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The efficiency of fluid flow for mixing passive tracers is often limited by fundamental laws
and/or design constraints, such that a perfectly homogeneous mixture cannot be obtained
in finite time. Here we address the natural corollary question: Given a fluid flow, what is the
optimal initial tracer pattern that leads to the most homogeneous mixture after a prescribed
finite time? For ideal passive tracers, we show that this optimal initial condition coincides
with the right singular vector (corresponding to the smallest singular value) of a suitably
truncated Perron-Frobenius (PF) operator. The truncation of the PF operator is made under
the assumption that there is a small length-scale threshold �ν under which the tracer blobs
are considered, for all practical purposes, completely mixed. We demonstrate our results
on two examples: a prototypical model known as the sine flow and a direct numerical
simulation of two-dimensional turbulence. Evaluating the optimal initial condition through
this framework requires only the position of a dense grid of fluid particles at the final
instance and their preimages at the initial instance of the prescribed time interval. As
such, our framework can be readily applied to flows where such data are available through
numerical simulations or experimental measurements.
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I. INTRODUCTION

Given a fluid velocity field u(x,t), a passive tracer satisfies the linear advection equation,

∂tρ + u · ∇∇∇ρ = 0, ρ(x,t0) = f (x), (1)

where the scalar field ρ(x,t) denotes the concentration of the tracer at time t and f is its initial
concentration at time t0. Aref [1] pointed out that laminar unsteady velocity fields can, over time,
develop complex tracer patterns consisting of ever smaller scales. This observation has inspired the
successful development of many stirring protocols to enhance mixing in engineered devices (see,
e.g., Refs. [2–8]).

Systematic classification of mixing efficiency of fluid flow, however, is relatively recent. This
classification was initiated by Lin et al. [9] who derived rigorous bounds on the mixing efficiency of
velocity fields with a prescribed stirring energy or stirring power budget. A notable outcome of their
program is the rather remarkable discovery of a finite-energy velocity field (‖u‖L2 = const < ∞)
that achieves perfect mixing in finite time [10]. It was shown later, however, that any such velocity
field must have infinite viscous dissipation, i.e., ‖∇∇∇u‖L2 = ∞ [11,12].

Besides this fundamental limitation, the implementation of mathematically obtained optimal
stirring strategies is not always feasible in practice. The problem is more acute in natural fluid flow
(such as geophysical flows or the blood stream) over which we have virtually no control.

In light of the above discussion, the natural question is:
(Q) Given an unsteady velocity field, what is the optimal initial tracer pattern that leads to the

most homogeneous mixture after a prescribed finite time?
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In spite of its importance, this question has received relatively little attention. Hobbs and Muzzio
[13] carried out a case study where the effect of the tracer injection location in a Kenics mixer is
examined. They find that, at least for short time horizons, the mixing efficiency depends significantly
on the injection location. A similar case study is carried out by Gubanov and Cortelezzi [14] who
studied the mixing efficiency of five different initial tracer patterns in a two-dimensional nonlinear
model. Thiffeault and Pavliotis [15] addressed an analogous question: the asymptotic mixing of
passive tracers advected under a steady velocity field where the tracer is injected continuously into
the flow via source terms. Through a variational approach, they determined the optimal distribution
of the sources (see also Ref. [16], for related numerical results).

Here we address the finite-time mixing of passive tracers advected by fully unsteady velocity
fields. Specifically, we seek the optimal initial condition f that leads to the most homogeneous
mixture after a given finite time. To the best of our knowledge, a rigorous method for determining
this optimal initial condition is missing.

Problem (Q) can, in principle, be formulated and solved as an infinite-dimensional optimization
problem, where the optimal initial condition coincides with the minimizer of an appropriate cost
functional. Such minimizers are typically obtained by iterative methods of adjoint-based optimization
[17,18]. This is, however, computationally prohibitive since it requires the backward-time integration
of an adjoint partial differential equation (PDE) at each iteration.

Here we show that, under reasonable assumptions, the problem reduces to a finite-dimensional
one that can be readily solved at a relatively low computational cost. To obtain this finite-dimensional
reduction, we assume that tracer blobs smaller than a small prescribed length scale �ν are considered
completely mixed for all practical purposes. This assumption, which is made precise in Sec. III,
results in a natural Galerkin truncation of the Perron-Frobenius (PF) operator associated with the
advection equation (1). We show that the optimal initial condition f then coincides with a singular
vector of the truncated PF operator.

Our results complement the transfer operator-based methods for detecting finite-time coherent
sets in unsteady fluid flows (see Ref. [19]; see also Refs. [20–23]). Coherent sets refer to subsets of
the fluid which exhibit minimal deformation under advection and therefore inhibit efficient mixing
of tracers with the surrounding fluid. Our aim here is the opposite, namely, initially large-scale
structures that under advection deform mostly into small-scale filaments.

