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Searching for turbulence models by artificial neural network
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An artificial neural network (ANN) is tested as a tool for finding a new subgrid model
of the subgrid-scale (SGS) stress in large-eddy simulation. An ANN is used to establish
a functional relation between the grid-scale flow field and the SGS stress without any
assumption of the form of function. Data required for training and test of the ANN are
provided by direct numerical simulation of a turbulent channel flow. It is shown that an
ANN can establish a model similar to the gradient model. The correlation coefficients
between the real SGS stress and the output of the ANN are comparable to or larger than
similarity models, but smaller than a two-parameter dynamic mixed model. Large-eddy
simulations using the trained ANN are also performed. Although ANN models show no
advantage over the Smagorinsky model, the results confirm that the ANN is a promising
tool for establishing a new subgrid model with further improvement.

DOI: 10.1103/PhysRevFluids.2.054604

I. INTRODUCTION

Large-eddy simulation (LES) is used as an important tool of numerical simulation in a wide
variety of fields where turbulent flows appear. In LES the turbulent flow fields are decomposed into
resolved-scale or grid-scale (GS) flow field and small-scale or subgrid-scale (SGS) fluctuations by
a filtering operation. In incompressible turbulent flows the effects of the fluctuations on the GS flow
field appear as the residual or SGS stress tensor. How to model the SGS stress tensor using the GS
flow field is the most important issue in LES.

A number of subgrid models have been proposed since the Smagorinsky model [1]. Most of them
are categorized into the Smagorinsky model, the similarity model [2], and the gradient model [3];
there are also dynamic versions of these models [4,5] and mixed models [6] (see, e.g., Lesieur and
Métais [7] and Meneveau and Katz [8] for reviews). The performance of these models has been tested
for some particular flows like isotropic turbulence [9] and mixing layers [10]. There is no model
which is better than the other models in any flows, although the dynamic and mixed models often
give more accurate results than nondynamic models. The Smagorinsky model is too dissipative,
allowing no backward scatter of SGS energy into the grid scale; in contrast, the similarity model
gives too much backward scatter and is not sufficiently dissipative. The gradient model is correct in
the limit of small grid size but known to be unstable as it is not sufficiently dissipative. Improvement
of these models by, e.g., dynamic procedure is often accompanied by increasing numerical costs.
The accuracy of the results obtained by LES is still limited as they should be interpreted with much
care when experimental or direct numerical simulation (DNS) results are unavailable for validation;
controversially, however, this is the very situation in which LES is most wanted. Thus, a new subgrid
model which is much better than the existing ones should be developed. In order to pursue such a
subgrid model essentially new ideas of modeling would be required; however, there has been no
such idea since the prototypes of the above models were proposed.

The final goal of our research is to establish a new subgrid model for the SGS stress which
performs better than the existing models. This is not an easy task since there are potentially a huge
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number of possibilities of modeling. In principle one can use the GS flow field in the whole domain
to express the SGS stress at one point as in nonlocal methods in Reynolds-averaged Navier-Stokes
modeling [11]; the history of the GS flow field may also be used as in the Reynolds stress transport
model [12]. On the other hand, the subgrid model should be based on physics of turbulence and it
seems difficult to invent an essentially new model after the models listed above were established
with much effort. However, the methods of machine learning, which are extensively and successfully
used in many areas, can provide us a tool for going beyond the ability of human thought; they are
useful if they can automatically extract the essential GS flow field required for accurate modeling.
In this paper, we test whether the artificial neural network (ANN), which is one of the methods of
machine learning, can be used for finding a subgrid model; it is a first step toward the above goal.

There have been many applications of ANNs to turbulence modeling. Sarghini et al. [13] used
an ANN to find a relation between the GS flow field and the turbulent viscosity coefficient in the
mixed model. Moreau et al. [14] used an ANN to estimate the subgrid variance in the Cook-Riley
model for a scalar field in isotropic turbulence. Recently an ANN was used by Ma et al. [15] to find
closure terms for a one-dimensional model of bubbly multiphase flows. There are many applications
of ANNs to combustion [16–19]; an ANN is used to speed up subgrid chemistry computations,
which are usually the bottleneck of LES of turbulent flames. In plasma turbulence Citrin et al. [20]
used an ANN to construct a model for a tokamak turbulence transport model. In most of these
works, however, an ANN was used only as a complementary tool for optimizing model constants.
Moreover, few works have dealt with SGS stress arising from convective terms, which is intrinsic to
turbulence. In other words, there has been no attempt to construct an essentially new subgrid model
of the SGS stress using an ANN.

