] to show that the Kolmogorov scaling was
consistent with SP. Unfortunately, like [7], he assumed the first similarity hypothesis rather than
derive it, which allowed him to use the Kolmogorov scales as scaling variables. George [11] also
discussed the relation of SP and Kolmogorov’s theory without deriving the first similarity hypothesis.
He argued that Kolmogorov’s theory is at best an approximation for turbulence at finite Reynolds
number, while also concluding that the theory, at least for isotropic turbulence, gives way to a higher
principle, that of self-preservation at all scales, under certain conditions.

In the present paper we address whether the Kolmogorov theory similarity hypotheses can be
deduced from the Navier-Stokes equations. This approach is different from that of simply testing if
they comply with the first principles. More specifically, we seek, using a rigorous theoretical develop-
ment free of any phenomenology, to find out whether or not ν and ε emerge naturally as scaling param-
eters from the equations of motion. This approach differs significantly from the common practice that
assumes this scaling and assesses whether or not it holds up against experimental and numerical data.
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In the present work, and following the earlier work cited above, we also use the framework of SP
and apply it to the transport equations for the second- and third-order moments of the longitudinal
velocity increments. The theoretical development and results are presented in Sec. II, while in Sec. III
we compare theory against some experimental results.

II. THEORETICAL CONSIDERATIONS

A. Transport equations for the second and third moments of the velocity increment δu

Starting with the Navier-Stokes equations written at two separate and independent spatial points
x and x ′, the transport equations for δu2 [≡(δu)2] and δu3 [≡(δu)3] for homogeneous isotropic
turbulence (HIT) can be expressed as [12]

∂δu2

∂t
+

(
∂

∂r
+ 4

r

)
δu3 = −4ε + 6ν

{
∂2

∂r2
+ 4

r

∂

∂r

}
δu2 (1)

and [13]

∂δu3

∂t
+

{(
∂

∂r
+ 2

r

)
δu4 − 6

r
(δu2δv2)

}
= −2νE111 + 2ν

{
− 4

r2
δu3 + 4

r

∂δu3

∂r
+ ∂2δu3

∂r2

}
− T111,

(2)

where ε = − 2
3

∂u2

∂t
is the turbulent kinetic energy dissipation rate, δu4 = (δu)4, and δu2δv2 =

(δu)2(δv)2. Also, T111 and E111 are defined as

T111 = 3

ρ
(δu)2

(
∂δp

∂X

)
, (3a)

E111 = 3(δu)

{(
∂u

∂x

)2

+
(

∂u′

∂x ′

)2}
= 3(δu)

{(
∂δu

∂x

)2

+
(

∂δu

∂x ′

)2}
. (3b)

In the above equations and expressions we used the transformation X = (x + x ′)/2 (see, e.g., [13])
and the fact that ∂u/∂x ′ = ∂u′/∂x = 0. The second term on the left-hand side of both (1) and (2)
is the transport term. The first term on the right-hand side of (1) is the dissipation term, whose
counterpart in Eq. (2) is the first term on the right-hand side of that latter equation. The last term and
the second term on the right-hand side of (1) and (2), respectively, are the viscous terms. The term
T111 is the pressure source term and has no equivalent in Eq. (1) for HIT. Equations (1) and (2) can
be further developed in a more useful form. Integrating them, and with some trivial manipulations,
we have

δu3 = 6ν
∂δu2

∂r
− 3

r4

∫ r

0
s4 ∂δu2

∂t
ds − 4

5
εr, (4)

δu4 = 6

r2

∫ r

0
s(δu2δv2)ds − 1

r2

∫ r

0
s2T111ds − 2ν

r2

∫ r

0
s2E111

+ 2ν

r2

∫ r

0

{
4 + 4s

∂

∂s
+ s2 ∂2

∂s2

}
δu3ds − 1

r2

∫ r

0

∂δu3

∂t
ds. (5)

In the majority of studies, the term in Eq. (4) containing the integral was dropped on the basis that
the Reynolds number is large enough to allow a net scale separation between large and small scales.
It is only over the past decade or so that the term was reintroduced [12], derived (4) in the context of
decaying grid turbulence for investigating the contributions of the large scales, represented by the
integral term.
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B. Self-preservation analysis