This paper is organized as follows. In Sec. II, we introduce some basic notation and definitions.
Section III contains our main results, and Sec. IV details their numerical implementation. In Sec. V
the results are demonstrated on two examples.

II. PRELIMINARIES

Consider an unsteady, incompressible velocity field u(x,t) defined over a bounded open subset
D ⊂ Rd where d = 2 or d = 3 for two- and three-dimensional flows, respectively. The trajectories
x(t ; t0,x0) of the fluid particles satisfy the ordinary differential equation

ẋ = u(x,t), t ∈ R, (2)

where x(t ; t0,x0) denotes the time-t position of the particle starting from the initial position x0 at time
t0. If the velocity field is sufficiently smooth, there exists a two-parameter family of homeomorphisms
ϕt

s (the flow map) such that x(t ; s,x0) = ϕt
s(x0) for all times t and s. As our interest here is in finite-time

mixing, we restrict our attention to a prescribed finite time interval [t0,t0 + T ] of interest. The flow
map ϕ

t0+T
t0 takes the initial position x0 of a fluid particle at time t0 to its final position at time t0 + T .

Since the finite time interval is fixed, we drop the dependence of the flow map on t0 and t0 + T , and
write ϕ for notational simplicity.

Let ρ(x,t) denote the concentration of a passive tracer, i.e., ρ satisfies equation (1). Since the
passive tracer is conserved along fluid trajectories, we have

ρ(x,t0 + T ) = ρ(ϕ−1(x),t0) = f ◦ ϕ−1(x), (3)
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Available scales Mixed scales

. . .

Intermediate scales

FIG. 1. An illustration of the initially available scales (larger than �I ) and the mixed scales (smaller than �ν).

for all x ∈ D. Note that since the flow map is a homeomorphisms, the inverse ϕ−1 is well-defined.
Equation (3) motivates the definition of the Perron-Frobenius (PF) operator.

Definition 1 (Perron-Frobenius operator). The Perron-Frobenius operator associated with the
flow map ϕ : D → D is the linear transformation P : L2(D) → L2(D) such that, for all f ∈ L2(D),

(Pf )(x) = f ◦ ϕ−1(x), ∀x ∈ D. (4)

The evolution of passive tracers can be described by the action of the PF operator on their initial
conditions. More specifically, for the passive tracer ρ described above, we have

ρ(x,t0 + T ) = (Pf )(x), (5)

for all x ∈ D [cf. Eq. (3)].
We point out that there is a more general definition of the PF operator applicable to noninvertible

flows (see Definition 3.2.3 of Lasota and Mackey [24]). In the special case where the flow map
ϕ is invertible and volume-preserving, the general definition is equivalent to Definition 1 above
(Corollary 3.2.1 in Ref. [24]; see also Ref. [25]).

For incompressible flow, the PF operator is a unitary transformation with respect to the L2(D)
inner product 〈·,·〉L2 . As a consequence, the L2 norm ‖ρ(·,t)‖L2 of the tracer remains invariant under
advection. Furthermore, the spatial average of the tracer is an invariant. Without loss of generality,
one can assume that this spatial average vanishes,

∫
D ρ(x,t) dx = 0 [9].

There have been several attempts to detect coherent structures in unsteady fluid flows
using approximations of the PF operator [21,22,26]. Froyland [19] puts these approaches on a
mathematically rigorous basis by composing the PF operator with diffusion operators. The resulting
diffusive PF operator is compact and has a well-defined singular value decomposition (SVD).
Froyland [19] shows that a singular vector, corresponding to the largest nonunit singular value of
the diffusive PF operator, can reveal minimally dispersive subsets of the fluid that remain coherent
and thereby inhibit mixing (see also Ref. [27]). Our goal here, however, is the opposite as we seek
passive tracer initial conditions that mix most efficiently with their surrounding fluid.

III. OPTIMAL INITIAL CONDITIONS

A. Physical considerations

Given an initial tracer distribution, a reasonable mixer will generically deform the tracer through
stretching and folding of material elements such that, over time, it develops ever smaller length scales.
It is, therefore, desirable to release the tracer initially into smallest possible scales. In practice, the
initially available range of scales into which the tracer may be released is limited to relatively large
scales. We denote this large length-scale limit by �I (see Fig. 1, for an illustration). It is left then
to the fluid flow to transform the initially large-scale blobs of tracer to small filaments through a
stretch-and-fold mechanism.

On the other hand, we assume that there is a small length scale threshold �ν � �I , under which
the tracer is considered, for all practical purposes, completely mixed. An efficient mixer, therefore,
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transfers the tracer distribution from large, initially available scales � � �I to the mixed scales
� < �ν .

