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Ultimate-state transition of turbulent Rayleigh-Bénard convection
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Recently Schumacher et al. [Phys. Rev. Fluids 1, 084402 (2016)] used direct numerical
simulation to calculate the shear stress exerted on the top and bottom viscous boundary
layers (BLs) of Rayleigh-Bénard convection with a Prandtl number Pr = 0.021 and aspect
ration � = 1 for Rayleigh numbers Ra up to 4 × 108. By extrapolating their results to larger
Ra, they concluded that the sample would undergo a transition to turbulent BLs and enter the
“ultimate state” at Ra∗ � 1011 for Pr = 0.021. Here we show that their result is consistent
with the experimentally determined Ra∗ = 2 × 1013 for Pr = 0.82 by He et al. [Phys. Rev.
Lett. 108, 024502 (2012); New J. Phys. 17, 063028 (2015)] and the Pr dependence of Ra∗

predicted by Grossmann and Lohse [Phys. Rev. E 66, 016305 (2002)]. Thus the numerical
results of Schumacher et al. support the interpretation of the experimentally observed
transition at Ra∗ = 2 × 1013 for Pr = 0.82 as the ultimate-state transition.
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I. INTRODUCTION

Recently Schumacher et al. [1] (SBPS) carried out direct numerical simulations (DNS) of turbulent
Rayleigh-Bénard convection (RBC; convection in a fluid confined between horizontal parallel plates
and heated from below) for a cylindrical sample with aspect ratio � ≡ D/L (D and L are the
diameter and height respectively) equal to 1 (for recent reviews of this system see, e.g., [2–4]). The
properties of RBC depend significantly on the Prandtl number Pr ≡ ν/κ (ν and κ are the kinematic
viscosity and thermal diffusivity of the fluid respectively), and SBPS studied the case Pr = 0.021.

The temperature difference �T applied to a RBC sample is represented in dimensionless form
by the Rayleigh number Ra ≡ αgL3�T/(κν), where α is the isobaric thermal expansion coefficient
and g is the gravitational acceleration. When Ra is large enough, the sample has a nearly isothermal
turbulent interior (the “bulk”) extending over most of the sample height. In addition to vigorous
thermal and velocity fluctuations, the bulk supports a large-scale circulation (LSC) which, for
� � 1, consists of a single convection roll. When Ra is not too large (Ra < Ra∗), thin laminar
(albeit fluctuating) viscous and thermal boundary layers (BLs) are found below the top and above
the bottom plate, and most of �T is sustained by the thermal BLs. This state is known as classical
RBC.

It was suggested by Kraichnan [5] (see also [6,7]) that the fluctuations in the turbulent bulk, when
vigorous enough, will apply sufficient shear to the (initially laminar) BLs to drive them turbulent
as well. A major contribution to the shear will come from the LSC; but fluctuations on somewhat
smaller scales will also contribute. A transition is thus expected at Ra = Ra∗ to a new state which is
known as the “ultimate” state [8] since it is expected to exist asymptotically as Ra diverges.
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An estimate by Grossmann and Lohse (GL) [9,10] yielded Ra∗ = O(1014) for Pr = 1. For Pr near
1 and large Ra, one expects that the thermal and the viscous dissipation are much larger in the bulk
than they are in the boundary layers and that the viscous BL thickness λu near the plates is larger
than the thickness λθ of the thermal BLs (see, e.g., Fig. 2 of [10]). For that case (regime IVu, see
Table 3 of [9]) GL predicted a strong Pr dependence of Ra∗ given by Ra∗ ∝ Pr3/2. Because of the
influence of neighboring regimes in parameter space (e.g., regime IVl with λu < λθ ), one expects
that the value of the exponent may differ slightly from 3/2 and to have an effective value valid only
over a finite range of Ra and Pr; but for Pr near 1 and at large Ra this effective value is indeed quite
close to 1.5.

Early heat-transport measurements using cryogenic helium gas [8,11,12] with Pr � 1 indicated
transitions at Ra values Rat in the range 1011 � Rat � 1012 which were well below the theoretical
predictions for Ra∗ but which were interpreted by the authors as the ultimate-state transition.
Other measurements with helium at low temperatures [13,14] were unable to confirm these results.
In contradistinction, recent measurements obtained in the “Uboot of Göttingen” using compressed
sulfur hexafluoride (SF6) at ambient temperatures (Pr = 0.82) [15–19] (the “Göttingen experiments”)
found a transition at Ra∗ � 2 × 1013 for � = 1.00 [18], consistent with the GL estimate for Ra∗.