We seek SP solutions in the form

δu2 = u2
2(t)f (r∗), (6a)

δu3 = u3
3(t)g(r∗), (6b)

δu4 = u4
2(t)h(r∗), (6c)

δv2 = v2
2(t)fv(r∗), (6d)

δu2δv2 = u2
2(t)v2

2(t)fuv(r∗), (6e)

T111 = u4
2(t)

l(t)
T̃111(r∗), (6f)

E111 = u3
2(t)

l2(t)
Ẽ111(r∗), (6g)

where r∗ = r/ l(t); l(t), u2(t), u3(t), and v2(t) are a length scale and velocity scaling functions
to be determined, while f , g, h, fv , fuv , T̃111, and Ẽ111 are dimensionless functions of r∗ only.
For convenience, we hereafter drop the variable t . We introduce the skewness and flatness factors
of the longitudinal velocity increment S (≡δu3/δu

3/2
2 ) and F (≡δu4/δu

2
2), respectively, and the

mixed flatness Fuv [≡(δu)2(δv)2/(δu2)2] as SP controlling parameters. If SP is satisfied, we can
write S(r∗) = cS(t)φS(r∗), F (r∗) = cF (t)φF (r∗), and Fuv(r∗) = cFuv

(t)φFuv
(r∗), where cS , cF , and

cFuv
are dimensionless functions of time and φS , φF , and φFuv

are dimensionless functions of r∗.
Substituting the expression (6) and the SP forms of S and F in Eqs. (4) and (5), we obtain

6f ′(r∗) − cSRelφ(r∗)f (r∗)3/2 − 3l2

νu2
2

∂u2
2

∂t

1

r∗4

∫ r∗

0
s∗4f (s∗)ds∗

+ 3

ν
l
∂l

∂t

1

r∗4

∫ r∗

0
s∗5f ′(s∗)ds∗ = 4

5
ε

l2

νu2
2

r∗ (7)

and

cF RelφF f 2 = −Rel

r∗2

∫ r∗

0
s∗2T̃111ds∗ − 6

r∗2

∫ r∗

0
s∗2Ẽ111ds∗

+ 6cFuv
Rel

r∗2

v2
2

u2
2

∫ r∗

0
s∗φFuv

f 2ds∗ + 2cS

r∗2

∫ r∗

0

{
4 + 4s∗ ∂

∂s∗ + s2∗ ∂2

∂s∗2

}
φSf

3/2ds∗

− l2

νu3
2

∂cSu
3
2

∂t

1

r∗2

∫ r∗

0
s∗2φSf

3/2ds∗ + l

ν

∂l

∂t

cS

r∗2

∫ r∗

0
s∗3 ∂(φSf

3/2)

∂s∗ ds∗, (8)

where s∗ is a dummy variable of integration. It can be shown that when r∗ → ∞, the integrals in
these equations approach finite values. While (7) and its versions for the centerlines of a round jet
and a plane wake have been used to investigate self-preservation [14–17], here (8) is considered
in the SP analysis. It is evident that, if SP is to be valid, (7) and (8) must share the same scaling
parameters. Since the coefficients of the first term on the left-hand side of (7) and the second term
on the right-hand side of (8) are constant then, the SP constraints are

Rel = C1, cS = C1,a, cF = C1,b, cFuv

v2
2

u2
2

= C1,c, (9)

l2

νu2
2

∂u2
2

∂t
= C2, (10)
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l

ν

∂l

∂t
= C3, (11)

l2

νu3
2

∂cSu
3
2

∂t
= C4, (12)

cSl

ν

∂l

∂t
= C5, (13)

εl2

νu2
2

= C6, (14)

where Rel = u2l/ν is a scaling Reynolds number. The above constraints, i.e., C1, C2, C3, C4, C5,
and C6, must be independent of t , apply for all separations r∗, while the numerical values of the
constants depend on the scaling variables. Note that the ratio C5/C3 shows also that cS is a constant,
which in turn implies that u3 = u2. Combining the first expression of (9) with (14) and using the
definition of Rel yields

l = (
√

C6C1)1/2

(
ν3

ε

)1/4

. (15)

Now substituting (15) into (14) leads to

u2 =
(

C1√
C6

)1/2

(νε)1/4. (16)

A few comments can be formulated regarding the derivation of the length scale (15), the velocity
scale (16), and Kolmogorov’s first similarity hypothesis. It should be noted first that an expression
similar to (15) was derived in Ref. [15] in the context a generalization of SP in HIT. Any length
scale and velocity scale satisfying (15) and (16) will be scaling variables. For example, if one takes
l = λ and u2 = u′ and if Reλ is constant, then λ and u′ are scaling variables in conformity with SP
as observed on the centerlines of a round jet flow [18] and a cylinder wake [16] (see also Sec. III).

