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Direct numerical simulations are used to study the drag reduction by superhydrophobic
surfaces in laminar channel flow. Resolved multiphase simulations using the volume of fluid
methodology are performed to study the effects of groove geometry, interface shear rate,
and meniscus penetration independently. An analytical solution for the flow in a laminar
channel with a grooved surface with a gas pocket within is obtained. The solution accounts
for both the groove geometry and the trapped fluid properties, and shows good agreement
with simulation results. The solution is used to propose a scaling law that collapses data
across fully wetted to fully gas-filled regimes. The trapped gas is simulated as both flat and
meniscal interfaces. The drag reduction initially increases with interface deflection into the
groove and then decreases for large deflections as the interface velocity approaches zero
due to the proximity to the bottom of the groove.
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I. INTRODUCTION

Superhydrophobicity is the property wherein surfaces can maintain large contact angles for
sessile drops, thereby exhibiting low wettability; such a state is called the Cassie-Baxter state [1].
The superhydrophobic effect has been attributed to both surface chemistry and roughness. The
trapped gas layer has been hypothesized to lower the shear at the interface, thus reducing drag
on the surface. This observation has inspired several investigators to study such surfaces for their
application to drag reduction in both laminar and turbulent flows (see recent reviews in [2–5] and
references therein).

The most common assumption in theoretical analysis and simulations (e.g., [6–12]) in the
superhydrophobic surfaces (SHSs) context is that the gas-liquid interface is flat and shear free. Early
theoretical work by Philip [13,14] obtained the solution of a laminar channel flow with alternating
no-slip and no-shear boundary conditions on one wall, using conformal mapping. These results
have been widely applied to superhydrophobic surfaces. Lauga and Stone [15] further extended
this solution to pipe flow. The effect of orientation of the strips on the overall drag reduction was
investigated, and the effective slip length for longitudinal strips has been shown to be twice that for
transverse strips with the same coverage ratio. More importantly, it is proposed that the effective slip
length is shear dependent. And the shear-independent slip length can be a limit of more general slip
behavior. Another extension of [13] is the analytical solution by [16], which contains the viscosity
ratio of two fluids by assuming an approximate local slip length as a function of the groove aspect
ratio at the interface. Belyaev and Vinogradova [17] described the interface with a prescribed constant
local slip length in order to apply the “gas cushion” model [18]. Nizkaya et al. [19] generalized
this model to include the viscosity ratio and the geometry of the surface using the operator method.
Busse et al. [20] took the dissipation of the air-water layer into consideration, but neglected the
geometric features of the surface. The dissipation at the interface is included in [21] by coupling
between the liquid channel flow and trapped gas pocket. The interface is assumed to be flat and
the gas to flow as a convection cell. This coupled liquid-gas prediction lies between the zero shear
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model and the experiments. One conjecture of the discrepancy between the experimental data and
coupled liquid-gas model is that the shape of the meniscus is not flat. In the comparison of the slip
length between the molecular-dynamics simulation and a semianalytical solution of SHSs in strips,
Cottin-Bizonne et al. [22] also have suggested that the shape of the interface is important when
normal pressure is increased.

The meniscus shape has been the subject of many recent studies. Sbragaglia and Prosperetti
[23] used perturbation methods to calculate the correction to the effective slip length due to small
interface curvature. Extensions of this work to large interface curvature regime include [24], who
used a finite element solver to solve for the effective slip length; and [25] who used conformal
mapping. Reference [26] used conformal mapping to study transverse flow passing an array of
bubbles. However, these three studies assumed the interface to be shear free, therefore resulting
in a positive monotonic increase of the slip length with respect to increasing contact angle (from
protruding out of the gas to into the gas). The same trend is found in the numerical results in [7].
This trend is inconsistent with the molecular-dynamics simulations conducted by [22,27], showing
that there is a preferential normal pressure or contact angle (protruding into the gas) to achieve an
optimum slip length between the normal and the superhydrophobic state. Similarly, in the study
of the dynamical property of the interface in [28], it is found that the effective slip length is very
sensitive to the penetration of the meniscus into the groove. Such a nonmonotonic trend is also
observed in the present paper.