It should be pointed out that we aim at establishing a functional relation between the GS flow
field and the SGS stress tensor without any assumption on its form; this has not been done in the
past. It is contrasted to the approach by Sarghini et al. [13], who assumed the relation to be the mixed
model: their aim was to reduce the computational time by replacing the evaluation of the turbulent
viscosity coefficient with an ANN; the training target was the Bardina model instead of the real SGS
stress. If the ANN is shown to be an effective tool for turbulence modeling, it can be also applied
to complex flows including compressible flows, multi-phase flows, and reactive flows, in which it is
not always clear how to model the residual terms.

The paper is organized as follows. Numerical methods are described in Sec. II; after the outline
description in Sec. II A, methods of DNS are detailed in Sec. II B. Preparation of data for the ANN is
summarized in Sec. II C, and methods of ANNs including the choice of input variables are described
in Sec. II D. The results are shown in Sec. III: First, the choice of input variables is discussed in
Sec. III A; in Sec. III B, the ANN is shown to be successful in learning the SGS stress. Basic features
of learning are shown in Sec. III C, and the applicability of an ANN trained at a low Reynolds
number to higher Reynolds numbers is tested in Sec. III D. After investigating what kind of model
the ANN has established in Sec. III E, some results of LESs using the trained ANN (a posteriori
test) are presented in Sec. III F. A summary and discussion of future works are given in Sec. IV.

II. NUMERICAL METHODS

A. Outline

In LES small fluctuations of a flow variable f are filtered out and we are concerned with the
resolved-scale or GS flow field f = ∫

G(xxx ′)f (xxx − xxx ′)dxxx ′, where G is a filter function. The GS flow
field is governed by the filtered Navier-Stokes equations

∂ui

∂t
+ ∂

∂xj

(ui uj ) = − ∂p

∂xi

+ 1

Re

∂2ui

∂xk∂xk

− ∂τij

∂xj

, (1)

∂uj

∂xj

= 0. (2)
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TABLE I. Parameter values of DNS.

Reτ Lx Ly Lz �x+ �y+
max �z+ Nx × Ny × Nz

180 4π 2 2π 11.8 5.4 7.1 192 × 128 × 160
400 2π 2 π 9.8 7.9 4.9 256 × 192 × 256
600 2π 2 π 7.4 8.1 3.7 512 × 256 × 512
800 π 2 π 6.5 7.7 3.3 384 × 384 × 768

Here the residual or SGS stress tensor

τij = uiuj − ui uj (3)

depends not only on the GS flow field but also on fluctuations and should be modeled using the GS
flow field.

In the present study we use an ANN to establish a functional relation between the GS flow field
and the SGS stress tensor. First, training data for the ANN are prepared using DNS data. The GS
flow field is calculated from DNS data and used as input variables of the ANN. The SGS stress
tensor is also calculated from DNS data and used as a training target of output variables. Then, the
ANN is trained to establish a functional relation between the input and output variables. The ability
of the trained ANN is checked using DNS data which are not used in training. The trained ANN is
also tested in actual LESs.

B. Direct numerical simulation

The data used for training and test are obtained by DNS of a turbulent channel flow. We use the
formulation of Kim et al. [21]. For spatial discretization the sixth-order accurate compact scheme is
used in y which is the direction normal to the walls, while the Fourier collocation method is used
in the streamwise direction x and the spanwise direction z, assuming periodic boundary conditions.
Nonuniform grids are adopted in y to resolve the boundary layers. The Poisson equations are solved
in the Fourier space where they are decomposed into independent second-order ordinary differential
equations for Fourier modes; they are also discretized by the compact scheme and solved accurately
and efficiently. The friction Reynolds number is Reτ = uτ δ/ν = 180, 400, 600, and 800, where
uτ = τ

1/2
w , τw = (1/Re) ∂u

∂y
, and δ = 1 is the channel half-width. The size of the numerical domain,

Lx × Ly × Lz, the grid spacings in the wall unit, �x+, �y+
max, and �z+, and the number of grid

points, Nx × Ny × Nz, are listed in Table I.
Validity of the DNS is checked in Fig. 1. The mean flow has a wall-law region and log-law region

[Fig. 1(a)]. Figure 1(b) shows fine vortical structures visualized by the isosurface of the second
invariant of the deformation tensor, which has been observed in previous works [22–24].

C. Preparing data for training and testing

The data obtained by DNS are used both for training and for testing. In training, field data obtained
by DNS are filtered as normally done in LES to give the GS flow field on coarse grids, which are
used as input variables; in the present study we use the top-hat filter function. The SGS stress is also
calculated using the DNS data and is used as training targets of output variables. The values of the
filter size and the number of grid points of the coarse grids are listed in Table II; for the most part
they are set to the underlined parameter values Reτ = 180, (�x

+
,�y

+
max,�z

+
) = (35.3,9.9,17.7).

The components of the SGS stress tensor averaged in the streamwise and spanwise directions are
shown in Fig. 2, where the rms amplitudes are also shown. They are in good agreement with the
previous results [21].