One of the results of SBPS was the shear stress applied by the LSC to the central sections of the
viscous BLs over the range 3 × 105 � Ra � 4 × 108. By extrapolation to larger Ra and comparison
with channel-flow results [20] the authors conclude that the ultimate-state transition would be reached
near Ra∗ = 1 × 1011 for their Pr = 0.021. They estimate that the uncertainty of their extrapolation
is such that 3 × 1010 � Ra∗ � 5 × 1011. The purpose of this paper is to point out that this result
disagrees with the transitions reported in the range 1011 � Rat � 1012 for Pr � 1 [8,11,12] and any
reasonable estimate of the Pr dependence of Ra∗, and that it is in remarkably good agreement with
the experimental finding Ra∗ = 2 × 1013 [18] for Pr = 0.82 and the Pr dependence of Ra∗ predicted
by GL [10].

II. ESTIMATE OF Ra∗(Pr) BASED ON Ra∗(0.82) = 2 × 1013 AND
THE GROSSMANN-LOHSE MODEL

One way to estimate Ra∗ at any Pr is to use the GL prediction

Ra∗ ∝ Pr3/2 (1)

for their regime IVu. With Ra∗ = 2 × 1013 for Pr = 0.82 this yields Ra∗ = 8 × 1010 for Pr = 0.021,
in excellent agreement with the SBPS estimate. A similar extrapolation based on the transition
values in the range from 1011 to 1012 observed in the cryogenic experiments [8,11,12] with Pr � 1
clearly would fall well below the estimate of SBPS. The analysis reported in Ref. [16] of five sets
of measurements [11,12] with 0.97 � Pr � 1.74 that yielded well defined transition points gave the
averaged results Rat = 4.4 × 1011 and Pr = 1.42. Using this result and Eq. (1) gives Ra∗ = 8 × 108,
about two orders of magnitude lower than the SBPS value.

It may be argued that the above analysis is not strictly valid because the pure exponent 3/2 of
regime IVu of GL is not valid over the involved Pr and Ra range, and that consideration of the
effective values of relevant exponents may give a different result. To explore this possibility, we
consider the shear Reynolds number Res of the viscous boundary layers directly within the GL
model without resorting to any power-law dependence. The shear Reynolds number is related to the
bulk Reynolds number Re of the LSC flow field adjacent to the BLs by [10]

Res = aRe1/2 . (2)

Here a is a constant with a value that is somewhat uncertain and variously was estimated to range
from 0.25 [10] to nearly 1 [21]. In analogy to wall-bounded shear flow [22], the viscous BLs are
expected to undergo a transition from a laminar to a turbulent state when Res reaches a critical value
Re∗

s . Initially Re∗
s was estimated to be 420 [10,23], but this value also is not known very well [10,22].

054603-2



ULTIMATE-STATE TRANSITION OF TURBULENT . . .

In order to estimate the value Re∗ of Re and the corresponding Rayleigh number Ra∗ at the
ultimate-state transition for any Pr, we first need the Ra- and Pr-independent ratio Re∗

s /a. In view of
the large uncertainties of both a and Re∗

s , we used the GL model in the form of Eqs. (2.1) and (2.2)
of Ref. [21] with the coefficients given in that reference and the experimental result Ra∗ = 2 × 1013

for Pr = 0.82 [18]. This yielded Re∗ = 3.2 × 105 and [with Eq. (2)] Re∗
s /a = 562. We note that,

with a somewhat less than 1, this corresponds to a reasonable value for Re∗
s .

We can now use the GL model for any Pr to determine the value of Ra that yields a value of
Re such that Eq. (2) yields Re∗

s /a = 562. For Pr = 0.021 we find Ra∗ = 9.7 × 1010. This result is
nearly the same as the one based on the pure power law, Eq. (1), for regime IVu. It is in the middle
of the range 3 × 1010 � Ra∗ � 5 × 1011 estimated by SBPS from their extrapolation.

A similar analysis based on the values Rat = 4.4 × 1011 and Pr = 1.42 [16] corresponding to the
cryogenic experiments [8,11,12] gives Re∗ = 4.0 × 104 and Re∗

s /a = 201. We note that, even with
a as large as 1, this corresponds to a rather small value for Re∗

s . For Pr = 0.021 this analysis then
yields Ra∗ = 1.1 × 109, only slightly larger than the value 8 × 108 based on Eq. (1). As mentioned,
either result is well below the lower limit allowed by the SBPS estimate.

III. SUMMARY AND CONCLUSION

In this paper we used the Grossmann-Lohse model [9,10,21] and the experimental value Ra∗ =
2 × 1013 from the Göttingen experiment [18] for the ultimate-state transition at Pr = 0.82 and
� = 1.00 to estimate the value Ra∗ = 9.7 × 1010 for Pr = 0.021. This result agrees well with the
numerical estimate 3 × 1010 � Ra∗ � 5 × 1011 for Pr = 0.021 of SBPS [1]. This agreement lends
support to the claim that the transition observed in the Göttingen experiment is indeed the transition to
the ultimate state of RBC. On the other hand, a similar extrapolation of the cryogenic results [8,11,12]
yields a transition at Ra � 1.1 × 109 for Pr = 0.021, which is inconsistent with the numerical work
of SBPS and the GL model.
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