The sustainability of the air pocket is another important issue. In an experiment of a turbulent
Taylor-Couette flow with SHSs by Rosenberg et al. [29], patches of the air-impregnated surface
failed, yielding a Wenzel state. The liquid-infused surface with a viscosity ratio of μext/μint ∼ O(1)
performed better than the air-infused interface. The drainage problem of liquid-infused surface has
been studied in [30]. One main reason for the failure of the air pocket is that it comes in contact
with the bottom of the groove [31]. Such a state is described as a criterion of the meniscus radius
Rcr ∼ w2/b (w and b are the cavity width and depth respectively) in [32,33]. In addition to this
geometrical threshold, the balance of force between surface tension and the pressure across the
interface is studied in [34–36]. The maximum pressure to sustain the interface for a grooved surface
is given by

�p � −2σ cos θ/[(w + d)φ], (1)

where σ is the surface tension of a liquid, θ is the contact angle of the liquid on the solid surface, φg

is the gas fraction, and (w + d) is the groove spacing.
When the interface fails, water penetrates into the surface, and the grooves become fully wetted.

Kamrin et al. [37] have derived a second-order accurate matrix to describe the effective slip boundary
condition of a laminar shear flow at the mean surface height of an arbitrary periodic surface. Wang
[38] solved the shear flow over longitudinal or transverse grooves using eigenfunction expansions and
matching. [39] studied the partially wetted grooves problem but assuming an infinite slip boundary
condition at the interface. Here, we study the general problem of partially filled grooves using theory
and simulations. The solution of the effective slip length can be used a priori as a scaling factor to
predict the drag reduction. We use the scaling law of effective slip length predicted by [40] with
respect to interface coverage ratio to validate our result.

In this work, we explore the drag reduction features of SHSs using direct numerical simulations
(DNSs) and volume of fluid (VOF) simulations. An analytically obtained scaling law for drag
reduction is proposed. The VOF simulation is used as a benchmark to conduct controlled studies
of two commonly omitted components: gas flow and penetration. In Sec. II B the VOF method is
validated against the experiment by Maynes et al. [21] and evaluates the effects of gas flow and
penetration of the interface. In Sec. III, an analytical solution is obtained that accounts for groove
geometry as well as properties of both fluids. The analytical solution is compared to the VOF
simulation and DNS results and used to develop a scaling law for the effective slip length which
collapses data across fully wetted to fully gas-filled regimes (Sec. III C). The effect of interface
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curvature is studied in Sec. IV by describing the interface with the Young-Laplace equation. The
conclusions of this work are summarized in Sec. V.

II. METHODOLOGY

A. Computational method

Direct numerical simulations (DNSs) are performed using a mass conserving VOF methodology
on structured grids to study the gas-liquid interface within a groove. The governing equations
are solved using the finite volume algorithm developed by Mahesh et al. [41] for solving the
incompressible Navier-Stokes equations on unstructured grids. The algorithm emphasizes discrete
kinetic energy conservation in the inviscid limit which enables it to simulate high-Reynolds number
flows in complex geometries without adding numerical dissipation. The solution is advanced using
a predictor-corrector methodology where the velocities are first predicted using the momentum
equation alone, and then corrected using the pressure gradient obtained from the Poisson equation
yielded by the continuity equation. The time advancement is implicit and uses the Crank-Nicholson
discretization with a linearization of the convection terms.

The volume fraction is represented by a color function c to keep track of two different fluids.
The function c varies between the constant value of 1 in a full cell to 0 in an empty cell, with an
intermediate value between 0 and 1 to define an interface cell. The volume of each fluid cell is
tracked in a two-step process for each time iteration: the reconstruction and advection steps. The
reconstruction step is based on a set of analytic relations proposed by [42]; given the volume fraction
in each cell, the reconstruction of the interface shape uses a local normal vector and a piecewise linear
interface calculation (PLIC) to approximate the interface shape. This step geometrically conserves
the volume in each cell and therefore conserves mass and prevents over- and undershoots in the
value of the color function, which ensures boundedness. The color function is then advected with the
fluid velocity field, while geometrically conserving the area using a directionally split flux scheme
to exchange the reference phase volume across the boundary of neighboring cells.