(i) Recognizing that η = (ν3/ε)1/4 and vK = (νε)1/4, the Kolmogorov length and velocity scales,
respectively, we can write l = Cηη and u2 = CvK

vK . Accordingly, vK and length η emerge as scaling
variables from the analysis where no assumption other than SP has been made. This departs from
the common practice where the first similarity hypothesis must be invoked in order to obtain vK and
η from dimensional arguments. We mentioned in the Introduction that prior to enunciating his first
similarity hypothesis Kolmogorov introduced a length scale and a time scale, which are identified
with η and η/vK once his hypothesis is introduced. Notice that if one takes l = λ and u2 = u′, then
C6 = 15, and if Reλ is constant, then λ and u′ are scaling variables too

(ii) Kolmogorov’s similarity hypotheses are solely based on empirical grounds based on the
idea of the energy cascade phenomenology. Our analysis shows that ε and ν emerge as the natural
parameters for scaling the second- and third-order moments of δu from the Navier-Stokes equations
when the assumption of SP is invoked. This result is interesting because it indicates convincingly
that the similarity hypotheses do not lead to any violation of the equations of motion.

(iii) The emergence of ε and ν as natural scaling parameters appears to be intrinsically embedded
in the Navier-Stokes equations. This makes the enunciation of the first similarity hypothesis by
Kolmogorov quite a remarkable achievement. Also, interestingly, the analysis is valid, in principle,
at all Reynolds numbers, thus removing the requirement for a high Reynolds number for ε and ν to
be the scaling parameters. The only requirement is that the scaling Reynolds number Rel remains
constant during decay, regardless of its value. The same cannot be said for the second similarity
hypothesis, which appears to require a very large Reynolds number before it can be satisfied. This
highlights the clear distinction between the first and second similarity hypotheses and shows that
the second similarity cannot be satisfied before the first one, hinting that the dissipative scales are
likely to satisfy SP before those in the inertial range.
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(iv) The derivation of the expressions (15) and (16), which uses the assumption of SP, illustrates
how the first similarity hypothesis is subsumed under the hypothesis of SP. Any set of velocity and
length scales that satisfy (15) and (16), respectively, complies with SP. Further, considering that η is
the smallest scaling length, it is reasonable to expect that turbulence in the dissipative range would
certainly evolve in SP even when SP is achieved over a limited range of scales only. This argument
is consistent with the results in Ref. [19], where it is shown that almost irrespectively of the flow, or
flow region, the Kolmogorov scaling of velocity spectra holds at Reλ as low as 30, in the dissipative
range.

C. Remarks for the inertial range

We remark that the above analysis does not immediately lead to the second similarity hypothesis,
namely, that ε is the only scaling parameter in the range of scales much larger than η. It is now well
established, both numerically and experimentally, that the first and second terms on the right-hand
side of (4) are practically zero in the separation range λ � r � L (i.e., the inertial range) when the
Reynolds number is large. Less information is given for the terms in Eq. (5). However, Ref. [20]
showed that the time derivative and the viscous terms of (5) are negligible in the inertial range. Thus,
in the inertial range (4) and (5) reduce to the expressions

δu3 = −4

5
εr, (17)

δu4 − 6

r2

∫ r

0
s(δu2δv2)ds = 6

r2

∫ r

0

{
− s2 1

2ρ
(δu)2

(
∂δp

∂X

)
− s2[(δu)̃ε]

}
ds, (18)

where we defined ε̃ = ν{( ∂u
∂x

)2 + ( ∂u′
∂x ′ )2}, for convenience. We immediately recognize the four-fifths

law in the expression (17). Note also that in the inertial range Eq. (7) reduces to

f 3/2 =
{

4

5

1

cSφ(r∗)