B. Mathematical formulation

In order to make the above statements precise, we consider a set of functions {φj }j�1 forming a
complete, orthonormal basis for the space of square integrable functions L2(D). That is, 〈φi,φj 〉L2 =
δij and for any f ∈ L2(D) there are constants αj ∈ R such that limk→∞ ‖f − ∑k

j=1 αjφj‖L2 = 0.
We also assume that there is a length scale �j associated to each function φj , and that they are

ordered such that the sequence (�1,�2, . . . ) is decreasing. In other words, the length scale associated
with the function φj decreases as j increases. Such a basis can be taken, for instance, to be Fourier
modes or wavelets [28].

With this basis, we can mathematically model the subspace of initial conditions VI . The subspace
VI consists of all scalar functions f whose smallest length scale is larger than or equal to �I . Since
the basis {φj }j�1 is ordered, there is a positive integer n such that

VI = span{φ1,φ2, . . . ,φn} = {Initially available length scales � � �I }. (6)

The subspace of unmixed length scales Vν can be modeled similarly using a basis {ψi}i�1 for
L2(D). We assume that this basis is also orthonormal, complete, and associated with a decreasing
sequence of length scales. The subspace Vν consists of all scalar functions whose smallest length
scale is larger than or equal to the unmixed length scale �ν . Therefore, there is N  n such that

Vν = span{ψ1,ψ2, . . . ,ψN } = {Unmixed length scales � � �ν}. (7)

Note that the bases {ψi}i�1 and {φi}i�1 can be taken to be identical, but this is not necessary here.
We denote the orthogonal complement of Vν by V ⊥

ν . In terms of the basis functions, we have

V ⊥
ν = span{ψN+1,ψN+2, . . . } = {Mixed length scales � < �ν}, (8)

where the overline denotes closure in the L2 topology. The space V ⊥
ν consists of functions that

contain only the mixed scales, that is, scales smaller than �ν (see Fig. 1).

C. Main result

Given an initial condition f ∈ VI for the tracer, its advected image Pf ∈ L2 at the final time can
potentially contain all length scales �j [29]. The flow redistributes the “energy” budget of the tracer
among various scales in such a way that the L2 norm is conserved:

‖f ‖2
L2 = ‖Pf ‖2

L2 =
N∑

i=1

|〈Pf,ψi〉L2 |2︸ ︷︷ ︸
unmixed

+
∞∑

i=N+1

|〈Pf,ψi〉L2 |2︸ ︷︷ ︸
mixed

. (9)

A tracer is better mixed if more of its energy budget is transfered to the mixed scales � < �ν .
Therefore, we seek optimal initial conditions f ∈ VI such that the energy budget of its image Pf is
mostly stored in the mixed scales, maximizing

∑∞
i=N+1 |〈Pf,ψi〉|2. To make these statements more

precise, we use the following Galerkin truncation of the PF operator.
Definition 2 (Truncated Perron-Frobenius operator). We define the truncated PF operator Pp :

VI → Vν as the linear map Pp = �N ◦ P , where �N is the orthogonal projection onto the N -
dimensional subspace Vν . We also define the remainder operator P⊥

p : VI → V ⊥
ν as P⊥

p = P − Pp.
It follows from Parseval’s identity that ‖Pf ‖2

L2 = ‖Ppf ‖2
L2 + ‖P⊥

p f ‖2
L2 [see Eq. (9)]. The

quantity ‖Ppf ‖2
L2 represents the portion of the energy budget of the tracer that remains unmixed

after advection to the final time t0 + T . The quantity ‖P⊥
p f ‖2

L2 , on the other hand, represents the
portion of the tracer that is completely mixed. We, therefore, seek optimal initial conditions fopt ∈ VI

that maximize the mixed energy budget ‖P⊥
p f ‖2

L2 .
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Remark 1. Galerkin truncations have been used before to approximate the PF operator [20,30–33].
Williams et al. [23], for instance, use a truncation similar to Pp in order to approximate the
PF operator from limited amounts of measurement data. Our truncation, in contrast, is not an
approximation of the full PF operator (in fact, Pp is far from P). Instead, the truncation Pp followed
naturally from the physical assumption that length scales � < �ν are completely mixed. To evaluate
this truncation, one still needs to utilize the full PF operator P [see Eq. (11) below].