The governing equations are given by the color function material derivative, momentum, and
continuity equations:

∂c

∂t
+ uj

∂c

∂xj

= 0, (2)

∂ui

∂t
+ ∂

∂xj

(uiuj ) = − 1

ρ

∂p

∂xi

+ 1

ρ

∂

∂xj

[
μ

(
∂ui

∂xj

+ ∂uj

∂xi

)]
+ Fst,i + Ki, (3)

∂ui

∂xi

= 0. (4)

In Eq. (2) we have c as the color function that represents the fluid in each phase in the VOF
methodology, ui and xi are the ith component of the velocity and position vectors respectively. In
Eq. (3), p denotes pressure, ρ is density, and μ is viscosity of the fluid. The fluids are assumed to be
immiscible. Hence, the density and viscosity are evaluated as

ρ = ρ2 + (ρ1 − ρ2)c, (5)

μ = μ2 + (μ1 − μ2)c. (6)

Additionally in Eq. (3) we have Ki as the body force and Fst,i as the surface tension force, which is
modeled as a continuum surface force as proposed in [43]:

Fst,i = σκ
∂c

∂xi

, (7)
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FIG. 1. The channel geometry and groove configuration. (a) Grooved channel with meniscus interfaces
(cases M7, M12, and M25). Definition of the contact angle θ in this paper is shown on the right. (b) Fully
wetted grooved channel (cases F7, F12, and F25). (c) Grooved channel with flat interfaces (cases I7, I12,
and I25).

where σ is the surface tension constant, and κ is the curvature calculated using the height function
which has been shown to significantly reduce numerical errors that are associated with surface
tension. These errors are known as spurious currents [44]. The gradient of the color function is given
by ∂c

∂xi
and is representative of the surface normals. The gradient term in the surface tension force is

discretized in the same manner as the pressure gradient term in the projection step:

�t
∑
f

∂p

∂N
Af =

∑
f

v̂NAf + �tσκ
∑
f

∂c

∂N
Af , (8)

where N denotes the outward normal of face with respect to the control volume, on which the
summation is carried out. This method of discretization ensures proper pressure jump recovery
across the interface.

In a channel with smooth walls, the friction factor is f = f (Re) for laminar flow. As Fig. 1 shows
for a channel with SHSs, the independent variables are H, w, d, b, h, μgas/μliquid, ρgas/ρliquid,

Q̇liquid, σ, g, where H is the height of the channel, w is groove width, d is the distance
between the grooves, b is the groove depth, μr = μgas/μliquid is the liquid to gas viscosity ratio,
ρliquid/ρgas is the liquid to gas density ratio, Q̇liquid is the volume flow rate of the liquid, σ is
the surface tension of the gas-liquid interface, g is the gravitational acceleration. Nondimen-
sionalization yields the friction factor f = f [Re,μr,ρliquid/ρgas,w/(w + d),H/(w + d),h/b,

b/H,We,Bo], where Re = ρliquidU (w + d)/μliquid, We = ρliquidU
2(w + d)/σ, Bo = (ρliquid −

ρgas)g(w + d)2/σ, U = Q/A. The density and viscosity ratio are constants. The governing
parameters for a channel with SHS are the coverage ratio φ = w/(w + d), and the channel aspect
ratio H/(w + d). Accounting for groove geometry and interface surface tension introduces the
additional parameters above. Different models are simulated numerically to conduct a thorough
study of the factors that contribute to drag reduction. The simulation parameters are listed in Table
I. Case number prefixes “F,” “I,” and “M” represent fully wetted, interface, and meniscus studies.
The cross section configuration is shown in Fig. 1.

The simulations were performed at a constant liquid flow rate, which defines the drag reduction as

DR = Kno−slip − KSHS

Kno−slip
, (9)
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TABLE I. Simulation parameters. Case number prefixes F, I and M represent fully wetted, interface, and
meniscus studies. The depth of the groove is fixed at b/(w + d) = 0.625. Re = 4×10−4.

Case H/(w + d) φ h/b(%) Bo(×10−4) We(×10−3)

F7 1.88 1/4, 1/2, 3/4 n/a n/a n/a
Fully wetted

F12 3.1875 1/4, 1/2, 3/4 n/a n/a n/a
F25 6.25 1/4, 1/2, 3/4 n/a n/a n/a

Flat interface I7 1.88 1/4, 1/2, 3/4 28, 60, 90, 100 n/a n/a
I12 3.1875 1/4, 1/2, 3/4 28, 60, 90, 100 n/a n/a

Flat interface
I25 6.25 1/4, 1/2, 3/4 28, 60, 90, 100 n/a n/a
M7 1.88 1/2 n/a 2.22 5.56

Meniscus M12 3.1875 1/2 n/a 2.22 5.56
M25 6.25 1/2 n/a 2.22 5.56

where Kno−slip and KSHS are the body force applied to the no-slip or SHS channel respectively.
Periodic boundary conditions are imposed in the streamwise and spanwise directions. The grid size
is, e.g., for F7 Nx×Ny×Nz = 3×151×161 for the channel part, and Nx×Ny×Nz = 3×61×81 to
resolve the groove. Grid convergence studies were performed. Doubling the number of nodes in z

and y for the case F7 (φ = 1/2) changed the body force by only 0.02%. Similarly, for the VOF case
involving a flat or a meniscus interface, the grid size was refined until the drag reduction difference
was less than 1%.