(
εl

u3
2

)}
r∗ (19)

or

u3
2f

3/2 = (δu2)3/2 = − 4

5S
εr, (20)

which is the Kolmogorov two-thirds law. The present derivation of this law requires only the existence
of an inertial range. This departs from the derivation of Kolmogorov [1], who used empirical scaling
arguments after invoking his second similarity hypothesis, to reach this result. Interestingly though,
in his second paper [2] he derived the four-fifths law from (4) without relying on the second
similarity hypothesis, and by combining (17) with S (=δu3/δu

3/2
2 ), obtained the two-thirds law (20),

demonstrating that his similarity hypotheses are indeed not required to obtain both (17) and (20).
Expression (18) warrants some comments. If we define an instantaneous pseudodissipation rate

as εpd = ν( ∂u
∂x

)2, we can write (18) as

δu4 − 6

r2

∫ r

0
s(δu2δv2)ds = 6

r2

∫ r

0

{
− s2 1

2ρ
(δu)2

(
∂δp

∂X

)
− s2(δu)(εpd + ε′

pd)

}
ds. (21)

Although they did not show the distribution of E111, Hill and Boratav [20] stated that the term is
negligible in the inertial range, which, if confirmed (see Sec. V), leads to

δu4 − 6

r2

∫ r

0
s(δu2δv2)ds � − 3

r2

∫ r

0
s2

{
1

ρ
(δu)2

(
∂δp

∂X

)}
ds. (22)

Further, Yakhot [21] argues that, for very a large Reynolds number, the viscous and dissipation terms
in the transport equations of odd-order moment δu2n+1 must be zero for symmetry reasons. This
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theoretical prediction by [21] is well confirmed by the high-resolution direct numerical simulation
(DNS) data of forced HIT [22]. However, the dissipation term is not zero in the transport equations of
even-order moment δu2n. This is well verified for the transport equation for δu2n, but also, as shown
recently in Ref. [23], for δu4 Hill and Boratav [20] showed that on the left-hand side of (2) (see
also [22]), the third term behaves like the second term or equivalently that 6

r2

∫ r

0 s(δu2δv2)ds ∼ δu4,
which leads to

δu4 � −3Cδu4

r2

∫ r

0
s2

{
1

2ρ
(δu)2

(
∂δp

∂X

)}
ds (23)

and provides an expression for δu4 in the inertial range, where Cδu4 is a constant independent of r .
This is in agreement with the DNS of [22], showing that

1 −
6
r
(δu2δv2)(

∂
∂r

+ 2
r

)
δu4

� −T111(
∂
∂r

+ 2
r

)
δu4

� const. (24)

Expression (23) shows that the scaling of δu4 reduces to the scaling of the right-hand side of (23).
Gotoh and Nakano [22] developed an analytical expression for the integrant of the right-hand side
of (23) based on conditional averaging and the Bernoulli equation. Yakhot [24] proposed a modified
version of the model in Ref. [22]. However, both models rely on empirical arguments based on
internal intermittency, which we briefly discuss below.

We notice that (23) does not involve ε. Even in Eq. (21) ε is missing; it is the product of δu and the
sum of εpd and ε′

pd taken at two locations separated by a distance r that is involved. Now, if we fol-
low [13] we can write the sum of the pressure and dissipation terms in the transport equation for δun as

Tn + En = n
1

ρ
(δu)n−1

(
∂δp

∂X

)
+ 2(δu)n−2(εpd + ε′

pd ). (25)

Setting n = 2, the first term on the right-hand side of (25) is zero while the second term becomes
4ε. This draws our attention to Landau’s critical remark concerning the effect of fluctuations of ε on
the small-scale properties of turbulence (see [25]; see also [5] for a detailed account). Kolmogorov
proposed a revised version of his initial similarity hypotheses taking Landau’s remark into consider-
ation [26]. He based his refined similarity hypotheses on a method proposed by Oboukhov [27], who,
on a phenomenological basis, introduced εr , a dissipation rate averaged over a sphere of radius r ,

εr (x,t) = 6

vr

∫ vr

0
ε(x,t)dvr (26)