Since the truncated PF operator Pp is a linear transformation between finite-dimensional vector
spaces VI and Vν , it can be represented by a matrix Pp ∈ RN×n. More specifically, for any f ∈ VI ,
there are scalars {α1, . . . ,αn} and {β1, . . . ,βN } such that

f =
n∑

j=1

αjφj and Ppf =
N∑

i=1

βiψi. (10)

The matrix Pp maps ααα = (α1, . . . ,αn)� ∈ Rn into βββ = (β1, . . . ,βN )� ∈ RN , that is βββ = Pp ααα. It
follows from elementary linear algebra that the entries [Pp]ij of the matrix Pp are given by

[Pp]ij = 〈Pφj ,ψi〉L2 , i ∈ {1,2, . . . ,N}, j ∈ {1,2, . . . ,n}. (11)

With this prelude, we can now state our main result.
Theorem 1. Consider the function spaces VI and Vν and their associated truncated PF operator

defined above. The solution of

arg max ‖P⊥
p f ‖L2 ,

with the maximum taken over all f ∈ VI with ‖f ‖L2 = 1, is given by fopt = ∑n
j=1 αjφj , where

ααα = (α1,α2, . . . ,αn)� is a right singular vector of the truncated PF matrix (11) corresponding to its
smallest singular value.

Proof. Since ‖P⊥
p f ‖2

L2 = ‖Pf ‖2
L2 − ‖Ppf ‖2

L2 = 1 − ‖Ppf ‖2
L2 , maximizing ‖P⊥

p f ‖2
L2 is equiv-

alent to minimizing ‖Ppf ‖2. Since f belongs to the subspace VI , the initial condition f and its
image Ppf can be expressed by the series (10) with βββ = Pp ααα. Denoting the standard Euclidean
norm by | · |, we have |ααα|2 = ‖f ‖2

L2 = 1 and |βββ|2 = |Pp ααα|2 = ‖Ppf ‖2
L2 . Therefore,

min
f ∈VI ,‖f ‖=1

‖Ppf ‖L2 = min
|ααα|=1

|Pp ααα|. (12)

The minimum on the right-hand side is well known to coincide with the smallest singular value of
the matrix Pp [34]. The minimum is attained at the corresponding right singular vector of the matrix
Pp. This completes the proof.

Once the PF matrix Pp is formed, the evaluation of the optimal initial condition fopt, from the
above theorem, is straightforward. We point out that, if the matrix Pp is not full-rank, there are initial
conditions f of the form (10) with |ααα| = 1, such that |Pp ααα| = 0. Such initial conditions result in
“perfect mixing” since their advected image Pf belongs entirely to the mixed scales � < �ν , i.e.,
Pf ∈ V ⊥

ν . In the examples studied in Sec. V, such perfect finite-time mixing was not observed.

IV. NUMERICAL IMPLEMENTATION

Numerical computation of the optimal initial condition fopt relies on the scale-dependent bases
{φi}i�1 and {ψi}i�1. For completeness, we discuss two such bases: the Fourier basis and the Haar
wavelet basis. Since the examples considered in Sec. V below are defined on equilateral two-
dimensional domains, D = [0,L] × [0,L], we focus on this special case. The generalization to the
rectangular domain and to the three-dimensional case is straightforward.

A. Fourier basis

For periodic boundary conditions, it is natural to use the Fourier basis to define the spaces VI and
Vν . The orthonormal Fourier basis associated with the two-dimensional domain D = [0,L] × [0,L]
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consists of functions (1/L)exp[i(2π/L)(k · x)] where k ∈ Z2 denotes the wave vector. The length
scale associated to each Fourier mode is inversely proportional to the wave number, |k| ∼ �−1. We
take the space of available initial scalar fields to be the functions whose Fourier modes contain at
most a prescribed wave number kI ∼ �−1

I :

VI = span

{
1

L
exp

[
i
2π

L
(k · x)

]
: k = (kx,ky) ∈ Z2,|kx | � kI ,|ky | � kI

}
. (13)

Similarly, the space of unmixed scales Vν is the functions whose Fourier modes contain at most a
prescribed wave number kν ∼ �−1

ν  kI :

Vν = span

{
1

L
exp

[
i
2π

L
(k · x)

]
: k = (kx,ky) ∈ Z2,|kx | � kν,|ky | � kν

}
. (14)

More generally, one could define the space VI (and similarly Vν) with independent upper bounds
kIx

and kIy
on the wave numbers |kx | and |ky |, respectively. Since the domain is equilateral, and for

simplicity, we choose the same upper bounds in both directions, kI = kIx
= kIy

.
Since the tracer concentration is real-valued, the complex conjugate basis functions in VI

and Vν are redundant. Also, the mode with k = 0 (corresponding to constant functions) is
unnecessary since we assumed that the tracer has zero mean. Excluding these redundant functions,
the effective dimensions of the vector spaces VI and Vν are n = dim VI = 2kI (kI + 1) and
N = dim Vν = 2kν(kν + 1), respectively.