B. VOF validation

In this section, the VOF solver is validated with the analytical solutions in [20] and the effect of
gas flow assumption is evaluated by simulating the experiment in [21]. After liquid penetration is
considered, the VOF solver shows good agreement with the experiment data.

1. Gas flow effect on interface shear

The effect of gas flow can be evaluated for canonical channel flow with liquid and gas phases
separated by a flat interface (Fig. 2). Two different assumptions can be made for the flow in the gas
layer, as has been discussed in [20]. The first assumption is that the same pressure gradient acts as
in the liquid layer (realized in experiment [45] by constant injection of gas). The second assumption
is enforcing the mass flow rate of the gas layer to be zero (realized in experiment by grooves with
capped ends to entrap the gas), which induced a reverse flow inside the gas layer. A third possibility
is zero pressure gradient in the gas layer, i.e., the gas layer is driven by the outside liquid layer,

FIG. 2. Schematic diagram of a fully developed laminar channel with stable gas-liquid interface. Flow
direction is from left to right. H is the height of the channel; h is the height of the gas layer; K is the body
force.
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FIG. 3. Comparison of the velocity profiles in a flat channel with a gas layer thickness ratio of (a) hr = 0.33
and (b) hr = 0.026. The viscosity ratio is μr = μgas/μliquid = 0.02. Symbols are the VOF simulations (© no
gas layer, � equal pressure gradient in both phases, � zero volume flow rate in gas layer). Solid line ( ) is
for the analytical solutions in [20]. Dashed line ( ) is the analytical solution in Eqs. (10) and (11).

therefore acting as a Couette flow. And the analytical solutions for u(y) in both phases are

uliquid = −y2

2
+ μr

2(μr + hr )
y + hr

2(μr + hr )
, (10)

ugas = 1

2(μr + hr )
(y + hr ), (11)

where μr = μgas/μliquid, hr = h/H is the normalized height of the gas, and velocities are normalized
by KH 2/μliquid.

Simulations were performed for two limiting values of gas layer height ratio, hr = h/H =
0.026 and 0.33 with constant flow rate and the two different gas flow assumptions. The velocity
profiles of VOF simulation agree with the analytical solutions obtained in [20] with the two gas layer
conditions. Examining Figs. 3(a) and 3(b), the main observable difference is the effect of gas flow on
the interface. When the gas layer is large, the gas layer assumptions show an obvious difference: the
pressure gradient assumption produces a Poiseuille flow component to the gas. However when the
layer is thin enough, the Couette flow assumption collapses with the pressure gradient assumption,
which suggests an approximate boundary condition to represent the gas-liquid interface:

dugas

dy
∼ ugas

h
, yielding

duliquid

dy
≈ μr

uliquid

hr

. (12)

This is accurate in a Couette type gas flow and also representative of a pressure driven gas flow when
the gas layer is thin. Note that one can rework Eqs. (2) and (3) in [19] and get the same expression.

Next, the experiment conducted in [21] was simulated by VOF numerically. In the experiment,
the channel has varying groove widths on the top and bottom walls. The drag reduction is quantified
in terms of the Darcy friction factor–Reynolds number product f Re as a function of groove widths
nondimensionalized by the total pitch length (sum of rib and cavity widths). A channel (H =
7.69, w + d = 4) flow with grooves (b = 2.5) on both walls was simulated by assuming three
different gas flow conditions: equal pressure gradient in both phases; zero volume flow rate inside
the groove; zero pressure gradient inside the groove. The gas was assumed to fill the entire groove
and the interface was flat. Inside the grooves, under different gas flow conditions, the gas behaves
differently as shown in Fig. 4. Similar to Fig. 2, under equal pressure gradient, the gas flow has a
Poiseuille flow component, generating a large slip velocity at the groove top. But in Figs. 4(b) and
4(c), the magnitude of the slip velocity generated by the gas flow is close, although a reverse flow is
produced inside the groove when the volume flow rate of gas is enforced to be zero. Figure 5 shows
the comparison of the Darcy friction factor–Reynolds number product f Re determined from the
expression f Re = 2/Ū , where Ū is the average velocity normalized by 4KH 2. In Fig. 5, the equal
pressure gradient in both phases yields the least amount of drag, similar to what was observed for the
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FIG. 4. Vector plots inside the grooves of the same grooved channel φ = 0.5, H = 7.69, w + d = 4,