(the integration is over a sphere vr of radius r [26]), which can be used to form a Reynolds number
Rer [≡(r4/3ε1/3

r )/ν = (r/ηr )4/3]. The second refined similarity states that if Rer is very large then
fr becomes independent of Rer , i.e., it is universal, where fr is the PDF for δu/(rεr )1/3, which
by virtue of the first refined similarity hypothesis depends only on Rer when r 
 L, where L is a
characteristic length of the large-scale motion. These refined similarity hypotheses lead to

δu2 ∼ (εrr)2/3β2(Rer ) (27)

and

δu3 ∼ (εrr)β3(Rer ), (28)

where β2(Rer ) and β3(Rer ) are supposed to be universal functions of the single parameter Rer . One
critical aspect of the formulation of the refined similarity hypotheses, other than the fact that it is
based on phenomenological arguments, is εr and in particular the form of its PDF, which since the
work of Kolmogorov [26] has been the object of intensive research. Nevertheless, if one accepts that
the fluctuations of ε are an intrinsic property of the small-scale turbulence, then one must also accept
that the effects of these fluctuations should be reflected in the small-scale statistical results based on a
two-point analysis of the Navier-Stokes equations. Interestingly, Landau and Lifshitz [25] noted that
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“[the] question whether fluctuations of ε should be reflected in the form of the correlation functions
in the inertial range can scarcely be resolved with certainty until we have a consistent theory of
turbulence.” Expression (25), which, incidentally, involves correlations between δu and εpd at two
separations, does seem to be in line with this comment, but only for the transport equations of the
even-order moments of δu. For the odd-order moment transport equations, the contribution from
the viscous terms is negligible in the inertial range [13,21,22]. The important point to remark here is
that εr does not appear in any equations, implying that it is not a natural scaling parameter emerging
from the Navier-Stokes equations. This corroborates the results in Ref. [23], where it was concluded
that “the relation of the specific assumption εn/3

r for the nth-order structure functions in the inertial
range to the dissipation parameters derived from the Navier-Stokes equations is missing.”

Quite interestingly, the expressions (17) and (18) challenge the need for introducing phenomeno-
logical arguments to account for the spatial fluctuations of ε on the scaling of δun, at least when n = 3
and 4, and show in fact that the similarity hypotheses do not conflict with the internal intermittency
phenomenon. In hindsight, the warning against generalizing the scaling laws of the second- and
third-order moments of δu to higher moments [7] is a call for caution when we try to generalize
Kolmogorov theory to (δu)n with n > 3. Batchelor [7] stated that this generalization is very doubtful,
because the dynamical relation between the second- and third-order moments of δu [i.e., Eq. (1)] is
the only one in which the pressure does not appear (he expressed the statement in terms of double-
and triple-velocity correlation). Expressions (18) and (25) show that such a generalization is a priori
not possible. Gotoh and Nakano [22] argue that the pressure gradient acts in a way to resist to
stretching and squeezing of fluid elements, leading to a weakening of the effect of intermittency.
Kraichnan [28] also envisaged this possibility.

A word of caution is warranted regarding the above analysis of the inertial range. The analysis
assumes that the Reynolds number is large enough for the inertial range to exist or at least that the
contributions from the viscous term and the large-scale term (here represented by the time derivative
terms) are negligible in Eqs. (4) and (5). Unless this is verified, both (17) and (18) cannot be correct.

III. EXPERIMENTAL RESULTS

A. Scaling with ε and ν

The analysis in Sec. II shows that ε and ν are the relevant natural parameters under SP and that
any scaling set (l,u2) must be of the form (15) and (16) (or l = Cηη and u2 = CvK

vK ). To test the
analytical results, one can, for example, plot the ratios λ/η and u′/vK . First, we note that if we take
l = λ and u2 = u′ in Eqs. (15) and (16) and combine with (9), we obtain