B. Wavelet basis

While the above Fourier basis is a convenient choice, it restricts its applicability to the periodic
boundary conditions. More general boundary conditions can be handled with an alternative basis,
such as Haar wavelets. Such wavelet bases have the added advantage that they can be localized
in space in addition to scale. This property renders wavelets particularly attractive in applications
where the tracer can only be released into a subset of the fluid domain D due to geometric or design
constraints (contrast this with the global nature of the Fourier basis).

Here we consider the Haar wavelet basis. For completeness, we briefly review the construction of
this basis in two dimensions. Denote the one-dimensional Haar scaling function with s(x) = 1[0,1)(x)
and the corresponding wavelet with h(x) = 1[0,1/2)(x) − 1[1/2,1)(x) where1A is the indicator function
of the set A. By dilations and translations, we obtain

sj,i(x) = 2j/2s

(
2j x

L
− i

)
, j � 0, i ∈ {0,1, . . . ,2j − 1}, (15a)

hj,i(x) = 2j/2h

(
2j x

L
− i

)
, j � 0, i ∈ {0,1, . . . ,2j − 1}, (15b)

where 0 � x � L for a domain of size L. The collection of the wavelets hj,i forms an orthogonal
basis for mean-zero functions in L2([0,L]) [35]. The integer j determines the size of the support of
hj,i (or sj,i) which is L × 2−j . Since the wavelets with larger j resolve finer structures (or smaller
length scales), the integer j is referred to as the scale of the wavelet. The integer i, on the other
hand, introduces a translation in the support of each wavelet, introducing a space dependence at each
scale j .

The functions sj,i and hj,i serve as the building blocks of multidimensional wavelet bases
[35,36]. For instance, a complete orthonormal basis for mean-zero functions in L2(D), with D =
[0,L] × [0,L], is formed by the set of functions{

w
(μ)
j,ix ,iy

: 1 � μ � 3, 0 � j, 0 � ix � 2j − 1, 0 � iy � 2j − 1
}
, (16)

054601-6



OPTIMAL INITIAL CONDITION OF PASSIVE TRACERS . . .

FIG. 2. Three examples of the wavelet functions (17) with j = 2, ix = iy = 1. The domain is D =
[0,1] × [0,1].

where

w
(1)
j,ix ,iy

(x,y) = 1

L
hj,ix (x)sj,iy (y), (17a)

w
(2)
j,ix ,iy

(x,y) = 1

L
sj,ix (x)hj,iy (y), (17b)

w
(3)
j,ix ,iy

(x,y) = 1

L
hj,ix (x)hj,iy (y). (17c)

The prefactor 1/L ensures that each basis function is of unit L2 norm. The integer j determines
the scale in both x and y directions, while the integers ix and iy introduce the corresponding
translations. Figure 2 shows three examples of the two-dimensional wavelet functions (17) with
j = 2. The construction of two-dimensional wavelet bases from one-dimensional wavelets is not
unique. For an alternative wavelet basis see, e.g., Chapter 10 of Ref. [35].

Using the wavelet basis (16), we define the subspace of initial conditions VI as

VI = span
{
w

(μ)
j,ix ,iy

: 1 � μ � 3, 0 � j � JI − 1, 0 � ix � 2j − 1, 0 � iy � 2j − 1
}
, (18)

where the integer JI prescribes the initially available length scales. Roughly speaking, the wavelet
subspace VI contains tracer blobs of size �I = L × 2−JI or larger. Similarly, we define the subspace
of unmixed length scales by

Vν = span
{
w

(μ)
j,ix ,iy

: 1 � μ � 3, 0 � j � Jν − 1, 0 � ix � 2j − 1, 0 � iy � 2j − 1
}
, (19)

containing the unmixed tracer blobs of size �ν = L × 2−Jν or larger. For given positive integers JI

and Jν , we have n = dim VI = 4JI − 1 and N = dim Vν = 4Jν − 1.
Recall that the basis functions φi spanning the domain VI of the truncated PF operator Pp need

not to be identical to the basis functions ψi spanning its range Vν . As a result, the Fourier-based
subspaces (13) and (14) can be used in conjunction with the wavelet-based subspaces (18) and (19).
In the following, we consider examples with both Fourier-based and wavelet-based subspaces (13)
and (18) for defining the domain VI . For the range Vν , however, we consider only the Fourier-based
subspace (14) in order to achieve speedup in the computations by taking advantage of the fast Fourier
transform.
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Chaotic Region

KAM Region

FIG. 3. Two hundred iterations of the sine map (21) with τ = 0.25 starting from 16 × 16 initial conditions
distributed uniformly over the domain [0,1] × [0,1]. The domain is periodic in both directions.