b = 2.5 with different gas flow conditions. Backgrounds are contour plots of streamwise velocity. (a) Equal
pressure gradient in both phases. (b) Zero pressure gradient inside the groove. (c) Zero volume flow rate inside
the groove. The vector length has been rescaled for plotting purpose.

canonical multiphase channel. Both the zero pressure gradient and the zero volume flow rate cases
are very close but the latter still has higher drag. All three cases predict the same trend as experiments.
The recirculating gas flow is the closest; the levels however are lower than the experiments. This
behavior is similar to the trend observed by the cavity model of Maynes et al. [21]. They speculate
that the difference is because change of streamwise pressure induces a continuous change on the
meniscus shape that eventually causes the liquid to penetrate slightly into the groove, thus reducing
the effective gas layer height.

2. Liquid penetration effect

In order to quantify the effect of the meniscus penetration, in this section, a solid-gas contact
angle θ = 150◦ (defined in Fig. 1) is prescribed. The contact angle is identical to the surface property
reported in the experiment of [21]. The obtained results are shown in Fig. 6(a). It is clear that for
the same gas flow condition, the flat interface underpredicts the friction, but when a meniscus shape
is introduced, the results match well with experiment. This implies that the meniscus shape which
draws liquid into the groove has a more appreciable effect on drag reduction as compared to the gas
flow condition.

FIG. 5. Comparison of f Re with varying groove fractions φ (� experimental results in [21], for equal
pressure gradient in both phases, for zero volume flow rate inside the groove, · for zero pressure gradient
inside the groove).
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FIG. 6. Comparison of f Re with varying groove fractions φ. (a) · meniscus shape of contact angle 150◦;
(b) · flat interface with 16% water penetration, for a fully wetted groove (� experimental results by
Maynes et al. [21], · · · for full gas pocket filling the groove).

To test this notion and to find a flat interface representative of the liquid penetration, three
simulations with different gas-liquid setups are tested: (i) flat gas-liquid interface with gas filling the
entire groove; (ii) flat gas-liquid interface with the liquid filling 16% of the groove; and (iii) liquid
filling the entire groove.

The 16% liquid penetration is selected so that the volume of fluid penetrating into the groove is
the same as applying a meniscus with a contact angle θ = 150◦. The grooves are supposed to be
capped at the end, i.e., zero flow rate is imposed inside the grooves. Figure 6(b) shows the results
obtained from the three cases. Case (i) underpredicts the drag. Case (ii) where the liquid penetrates
16% into the groove matches the experiment data whereas case (iii) with the groove being fully
wetted overpredicts the drag. It can be concluded that the geometry by itself has an effect on overall
drag reduction, and liquid penetrating into the groove also affects the overall drag.

III. ANALYTICAL SOLUTION

A. Model problem

The influence of liquid penetration observed in Sec. II B leads us to derive an analytical solution
that accounts for its effect. Typically, the texture size of SHSs in turbulent experiments in viscous
units (w + d)+ = uτL/ν < 5 [46,47]. When the groove is relatively small to the channel, the flow
in the vicinity of the grooves can be treated as shear flow. The shear-driven flow over longitudinal
grooves with coupled gas-liquid interface within the grooves can be solved analytically as follows. A
corresponding solution for fully wetted groove solutions is obtained by [38], which can be recovered
from the current solution using asymptotic analysis (see the Appendix).