The amount of data used for training is rather small; typically six positions in the streamwise
direction are randomly chosen and the data on the corresponding planes parallel to the yz plane at
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FIG. 1. Results of DNS of channel flow. (a) Mean flow at Reτ = 180, 400, 600, and 800; (b) vortical
structures shown by isosurface of the second invariant Q of the deformation tensor. Reτ = 400, Q = 0.03.

one instant are used for training. All data at the same instant are used for testing of the trained ANN
except for testing the ANN trained at Reτ = 180 using data at Reτ = 400 and 800.

D. Artificial neural network

A feed-forward neural network is employed in establishing a functional relation between the GS
flow field and the SGS stress tensor. Figure 3 shows the schematic diagram of the ANN and a single
neuron. Let us consider an ANN which consists of L layers. A single neuron of the lth layer receives
a set of inputs {X(l−1)

j } and then outputs X
(l)
i which is calculated as

X
(l)
i = B

(
s

(l)
i + b

(l)
i

)
, (4)

s
(l)
i =

∑
j

W
(l)
ij X

(l−1)
j , (5)

where B is the activation function, b
(l)
i is the bias parameter, and W

(l)
ij is the weight. The bias

parameters and the weights are corrected iteratively so that the final output X(L) approximates well
the given SGS stress. The data of the first layer {X(1)

j } are given by the GS flow field.
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TABLE II. Parameter values for filtering. Filter size and number of grid points. They are set to the underlined
parameter values for the most part of the paper.

Reτ �x
+

�y
+
max �z

+
Nx × Ny × Nz

180 41.7 15.6 23.6 48 × 48 × 48
43.5 14.5 21.7 52 × 52 × 52
35.3 9.9 17.7 64 × 64 × 64
23.6 6.0 11.8 96 × 96 × 96

400 39.3 22.0 19.6 64 × 64 × 64
34.3 17.9 17.5 72 × 72 × 72
29.9 15.3 15.0 84 × 84 × 84
26.2 13.3 13.1 96 × 96 × 96

600 29.5 33.0 14.7 128 × 64 × 128
26.2 26.9 13.1 144 × 72 × 144
22.4 23.0 11.2 168 × 84 × 168
19.6 19.9 9.8 192 × 96 × 192

800 26.2 10.9 13.1 96 × 256 × 192
19.6 10.9 9.8 128 × 256 × 256
13.1 10.9 6.5 192 × 256 × 384

In the present study the ANN consists of three layers: the input, hidden, and output layers. For
simplicity, each independent component of the SGS stress tensor is dealt with separately; in other
words, six ANNs are trained to approximate all components of the SGS stress tensor. This point
is discussed from the viewpoint of symmetry in the final section. The activation function is the
sigmoid function B(z) = 1/(1 + e−αz). The back-propagation is used as a method for training which
optimizes the bias parameters and weights iteratively to minimize the difference between the output
and the given SGS stress

∑ |X(L) − τij |2. The number of neurons of the input layer depends on the
choice of input variables as described below, while the output layer consists of a single neuron. The
number of neurons of the hidden layer is 100 unless stated explicitly, while the dependence on it is
checked in Sec. III C.

We should be careful in choosing the input variables since it is important for effective and
successful learning. Although there are many possibilities for the combination of input variables,
we limit ourselves to pointwise correspondence between the input and output variables; namely, in
order to approximate the SGS stress at one point the GS data at the same point are used as input
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FIG. 2. Distributions of SGS stress tensor τij averaged in streamwise and spanwise directions (xz plane).

Reτ = 180, (�x
+
,�y

+
max,�z

+
) = (35.3,9.9,17.7). Average (left) and rms (right) amplitude of fluctuation.
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FIG. 3. Schematic diagram of the ANN. Left, network structure; right, single neuron.

variables. We test four sets of input variables: (i) {S,y}, (ii) {S,�,y}, (iii) {∇u,y}, and (iv) {∇u},
where S = [∇u + (∇u)T ]/2 and � = [∇u − (∇u)T ]/2. The first set can give the Smagorinsky

model τij = −2CS�
2
(2SklSkl)1/2Sij + (1/3)τkkδij , while the position y is included to take account

of possible dependence on the wall-normal direction. The GS vorticity is added in the second set
since it improves the accuracy of the SGS model in some flows [25]. The third set is equivalent to
the second one in the sense that ∇u = S + �; in practice, however, the results of learning can be
different. The last set is included to check the role of the position y.