Once the choice of bases is made, the truncated PF matrix (11) can be computed by evaluating
the integrals,

[Pp]ij = 〈Pφj ,ψi〉L2 :=
∫
D

(Pφj )(x)[ψi(x)]∗ dx, (20)

where ∗ denotes the complex conjugation. We approximate this integral using the standard trapezoidal
rule [37]. To ensure the accuracy of the approximation, the results reported in Sec. V are computed
using a dense uniform gridG of 2048 × 2048 collocation points over the domainD = [0,L] × [0,L].
The terms Pφj are computed from the definition of the PF operator (Definition 1), i.e., (Pφj )(x0) =
φj (ϕ−1(x0)) for any x0 ∈ G. This brute-force approximation of the PF operator is adequate for
the forthcoming two-dimensional examples. More parsimonious methods for the approximation of
the PF operator have been developed that can be used for three-dimensional flow and complex
geometries (see, e.g., the GAIO software developed by Dellnitz et al. [38] and the mapping method
[39–41]).

V. EXAMPLES AND DISCUSSION

A. A time-periodic model

As the first example, we consider the time-periodic sine flow [42,43]. This model is simple enough
to unambiguously demonstrate our results, yet it can exhibit complex dynamics with simultaneous
presence of chaotic mixing and coherent vortices.

The sine flow has a spatially sinusoidal velocity field on the domain (x,y) ∈ [0,1] × [0,1] with
periodic boundary conditions. The temporal period of the flow is 2τ for some τ > 0. During the first
τ time units, the velocity field is u = (0, sin(2πx))� and switches instantly to u = (sin(2πy),0)�
for the second τ time units. This process repeats iteratively.

The sine flow generates a reversible map T that, over one period, maps points (x,y) to T (x,y).
The inverse of the map T is given explicitly by [4]

T −1 :

(
x

y

)
�→

(
x − τ sin(2πy)

y − τ sin{2π [x − τ sin(2πy)]}
)

mod 1. (21)

Figure 3 shows 200 iterations of this map with τ = 0.25 launched from a uniform grid of initial
conditions. The map T −1 has two hyperbolic fixed points located at (0,0) and (0.5,0.5) whose tangle
of stable and unstable manifolds creates a chaotic mixing region. In addition, the map has two elliptic
fixed points located at (0.5,0) and (0,0.5). These elliptic fixed points are surrounded by invariant
Kolmogorov–Arnold-Moser (KAM) tori with quasiperiodic motion that inhibit mixing [44].
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FIG. 4. The optimal initial conditions fopt ∈ VI for the sine map, with VI being the Fourier-based subspace
defined in Eq. (13). Four optimal initial conditions with kI = 1, 2, 3, and 4 are shown in the top panel. The
range of the truncated PF operator Pp is the Fourier-based subspace (14) with kν = 256. The bottom panel
shows their corresponding advected images Pfopt under 200 iterations of the sine map. All figures show the
entire domain D = [0,1] × [0,1].

It is known that mixing is more efficient around the hyperbolic fixed points due to their tangle of
stable and unstable manifolds [1]. The KAM regions, in contrast, form islands of coherent motion
that inhibit efficient mixing of passive tracers. Therefore, it is desirable to release the tracer blobs
around the hyperbolic fixed points, avoiding the KAM region. Here we examine whether the optimal
initial condition fopt given by Theorem 1 agrees with this intuitive assessment.

For the finite-time analysis, we consider the flow under 200 iterations of the sine map, i.e.,
ϕ = T 200. First, we consider the Fourier-based initial subspace VI defined in Eq. (13). Figure 4
shows the optimal initial conditions obtained from Theorem 1 with kI = 1, 2, 3, and 4. For all
parameter values kI , the optimal initial condition consists of two prominent blobs centered at
the hyperbolic fixed points (0,0) and (0.5,0.5). This agrees with our expectation that around the
hyperbolic fixed point mixing is stronger. For kI = 1, however, only very large scales are available
for the distribution of the tracer blob, and therefore some intersection with the KAM region is
inevitable. This results in the islands of unmixed tracer blobs which are visible in the advected
image Pfopt (with kI = 1). As the number of available wave numbers kI (or equivalently, available
initial length scales) increases, the blobs become more concentrated at the hyperbolic fixed points,
hence reducing the intersection with the KAM regions.