λ

η
= (

√
15Reλ)1/2, (29)

u′

vK

= (Reλ/
√

15)1/2 (30)

since under local isotropy condition C6 = 15. Thus, under SP these ratios must be constant as
the turbulence decays, since Reλ is constant under SP. Figure 1 reports such plots where the
measurements were carried out on the centerlines of the turbulent round jet [18] and a cylinder
wake [16]. While the jet data cover a shorter distance than the wake data, they nevertheless indicate
that both λ/η and u′/vK approach a plateau when x/D � 30 (D is the nozzle diameter). The wake
data show clear evidence of a plateau for both λ/η and u′/vK when x/D � 200 (D is the cylinder
diameter). Note that, according to (29) and (30), the ratio (λ/η)w for the wake should be equal to
(Reλ,j /Reλ,w)1/2(λ/η)j , where the subscripts w and j refer to wake and jet (a similar relation holds
for u′/vK ). In the present case (Reλ,j /Reλ,w)1/2 = 3. The presence of a plateau in these distributions
indicates that SP is well satisfied over a wide range of separations, but it also vindicates the first
similarity hypothesis. This is quite remarkable in particular for the wake flow where Reλ is about 45,
which is relatively low, and certainly not in conformity with the requirement of high Re for the SH1
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FIG. 1. Variations of λ/η (squares) and u′/vK (circles) on the centerline of an axisymmetric turbulent
jet (closed symbols, Reλ � 400) and the centerline of a cylinder wake (open symbols, Reλ � 45). Note that,
following (29) and (30), we multiplied both λ/η and u′/vK for the wake by the factor (Reλ,j /Reλ,w)1/2. The
dashed straight lines are only used as a visual guide.

to hold. This indicates that SH1 requires a form of SP, as noted by [7], but requires neither Reλ to
be large nor the turbulence to be globally homogeneous and isotropic. This is consistent with [19].

The ratios λ/η and u′/vK measured in grid turbulence are reported in Fig. 2 for different
grid Reynolds numbers (ReM = 37 500, 13 000, 5800, 4180, and 1200; see [29] for details of the
measurements). Both ratios present a systematic decrease with increasing x/M . For ReM = 1200,
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λ
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FIG. 2. Variations of λ/η (open squares) and u′/vK (closed circles) in decaying grid turbulence for several
values of ReM . The red dashed line shows Eq. (29) and the green dashed line Eq. (30).
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FIG. 3. Variations of Reλ on the centerline of an axisymmetric turbulent jet (open squares) and the centerline
of a cylinder wake (closed squares). The dashed straight lines are only used as a visual guide.

the ratios seem to approach a plateau when x/M � 300. At this ReM , the values of Reλ are quite
low and it is likely that turbulence approaches its final stage of decay, which is excepted to be in
SP [30] (see also [31]). Nevertheless, albeit slow due to the weak Reλ variations, the variations of
λ/η and u′/uK with increasing x/M become visible when the plotting scales are enlarged. The
variations of these ratios are consistent with a lack of SP, which is reflected by the nonconstancy
of Reλ with increasing x/M . The ratios were also calculated using the right-hand sides of (29)
and (30) for a self-consistency test. Since λ and u′ can be scaling variables complying with SP on
the wake and jet centerlines, then Reλ must be constant, which is well illustrated in Fig. 3. In grid
turbulence Reλ decreases with increasing x/M [29] as can be seen in Fig. 4, reflecting a lack of SP.
As for the variations of λ/η and u′/uK at low Reynolds numbers, the Reλ variation becomes evident
when an enlarged scale is used. Note that for the sake of simplicity of analysis, we have developed
the theoretical arguments in the context of HIT. Nonetheless, Figs. 1 and 2 strongly support the
applicability of the present theory for flows that are not necessarily isotropic, such as jet and wake
centerlines (see also [16,29]). There are two reasons.

(i) The present analysis can be developed for the transport equation of the second-order moments,
in flows slightly inhomogeneous but anisotropic, as already underlined in, e.g., [19] (the transport
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M
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Re

M
 = 4800

FIG. 4. Variations of Reλ in decaying grid turbulence for several values of ReM .

054606-10



SELF-PRESERVATION RELATION TO THE KOLMOGOROV . . .