III. RESULTS

A. Choice of input variables

First, we investigate which set of input variables results in successful learning. Figure 4 shows
correlation coefficients between the SGS stress τ

(DNS)
ij calculated using DNS data and τ

(ANN)
ij predicted

by the trained ANN for the four sets of input variables for Reτ = 180, (�x
+
,�y

+
max,�z

+
) =

(35.3,9.9,17.7). The correlation coefficients are calculated by integrating in x and z directions:

C.C.(y) =
〈(
τ

(DNS)
ij − 〈

τ
(DNS)
ij

〉
xz

)(
τ

(ANN)
ij − 〈

τ
(ANN)
ij

〉
xz

)〉
xz[〈(

τ
(DNS)
ij − 〈

τ
(DNS)
ij

〉
xz

)2〉
xz

]1/2[〈(
τ

(ANN)
ij − 〈

τ
(ANN)
ij

〉
xz

)2〉
xz

]1/2 ,

〈f 〉xz = 1

LxLz

∫ Lx

0
dx

∫ Lz

0
dzf (x,y,z).

High correlation implies successful learning. It is seen that learning is most successful when {∇u,y}
are used as input variables as the averaged correlation coefficient C.C. = (1/Ly)

∫ Ly

0 dy C.C.(y)
exceeds 0.7 for all six components as shown in Table III, although {∇u} gives comparable success;
the difference of the correlation coefficients between the two sets is 0 ∼ 4%. Thus the distance from
the wall is not important very much. The Smagorinsky type {S,y} gives poor results as the averaged
correlation coefficient exceeds 0.7 for only one component τ11; the correlation coefficients of the
other components are small in the entire region except that it is large for τ31 near the wall. This result
is reasonable since it is known that the eddy-viscosity-type model has little correlation with the real
SGS stress [26]. There is a little improvement by including � because the set {S,�,y} gives three
correlation coefficients which exceed 0.7; the correlation coefficients of τ33, τ23, and τ31 are small
in the central region where both the average and rms amplitudes of these components are small.
However, it should be pointed out that the set {S,�,y} is not as good as {∇u,y}, although the two
sets have essentially the same degree of freedom; it suggests that the model established by the ANN
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FIG. 4. Correlation coefficients between the SGS stress τ
(DNS)
ij calculated using DNS data and τ

(ANN)
ij

predicted by trained ANN. Correlation coefficients are averaged in streamwise and spanwise directions (xz

plane). Reτ = 180, (�x
+
,�y

+
max,�z

+
) = (35.3,9.9,17.7). (a) {S,y}, (b) {S,�,y}, (c) {∇u,y}, and (d) {∇u}.

has simpler dependence on ∇u than on S and � as shown later in Sec. III E and tuning parameters
of the ANN are required for successful learning.

Among the components of the SGS stress tensor τ11 is the easiest component for regression as
all four sets give correlation coefficients larger than 0.7; this is because τ11 is largest in magnitude
(Fig. 2). On the other hand, τ23 and τ31, for which averages are zero and amplitudes are small (Fig. 2),
are difficult to be approximated as the correlation coefficients are small for both {S,y} and {S,�,y}.
In the rest of the paper the set of input variables is fixed to {∇u,y}.

B. How successful is the learning?

Next, we look into some details of the learning results for Reτ = 180, (�x
+
,�y

+
max,�z

+
) =

(35.3,9.9,17.7). Figures 5 and 6 compare the distributions of the SGS stress obtained by filtering
DNS data, τ (DNS)

ij , and that predicted by trained ANN, τ (ANN)
ij . We choose the plane y = 0.1 where the

rms amplitudes of all components are nearly largest. The values of each component are normalized to
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TABLE III. Correlation coefficients between the SGS stress τ
(DNS)
ij calculated using DNS data and

τ
(ANN)
ij predicted by trained ANN. Correlation coefficients are averaged in the whole domain. Reτ =

180,(�x
+
,�y

+
max,�z

+
) = (35.3,9.9,17.7).

Input variables τ11 τ22 τ33 τ12 τ23 τ31

{S,y} 0.793 0.292 0.390 0.320 0.148 0.489
{S,�,y} 0.776 0.769 0.344 0.773 0.368 0.524
{∇u,y} 0.804 0.713 0.728 0.791 0.730 0.821
{∇u} 0.767 0.670 0.710 0.776 0.720 0.820

FIG. 5. Spatial distributions of SGS stress tensor at y = 0.1. Comparison between τ
(DNS)
ij and τ

(ANN)
ij .

Diagonal components. Reτ = 180,(�x
+
,�y

+
max,�z

+
) = (35.3,9.9,17.7). (a) τ

(DNS)
11 , (b) τ

(ANN)
11 , (c) τ

(DNS)
22 ,

(d) τ
(ANN)
22 , (e) τ

(DNS)
33 , and (f) τ

(ANN)
33 .
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FIG. 6. Spatial distributions of SGS stress tensor at y = 0.1. Same as in Fig. 5 but for off-diagonal
components. (a) τ

(DNS)
12 , (b) τ

(ANN)
12 , (c) τ

(DNS)
23 , (d) τ

(ANN)
23 , (e) τ

(DNS)
31 , and (f) τ

(ANN)
31 .

be in [0,1]. The ANN is seen to reproduce fairly well the patterns in the distributions of DNS. Good
agreement is also observed for the average (Fig. 7) and rms amplitude (Fig. 8) of each component.
The learning is successful.