Even for kI = 4, the optimal initial condition has very small but nonzero concentration in the
KAM regions. This is due to the global nature of the Fourier modes which inhibits the perfect
localization around the hyperbolic fixed points. The wavelet-bases subspace (18) does not suffer
from this drawback. Figure 5, for instance, shows three optimal initial conditions in this wavelet-based
subspace. For JI = 1, where only the largest scales are available, intersection with the KAM region
is inevitable (similar to the case of kI = 1 in Fig. 4). As the smaller scales become available, the
optimal initial condition fopt concentrates around the hyperbolic fixed points with no concentration
at the KAM regions.
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FIG. 5. The optimal initial conditions fopt ∈ VI for the sine map, with VI being the wavelet-based subspace
defined in Eq. (18). Three optimal initial conditions with JI = 1, 2, 3 are shown in the top panel. The bottom
panel shows their corresponding advected images Pfopt under 200 iterations of the sine map. The range of the
truncated PF operator Pp is the Fourier-based subspace (14) with kν = 256. All figures show the entire domain
D = [0,1] × [0,1].

The results in Figs. 4 and 5 are computed using the Fourier-based subspace Vν with kν = 256.
To ensure the insensitivity of the results to perturbations, we recomputed them by varying the cutoff
wave number in the interval 250 � kν � 260 and obtained almost identical optimal initial conditions.

B. Two-dimensional turbulence

As the second example, we consider a fully unsteady flow obtained from a direct numerical
simulation of the two-dimensional Navier-Stokes equation,

∂tu + u · ∇∇∇u = −∇∇∇p + ν�u + F, ∇∇∇ · u = 0, (22)

with the dimensionless viscosity ν = 10−5 and a band-limited stochastic forcing F. The flow domain
is the box D = [0,2π ] × [0,2π ] with periodic boundary conditions. A standard pseudospectral code
with 2/3 dealiasing was used to numerically solve the Navier-Stokes equations (see Section 6.2 of
Ref. [45] for further computational details).

Starting from a random-phase initial condition, we numerically integrate the Navier-Stokes
equation. After 1000 time units the flow has reached a statistically steady turbulent state with
Reynolds number 4.1 × 103. We set this time as the initial time t0 for the mixing analysis. The final
time instance is set to t0 + T with T = 100. Figures 6(a) and 6(b) show the vorticity fields at these
initial and final times.
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FIG. 6. (a) The vorticity field at the initial time t0. (b) The vorticity field at the final time t0 + T . (c) The
forward-time FTLE field corresponding to the time interval [t0,t0 + T ]. Here T is 100 time units. All panels
show the entire domain D = [0,2π ] × [0,2π ].

As is typical of two-dimensional turbulence [46], the flow contains several coherent vortices that
exhibit minimal material deformation over the time interval [t0,t0 + T ]. These coherent vortices are
signaled by the islands of small finite-time Lyapunov exponent (FTLE) shown in Fig. 6(c). The
flow outside the coherent vortices is mostly chaotic, dominated by the stretching and folding of
material lines. The FTLE field is computed as log[λ(x)]/(2T ) for x ∈ D, with λ(x) being the largest
eigenvalue of the Cauchy-Green strain tensor [dϕ(x)]� dϕ(x), and dϕ denoting the Jacobian of the
flow map [47].

Next we compute the optimal initial conditions fopt. Unlike the sine map, the preimages ϕ−1(x0)
are not explicitly known here. We evaluate ϕ−1(x0) by numerically integrating the ODE (2) backwards
in time from the final time t0 + T to the initial time t0, for each initial condition x0 ∈ G. This numerical
integration is carried out by the fifth-order Runge-Kutta scheme of Ref. [48]. Since the velocity field
u is stored on a discrete spatiotemporal grid, it needs to be interpolated for the particle advection.
Here we use cubic splines for the spatial interpolation of the velocity field together with a linear
interpolation in time.

Figure 7 shows the optimal initial tracer patterns fopt for kI = 1, 2, 3, and 4, which belong to the
corresponding Fourier-based subspaces VI as defined in Eq. (13). As opposed to the simple model
considered in Sec. V A, the optimal tracer patterns here have fairly complicated structures. This is
to be expected as the turbulent flow itself has a complex spatiotemporal structure.

Ideally, the tracer should concentrate outside the coherent vortices to achieve better mixing.
Similar to the sine flow, for kI = 1, where only the very large scales are available for the release
of the tracer, there is some inevitable overlap between the coherent vortices and the tracer. This
results in the visibly unmixed blobs in the advected tracers Pfopt shown in the lower panel of Fig. 7.
Theorem 1, however, guarantees that the optimal initial condition fopt is such that the unmixed blobs
are minimal. As smaller scales become available (kI > 1), the intersection of the high initial tracer
concentration and the coherent vortices becomes smaller, leading to a more homogeneous mixture
after advection to the final time t0 + T . As in the case of the sine flow, the results are insensitive to
small perturbations to the mixed wave number kν .