10−1 100 101 102 103
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

r ∗

−S
(r

∗ )
(a)(b)(c)

FIG. 5. Skewness of the velocity increments δu on a centerline of a turbulent cylinder far wake over the range
x/D � 200–600 (there are seven locations equidistributed along that range). The separation r is normalized by
η [curve (a)], λ [curve (b)], and L0 [curve (c)]. Data were extracted from [32].

equation for the third-order moments in anisotropic turbulence is more complex and not considered
here). The scaling parameters that emerge from the analysis are then ν and ε + ε+, the mean
dissipation rates at the two space points (the plus superscript represents the position at x + r).
Along each spatial direction, if turbulence is locally homogeneous, then ε ∼ ε+. For strongly
inhomogeneous flows, it is expected that when very small scales are approached, the ε and ε+ will
become equal. Once again, at least for the second-order statistics, the similarity parameters are those
deduced by Kolmogorov on phenomenological basis.

(ii) The theory validation we provide here is based on hot-wire measurements, which correspond to
selecting one spatial direction, that of the main stream. Taylor’s hypothesis was employed to calculate
spatial statistics, which are thereof artificially homogeneous. Therefore, our results only concern a
single, homogeneous, flow direction x. These are optimal conditions for the theory to be tested.

The first and second conditions of (9) indicate that for a given Reλ, S(r∗) should collapse onto a
single curve as turbulence decays. These SP conditions also apply for a non-HIT such as in a cylinder
wake [16] and a jet flow [17]. To test whether the distribution S(r∗) remains unchanged during the
decay when SP is achieved we report in Figs. 5 and 6 the distributions of S(r∗) on a centerlines
of a cylinder wake (extracted from [16]) and a turbulent round jet (from [17]). In Fig. 7 we report
S(r∗) measured in grid turbulence (from [29]). For the cylinder wake data we show the same S(r)
distributions where the separation r is normalized, respectively, by η, λ, and L0 (the half-width
wake, which [16] showed to be a scaling length), while for the jet and the grid turbulence we only
used η. As it could have been anticipated from the results of Fig. 1, there is a relatively good collapse
of all the distributions for the wake and jet flows. For the wake the collapse is the same regardless
of the length scale used to normalize r (although not shown here, this is also observed for the jet
[see, for example, plots of (δu)2] and (δu)3 in Ref. [17]). Notice that the collapse is observed up to
the separation r∗ where S(r∗) becomes zero, confirming further that SP is satisfied over a very wide
range of scales, covering the dissipative, scaling, and large scales. For the grid turbulence (Reλ varies
from about 48.5 to about 45 for ReM = 13 000 and from about 19 to about 17 for ReM = 4174),
the S(r∗) distributions do not present a collapse, or at least not as good as for the wake and jet, in
agreement with the fact that grid turbulence does not decay in conformity with SP [29]. Note the low
values of S(r∗) for the grid turbulence at ReM = 4127 that express the very weak energy transfer.
Djenidi et al. [33] showed that the contribution of the energy transfer in the scale-by-scale energy
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FIG. 6. Skewness of the velocity increments δu on a centerline of a turbulent round jet over the range
x/D � 30–80 for (a) ReD = 50 000 and (b) ReD = 105 000. The separation r is normalized by η.

budget becomes smaller than the contributions from the viscous and (large-scale) nonhomogeneous
terms at all scales and that the Kolmogorov normalized spectra deviate from those at higher Reλ,
which is indicative of a breakdown of Kolmogorov’s first similarity hypothesis.

Worthy of interest is the apparent plateau with a magnitude of about 0.23 in the S(r∗) distributions
of the jet flow suggesting a nascent scaling range. Such a plateau is absent from both the wake and
grid turbulence because of the low value of Reλ. Interestingly, Antonia and Burattini [34] showed
that for an inertial range to exist Reλ should exceed about 103 when forcing is applied and 106 when
the turbulence is decaying. Antonia et al. [35] compiled a series of S(r/η) distributions in several
flows that include decaying grid turbulence, fully developed channel flows, and plane and round jets
where Reλ ranges from 33 to about 1000 (see their Fig. 9). None of the curves have a clear inertial
range plateau. They only approach it as Reλ increases. Even S(r) obtained with the eddy-damped
quasinormal simulation of decaying HIT at Reλ = 25 000 do not exhibit an actual plateau [36].
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FIG. 7. Skewness of the velocity increments δu in grid turbulence over a range (a) x/M � 22–55 for
ReM = 13 000 and (b) x/M � 55–175 for ReM = 4174. The separation r is normalized by η.
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FIG. 8. Budget terms in the transport equation for δu3 in grid turbulence at Reλ = 100. The asterisk
superscript represents Kolmogorov normalization.