It is of interest to see whether the divergence of τij , which appears in the momentum equation,
can be predicted by the ANN. Figure 9 compares the distributions of ∂j τ1j between DNS and the
trained ANN on the same plane as in Figs. 5 and 6. Again, ANN is seen to reproduce the patterns in
the distributions of DNS. The correlation coefficients shown in Table IV are reasonably high, though
they are slightly smaller than those of τij .
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FIG. 7. SGS stress averaged in streamwise and spanwise directions. Comparison between τ
(DNS)
ij and τ

(ANN)
ij .

Reτ = 180, (�x
+
,�y

+
max,�z

+
) = (35.3,9.9,17.7). (a) τ11, (b) τ22, (c) τ33, (d) τ12, (e) τ23, and (f) τ31.

C. Basic features of learning

In this section we show some features of learning by the ANN which can be important in efficient
applications. Table V confirms that there is no significant dependence on the data set used in training.
Five different data sets are tested. The difference between the correlation coefficients and the average
is less than 0.043.
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FIG. 8. The rms amplitude of fluctuation of SGS stress in streamwise and spanwise directions. Comparison
between τ

(DNS)
ij and τ

(ANN)
ij . Reτ = 180, (�x

+
,�y

+
max,�z

+
) = (35.3,9.9,17.7). (a) τ11, (b) τ22, (c) τ33, (d) τ12,

(e) τ23, and (f) τ31.

Figure 10 is a magnified view of Fig. 4 near the wall. It shows that the correlation coefficients
are small in the near-wall region, y+ < 10, which consists of the viscous sublayer and a part of the
buffer layer; it is reasonable since the flow field is not fully turbulent in this region. Outside this
region, however, the correlation coefficients do not depend on the position y significantly.

Table VI shows how many neurons are needed for successful learning. In this table n is the number
of neurons in the hidden layer. In general, approximation by the ANN becomes more accurate by
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FIG. 9. Spatial distributions of divergence of SGS stress tensor at y = 0.1. Parameter values are the same
as in Fig. 5. (a) ∂jτ

(DNS)
1j and (b) ∂jτ

(ANN)
1j .

increasing n with the expense of computational time. It is seen that the correlation coefficients
increase with n, but the increase is slow for n � 10. All correlation coefficients exceed 0.7 when
n � 50. Figure 11 shows how the difference between DNS and ANN decays with the number of
iterations in training. As the number of neurons increases, the rate of decay increases and the final
error after 1000 iterations of learning decreases. On the other hand, the time required for ANN
calculation increases with n. Thus the choice of n should be made by taking account of the accuracy
of approximation as well as the calculation time.

Figure 12 shows the overall correlation coefficients as a function of the averaged filter size

�
+ = (�x

+
�y

+
max�z

+
)
1/3

for various Reynolds numbers. It is seen that learning is successful for
�+ � 20, which corresponds to about three to four times grid spacing. The correlation coefficients
decrease quickly as the filter size becomes large. Thus there is a limitation for the filter size.
There is little dependence on the Reynolds number, although the correlation coefficient is larger for
Reτ = 400 than for the other three cases.

D. Applicability to higher Reynolds numbers

LES is usually used for high Reynolds number flows which are not accessible by DNS. Thus
when we think of applying an ANN to LES of high Reynolds number flows, no training data
are available from DNS. In this regard, it is of importance to check whether an ANN trained
at low Reynolds numbers is useful at high Reynolds numbers. This is checked by applying an
ANN trained at Reτ = 180 to predicting the SGS stress tensor at Reτ = 400 and 800. Figure 13
compares the distribution of τ

(DNS)
11 obtained by filtering DNS data of Reτ = 400 with filter size

(�x
+
,�y

+
max,�z

+
) = (34.3,17.9,17.5) and τ

(ANN)
11 predicted by an ANN trained at Reτ = 180 with

filter size (�x
+
,�y

+
max,�z

+
) = (35.3,9.9,17.7). Although there is some difference in the magnitude,

the spatial patterns in DNS data are reproduced by the ANN. The correlation coefficients between
DNS and the ANN are larger than 0.7 except for τ11 and τ12 at Reτ = 800 (Table VII). These results

TABLE IV. Correlation coefficients between the divergence of
SGS stress ∂j τ

(DNS)
ij calculated using DNS data and ∂j τ

(ANN)
ij pre-

dicted by trained ANN. Correlation coefficients are averaged in the
whole domain. Reτ = 180, (�x

+
,�y

+
max,�z

+
) = (35.3,9.9,17.7).