Because of the flow complexity, the mixture qualities are not readily discernible from Fig. 7. We
therefore quantify the mixture qualities by computing the mix norm of the advected tracers proposed
by Shaw et al. [49]. This mix norm is the Sobolev H−1 norm,

‖ρ‖H−1 =
√∑

k �=0

|ρ̂(k)|2/|k|2, (23)
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FIG. 7. Optimal initial tracers fopt ∈ VI (upper panel) in the turbulent flow with kI = 1, 2, 3, and 4. The
set VI is the Fourier-based subspace defined in Eq. (13). The corresponding advected images Pfopt at the final
time t0 + T are shown in the lower panel. In all four cases, the mixed wave number is kν = 256 [see Eq. (14)].
All panels show the entire domain D = [0,2π ] × [0,2π ].

where the hat sign denotes the Fourier transform. Mathew et al. [5] proposed the alternative Sobolev
norm H−1/2 for quantifying the mixture quality. The motivation for using such Sobolev norms is
that the weights |k|−a (with a > 0) penalize the tracer concentration at small scales (or equivalently
large k). As a result, more homogeneous mixtures are expected to have smaller mix norms.

The mix norms ‖Pfopt‖H−1 are shown in Fig. 8 for the optimal initial conditions fopt ∈ VI

with 1 � kI � 6. As kI increases, more homogeneous mixtures are obtained, as is also visible in
Fig. 7. For comparison, we also show the mix norm ‖Pf ‖H−1 for the nonoptimal initial conditions
f (x,y) = cos(kI x) cos(kI y)/π ∈ VI . The nonoptimal initial conditions result in a larger mix norm,
showing that they do not mix as well as the optimal initial conditions fopt do. Figure 9 shows the
optimal initial conditions found in the wavelet-based subspace (18). Their mix norms exhibit a
similar behavior as the one shown in Fig. 8.

1 2 3 4 5 6
kI

−1
I

10-2

M
ix

-n
or

m

FIG. 8. Red line (squares): The mix norm ‖Pfopt‖H−1 for the optimal initial concentrations fopt ∈ VI . The
optimal initial conditions for kI = 1, 2, 3, and 4 are shown in Fig. 7. Blue line (circles): The mix norm ‖Pf ‖H−1

for the initial concentrations f (x,y) = cos(kI x) cos(kI y)/π .
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FIG. 9. Optimal initial tracers fopt ∈ VI (upper panel) in the turbulent flow with JI = 1,2, and 3, where
VI is the wavelet-based subspace (18). Their corresponding advected images Pfopt at the final time t0 + T

are shown in the lower panel. The mixed wave number is kν = 256 [see Eq. (14)]. All panels show the entire
domain D = [0,2π ] × [0,2π ].

VI. CONCLUDING REMARKS

Optimal stirring protocols seek to enhance the mixing efficiency of fluid flow by altering the
velocity field in a controlled manner. The efficiency of these protocols, however, is limited by design
constraints and fundamental laws [9]. Moreover, in many problems such as geophysical flows, we
have virtually no control over the fluid velocity field. For a given fluid flow, however, the final
mixture quality also depends on the initial configuration of the tracer.

Here we proposed a rigorous framework for determining the optimal initial tracer concentration
to achieve maximal mixing under finite-time passive advection. We showed that, under reasonable
assumptions, the optimal initial condition is the solution of a finite-dimensional optimization
problem. More specifically, the optimal initial condition coincides with a singular vector of a
truncated Perron-Frobenius (PF) operator (Theorem 1). This truncation is not an approximation of
the infinite-dimensional PF operator; rather, it follows naturally from our simplifying assumption
that the tracer blobs smaller than a prescribed critical length scale �ν are completely mixed.

Theorem 1 indicates the relevance of the singular vectors of the truncated PF operator instead of
its eigenmodes. This is due to the finite-time nature of the result: While in the asymptotic limit the
eigenmodes corresponding to the dominant eigenvalues prevail [31], transient mixing is governed by
the singular vectors. The relevance of the singular vectors to finite-time mixing has been recognized
in coherent structure detection [19,23,50], and is further underscored by our results here.
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We discussed two numerical implementations of the optimization problem using Fourier modes
and Haar wavelets. While the Fourier modes are convenient for the spatially periodic flows considered
here, the wavelets are more suitable for handing more complicated geometries and boundary
conditions. Wavelets also allow for optimal initial conditions that are local in both space and
scale. The space localization is crucial in applications where the tracer can be released only into a
subset of the flow domain.

We restricted our attention here to ideal passive tracers. Future work will expand the framework
to account for diffusion and the presence of sinks and sources. Diffusion, in particular, dictates a
diffusive length scale �ν for mixed blobs which, in the absence of diffusion, was prescribed here in
an ad hoc manner.
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