These observations vindicate Antonia and Burattini [34] and show that testing the four-fifths law (or
two-thirds law) is particularly difficult, if not impossible.

B. Budget of the transport equation (5)

To assess the validity of expression (23), we report in Fig. 8 terms in Eq. (2), for decaying grid
turbulence. The first term, reflecting the decay, is negligible and therefore not represented. All the
other terms are evaluated and represented in the figure, except the term T111, which is obtained
by difference. For convenience, we call 2νC111 the second term of the right-hand side of (2) (i.e.,
the viscous term). The figure shows that both terms 2νC111 and −2νE111 are negligible. The first
term (called here the transport term) in the curly brackets on the left-hand side of (2) is larger than
the second term (called the mixed term). The pressure term −T111 is smaller than these two terms,
in agreement with the experimental and DNS data of [20], but also with the DNS results of [22]
at a higher Reynolds number (Reλ = 460). The ratio of the transport and mixed terms is 1.5 for
Reλ = 100; Gotoh and Nakano [22] obtained a ratio of about 1.2.

The remarkable conclusion one can draw from these results is that expression (23) is relatively
well verified even when Reλ is not large, confirming that this expression is valid when 2νC111

and 2νE111 are negligible. Note that in the dissipative range when r → 0 Eq. (23) reduces to
2νC111 = 2νE111 because these two terms are proportional to r , while the others behave like r3.
However, this is not obvious from the figure, most likely because statistics of very small scales are
not reliable. This is due to the spatial resolution limitation, which impacts on the calculation of the
derivative of the third-order structure function.

IV. CONCLUDING DISCUSSION

The following result has been obtained by applying a self-preservation analysis to the two-point
transport equations of the second- and third-order moments of the longitudinal velocity increments in
decaying HIT: The variables ν and ε are found to be the controlling parameters for the behavior of the
second-order and third-order moments of the velocity increments without invoking the first similarity
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hypothesis, underlying a relation between SP and the Kolmogorov theory similarity hypotheses. We
have shown that ν and ε are recovered from the Navier-Stokes equations, with the Reynolds number
not required to be very large, but constant in the case of decaying turbulence. As a consequence of
the above result, the Kolmogorov length and velocity scales (formed with ν and ε) emerge as the
natural scaling variables compliant with SP. One can then expect that when SP holds at all scales of
motion, any set of scaling parameters should be proportional to the Kolmogorov variables. When SP
is incomplete, i.e., SP is tenable over a range of scales η � l � l0 (l0 is, for example, smaller than
the integral length scale L), the analysis indicates that the Kolmogorov scales would be appropriate
scaling variables within that range of scales. Measurements on the centerlines of a round jet and
a plane wake and in a grid turbulence corroborate these results. These analytical results are also
reported in Refs. [31] and [19].

Regarding SH2, one may tentatively argue that it can be considered as a limiting case of the first
one when ν → 0. Of course, this would imply that ε remains finite in the limit of infinite Reynolds
number, an issue that remains to be verified, although commonly believed to be true. Note that the
singularity of the Navier-Stokes equations for ν = 0 is still an open issue.

An interesting observation that stems from the present analysis is that the quantity εr , introduced
by Oboukhov [27] and used by Kolmogorov [26] in his refined similarity hypotheses to account for
the internal intermittency, does not appear to emerge from the Navier-Stokes equations. Further, it is
found that the local value of ε, which according to Landau’s remark may affect the scaling, is well
accounted for in the equations [see, for example, the term E111 in Eq. (5); see also [13] for equations
of higher-order moments of velocity increments where similar terms appear].

It is important to stress the difference between this present work and the earlier ones (see,
e.g., [7,9]). Conversely to these studies, the Kolmogorov scales η and vK are never introduced or
invoked as scaling parameters in our analysis; they emerge as outputs rather than inputs. This result
is far from being trivial. Indeed, so far, the scaling based on η and vK is invariably introduced solely
on the basis of SH1. The present study provides mathematical grounds for the Kolmogorov similarity
hypotheses, which justify the use of the Kolmogorov scaling, albeit under SP conditions.
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