∂j τ1j ∂j τ2j ∂j τ3j

0.640 0.636 0.536
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TABLE V. Correlation coefficients between the SGS stress τ
(DNS)
ij calculated using DNS data and τ

(ANN)
ij

predicted by the trained ANN. Dependence on training data set. Correlation coefficients are averaged in the
whole domain. Reτ = 180, (�x

+
,�y

+
max,�z

+
) = (35.3,9.9,17.7).

Data set τ11 τ22 τ33 τ12 τ23 τ31

1st 0.796 0.696 0.750 0.760 0.731 0.826
2nd 0.802 0.711 0.693 0.753 0.734 0.784
3rd 0.835 0.715 0.743 0.834 0.750 0.832
4th 0.768 0.709 0.708 0.792 0.732 0.826
5th 0.816 0.732 0.747 0.815 0.703 0.839
Average 0.804 0.713 0.728 0.791 0.730 0.821

TABLE VI. Correlation coefficients between τ
(DNS)
ij and τ

(ANN)
ij . Dependence on the number of neurons.

Correlation coefficients are averaged in the whole domain. Reτ = 180, (�x
+
,�y

+
max,�z

+
) = (35.3,9.9,17.7).

n τ11 τ22 τ33 τ12 τ23 τ31

2 0.677 0.487 0.486 0.366 0.398 0.547
5 0.752 0.671 0.674 0.593 0.604 0.710
10 0.742 0.672 0.717 0.779 0.711 0.801
25 0.782 0.684 0.739 0.807 0.736 0.807
50 0.806 0.709 0.739 0.796 0.739 0.812
100 0.827 0.711 0.739 0.788 0.736 0.816

TABLE VII. Correlation coefficients between τ
(DNS)
ij obtained by filtering DNS data of Reτ = 400 and 800

and τ
(ANN)
ij predicted by ANN trained at Reτ = 180 with filter size (�x

+
,�y

+
max,�z

+
) = (35.3,9.9,17.7). The

filter size is (�x
+
,�y

+
max,�z

+
) = (34.3,17.9,17.5) for Reτ = 400 and (�x

+
,�y

+
max,�z

+
) = (26.2,10.9,13.1)

for Reτ = 800. Correlation coefficients are averaged in the whole domain.

Reτ τ11 τ22 τ33 τ12 τ23 τ31

400 0.707 0.744 0.734 0.743 0.768 0.769
800 0.694 0.767 0.739 0.672 0.764 0.773
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FIG. 10. Correlation coefficients between τ
(DNS)
ij and τ

(ANN)
ij in the near-wall region. Correlation coefficients

are averaged in streamwise and spanwise directions. Magnified view of Fig. 4(c).
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FIG. 13. Comparison between τ
(DNS)
11 obtained by filtering DNS data of Reτ = 400 with filter size

(�x
+
,�y

+
max,�z

+
) = (34.3,17.9,17.5) and τ

(ANN)
11 predicted by the ANN trained at Reτ = 180 with filter

size (�x
+
,�y

+
max,�z

+
) = (35.3,9.9,17.7). y = 0.1.
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TABLE VIII. Input variables required for accurate prediction
by the ANN.

∂u

∂x

∂u

∂y

∂u

∂z

∂v

∂x

∂v

∂y

∂v

∂z

∂w

∂x

∂w

∂y

∂w

∂z

τ11 ◦ ◦
τ22 ◦ ◦
τ33 ◦ ◦
τ12 ◦ ◦
τ23 ◦ ◦ ◦ ◦
τ31 ◦ ◦ ◦ ◦

support that it is possible to use an ANN trained at low Reynolds numbers for LES at high Reynolds
numbers.

E. What has the ANN learned?

Here we investigate what kind of model the ANN has established. First, we identify and eliminate
members of the input variables which are not required for ANN approximation for each component
of the SGS stress tensor. This is done by removing components of ∇∇∇uuu one by one and checking
whether the correlation coefficients become much smaller than before. Table VIII shows the results;
the members of the input variables required for achieving high correlation coefficients are marked
by circles. The values of correlation coefficients with the reduced numbers of input variables are
shown in the first row of Table IX. They are larger than those obtained with the full members of
{∇u,y} (Table III). Thus the results of learning are improved by eliminating irrelevant components.

Next, we infer the model the ANN has produced. The above results imply that

τij = f

(
∂ui

∂x
,
∂ui

∂z
,
∂uj

∂x
,
∂uj

∂z
,y

)
, (6)

which reminds us of the gradient model

τij = �
2

12

∂ui

∂xk

∂uj

∂xk

. (7)

We prefer the form

τij =
3∑

k=1

�k
2

12

∂ui

∂xk

∂uj

∂xk

, (8)

since the grid spacings in the y direction are much smaller than in the other two directions.

TABLE IX. Correlation coefficients between (i) τ
(DNS)
ij and τ

(ANN)
ij with reduced number of input variables,

(ii) the gradient model and τ
(DNS)
ij , (iii) the gradient model and τ

(ANN)
ij , (iv) the Smagorinsky model and τ

(DNS)
ij , and

(v) the Smagorinsky model and τ
(ANN)
ij . Correlation coefficients are averaged in the whole domain. Reτ = 180,

(�x
+
,�y

+
max,�z

+
) = (35.3,9.9,17.7).

Case τ11 τ22 τ33 τ12 τ23 τ31

Reduced input variables 0.863 0.769 0.793 0.848 0.793 0.856
Gradient model vs DNS 0.847 0.729 0.737 0.841 0.703 0.853
Gradient model vs ANN 0.651 0.675 0.634 0.758 0.664 0.640
Smagorinsky vs DNS 0.257 0.134 −0.002 0.247 0.097 0.144
Smagorinsky vs ANN 0.199 0.152 −0.001 0.239 0.076 0.122
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FIG. 14. Distribution of τ11 obtained by gradient model. Reτ = 180, (�x
+
,�y

+
max,�z

+
) = (35.3,9.9,17.7).

Figure 14 shows the distribution of τ11 obtained by the gradient model. It is similar to not only
τ

(DNS)
11 but also τ

(ANN)
11 (Fig. 5). In Table IX the correlation between the gradient model (8) and DNS

is high and comparable to the correlation between the ANN and DNS. The correlation coefficients
between the gradient model and the ANN are a bit smaller than those in the first and second rows,
but still large. Correlation with the Smagorinsky model is also included for comparison. As is well
known, the Smagorinsky-type models have little correlation with DNS [27,28], which is confirmed in
the fourth row of Table IX; it is also poorly correlated with the ANN. Thus, the ANN has established
a model which is similar to the gradient model.

F. A posteriori test

Finally, actual LESs using the trained ANN are carried out to check the performance of the
ANN model (a posteriori test). Table X lists the models and the parameters. Simulations using the
Smagorinsky model are also carried out for comparison. The Van Driest damping is used in all
LES calculations so that the boundary conditions are satisfied; the damping is introduced by simply
multiplying the SGS stress by (1 − e−y+/A+

)2 with A+ = 25. Two cases of DNS, Reτ = 180 and
400, are chosen (Table I). One limitation in the present study lies in the grid spacings in the y

direction. Grid spacings should not be stretched significantly when we adopt the compact scheme,
which has higher accuracy than the standard finite difference schemes like the second-order explicit
finite difference; it is advised that the difference between neighboring grid spacings is kept lower
than 5% [29]. In addition, the grid spacings should be small enough to capture the wall region since
no numerical diffusion due to upwinding is introduced for stabilization. Thus the number of grid
points in y cannot be reduced to the values listed in Table II, while the numbers of grid points in x

and z are chosen from Table II. The ANN trained on the corresponding grids is used in cases ANN1
and ANN2. In case ANN3, however, the ANN trained on the grids Nx × Ny × Nz = 84 × 84 × 84

TABLE X. Parameter values for a posteriori test. Filter size and number of grid points.

Model (case) Reτ �x
+

�y
+
max �z

+
Nx × Ny × Nz

ANN (ANN1) 180 35.3 9.9 17.7 64 × 64 × 64
ANN (ANN2) 400 29.9 14.2 15.0 84 × 120 × 84
ANN (ANN3) 400 39.3 14.2 19.6 64 × 120 × 64
Smagorinsky 180 35.3 9.9 17.7 64 × 64 × 64
Smagorinsky 400 29.9 14.2 15.0 84 × 120 × 84
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FIG. 15. Comparison of mean flow obtained by LES with Smagorinsky model and ANN model. Left,
Reτ = 180; right, Reτ = 400.

is used with a factor adjusting the difference of grid spacings since correlation coefficients between
τ

(DNS)
ij and τ

(ANN)
ij are not high on the grids Nx × Ny × Nz = 64 × 64 × 64 (Fig. 12).

Figure 15 compares the mean flow obtained by LES simulations. First of all, LES using the ANN
models did not diverge and we could obtain mean flow and statistical quantities, while the gradient
model is known to be unstable. The mean flow obtained by the Smagorinsky model is in reasonable
agreement with DNS except that it is a bit underestimated for 10 � y+ � 40 at Reτ = 180. On
the other hand, the mean flow obtained by the ANN model is smaller than DNS for Reτ = 180;
deviation from the log law is observed for 20 � y+ � 100 at Reτ = 400. Although the difference
is not so large, the ANN model has no advantage over the Smagorinsky model for prediction of the
mean flow.

Figure 16 compares turbulence intensities obtained by filtering DNS, LES calculations with
the Smagorinsky model, and the ANN model. In contrast to the mean flow there is no significant
difference between filtered DNS and LES with ANN models, while ANN slightly overpredicts 〈v2〉1/2

xz

and 〈w2〉1/2
xz at Reτ = 180. These results imply that ANN can be a promising tool for searching for

new turbulence models, although further improvement and verification should be followed.

IV. CONCLUDING REMARKS

We have shown that an ANN can establish a functional relation between the GS flow field and the
SGS stress tensor in LES. Using DNS data of a turbulent channel flow as training data, the ANN was
trained by back-propagation. Then the ability of the trained ANN was tested using DNS data which
were not used in training. Learning was most successful when {∇u,y} was used as a set of the input
variables; the correlation coefficients between the SGS stress tensor obtained by filtering DNS data
and that predicted by ANN exceeded 0.7. The spatial distribution of the SGS stress tensor predicted
by the ANN was in good agreement with that obtained by filtering DNS data. It is most likely that
the ANN has established a model close to the gradient model. An a posteriori test using the trained
ANN was also carried out. Although the ANN model showed no advantage over the Smagorinsky
model, the results obtained using ANN models were not far from those of DNS, suggesting that
further improvement will establish a new model that can be used for actual LES calculations.

It should be pointed out that learning was successful only when the filter size was small: �
+ � 20.

For this small filter size the SGS Reynolds stress term is so small that the SGS stress is close to
the sum of the Leonard term and the cross-stress term, which can be approximated by the gradient
model. Therefore, the present results are quite reasonable. However, it should be stressed that the
ANN has succeeded in establishing a functional relation between the GS flow field and the SGS
stress without any assumption on the form of function. We also remark that the values of correlation
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FIG. 16. GS turbulence intensities. Comparison between DNS and LES with the Smagorinsky model and
the ANN model. Reτ = 180 and 400. (a) 〈u′2〉1/2

xz , Reτ = 180, (b) 〈u′2〉1/2
xz , Reτ = 400, (c) 〈v2〉1/2

xz , Reτ = 180,
(d) 〈v2〉1/2

xz , Reτ = 400, (e) 〈w2〉1/2
xz , Reτ = 180, and (f) 〈w2〉1/2

xz , Reτ = 400.

coefficients between DNS and the ANN obtained in the present study are comparable to or even
larger than those for similarity models [26,30] but smaller than those for a dynamic two-parameter
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mixed model [28], which implies that the ANN is a promising tool for searching for new turbulence
models and should be improved.

In the present study we have not taken care of symmetry of the SGS stress tensor; each component
of the tensor is trained separately. If the fluctuations are statistically isotropic, however, the turbulence
model should be also isotropic; training is required for only one diagonal component and one off-
diagonal component of the SGS stress tensor, while the two are related through the incompressibility
condition. In the present study, however, the grid spacings and the filter size differ depending on
the direction; this is one of the reasons why each component of the SGS stress tensor is trained
independently. It should be noted that it is important to take account of symmetry when we formulate
a trained ANN into a turbulence model. Another limitation in the present study is that each training
is performed using data with fixed filter size. As a result dependence on the filter size cannot be
incorporated into the ANN model. To do this data with different filter size should be used together
as training data and filter size should be included in the input variables, which demand more
computational resources.

Although we have obtained some successful results with ANN, several problems should be solved
in order to find a new turbulence model better than the existing ones, which is our final goal. We
would like to find a model which works well even when the filter size is much larger than the grid
size. However, it may be impossible to have high correlation of the SGS stress tensor between the
ANN and DNS for large filter size since SGS fluctuations involve a wide range of length scales and
are inevitably large. In this regard, one way to proceed is to allow a certain level of errors, which can
be incorporated in other methods of machine learning like support vector machine and regression.
Another way is to replace the training target or output variable; in the present study we chose the
SGS stress tensor as the output variable, but it is sometimes argued that high correlation of the
SGS stress tensor is not necessary for an SGS model to be successful [12], although some models
with high correlation coefficients are also successful [28]. The training target can be other quantities
like the rate of production of residual energy or SGS dissipation, which is important in the energy
transfer between GS and SGS scales.

The ANN itself should be also improved. There are a number of possibilities in the choice of input
variables. In the present study the input variables were chosen by taking account of the Smagorinsky
model, but it can be replaced by the similarity model and we can include doubly filtered variables
in the input variables. We may include all data if the ability of the ANN allows it. In this regard,
tuning of the ANN would be also important; the number of layers may be increased as we see the
remarkable success of deep learning.
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