The model problem is illustrated in Fig. 7. The flow is normal to the (y,z) plane, and the
streamwise velocity u is normalized by (Lτ/μ). All lengths are normalized by L, where L is half
of the period of the grooves. a = φ = w/(2L) is half width of the groove. g is the depth of the gas
pocket inside the groove. f + g is the depth of the groove. The governing equation is the Laplace
equation:

∂2u

∂y2
+ ∂2u

∂z2
= 0. (13)

The domain is divided into three rectangular regions. The velocity is zero at all solid walls and
at infinite height ∂u(∞,z)

∂y
= 1. At the gas-liquid interface (between regions I and III), the shear stress

and velocity are matched:

uI(−f,z) = uIII(−f,z), (14)

μliquid
∂uI(−f,z)

∂y
= μgas

∂uIII(−f,z)

∂y
. (15)
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FIG. 7. The model problem and definitions of the geometric variables. Regions I and III are inside the
groove filled with liquid and gas respectively. Region II is outside the groove, filled with liquid.

At the gas-liquid interface, we apply the approximate gas-liquid boundary condition:

∂uI(−f,z)

∂y
= μr

∂uIII(−f,z)

∂y
= μr

us(z)

g
, (16)

from Eq. (12). This is valid when the gas flow inside the grooves is a Couette type flow or a pressure
driven gas flow when the depth of the groove is small compared with the outside channel height, so
that the velocity gradient can be obtained from linear approximation.

In region I, using separation of variables, uI(y,z) = v(y)w(z), and the approximate gas-liquid
boundary condition above, the main assumption is that w(z) is a linear function of the interface
velocity at the interface between regions I and III:

us(z) = αw(z). (17)

Therefore, ∂v(−b)/∂y = μrα/g. Then we obtain

uI =
∞∑

n=1

α

2
An cos(αnz)

[(
μr

gαn

+ 1

)
eαn(f +y) −

(
μr

gαn

− 1

)
e−αn(f +y)

]
, (18)

where αn = (n − 1
2 )π

a
. In region II, the general solution is

uII = B0 + y +
∞∑

n=1

Bn cos(γnz)e−γny, (19)

where γn = nπ .
The general solution for region III that satisfies the no-slip condition on the walls and symmetry is

uIII =
∞∑

n=1

Cn cos(αnz)[−eαn(y+2f +2g) + e−αny]. (20)

By satisfying Eq. (17) at the interface we get

αAn = Cn[−eαn(f +2g) + eαnf ]. (21)

At the boundary between regions I and II, uI and uII are matched by

uII =
{
uI, 0 � z < a,

0, a < z � 1; (22)

∂uI(−f,z)

∂y
= ∂uII(−f,z)

∂y
. (23)

054002-9



YIXUAN LI, KARIM ALAME, AND KRISHNAN MAHESH

TABLE II. Convergence of B0, a = 0.6.

f , g\M 5 10 15 20 25 30 35 40 45

1.25, 1.125 0.1319 0.1301 0.1307 0.1305 0.1306 0.1305 0.1306 0.1306 0.1306
0.25, 0.125 0.1289 0.1272 0.1278 0.1275 0.1277 0.1276 0.1277 0.1276 0.1277

Integrating Eq. (22) from 0 to 1 yields

B0 = −
∞∑

n=1

1

2
Cn

(−1)n

αn

[−eαn(f +2g) + eαnf ]

[(
μr

gαn

+ 1

)
eαnf −

(
μr

gαn

− 1

)
e−αnf

]
. (24)

Multiplying Eq. (22) by cos(γmz) and then integrating yields

Bm =
∞∑

n=1

CnLmn[−eαn(f +2g) + eαnf ]

[(
μr

gαn

+ 1

)
eαnf −

(
μr

gαn

− 1

)
e−αnf

]
, (25)

where

Lmn = sin[π (ma + n − 0.5)]

2π [m + (n − 0.5)/a]
+ sin[π (ma − n + 0.5)]

2π [m − (n − 0.5)/a]
. (26)

Multiplying Eq. (23) by cos(αmz) and integrating from 0 to a gives
∞∑

n=1

−BnLnmγn − (−1)m

αm

= a

4
Cmαm[−eαm(f +2g) + eαmf ]

×
[(

μr

gαm

+ 1

)
eαmf +

(
μr

gαm

− 1

)
e−αmf

]
. (27)

Bm is truncated to M terms and An is truncated to N = Int[aM] terms. Solving Eqs. (25) and
(27) as a system of equations, we can solve for the mean slip velocity B0 from Eq. (24). Table II
shows the convergence of B0 with respect to M , with two sets of f and g.

B. Results

The drag reduction originally predicted in [14] is based on constant pressure drop:

DRZS,CPD = Qno−slip − QSHS

Qno−slip
= 3

(
1 − B1

B

)
, (28)

where B1 = K(k1)
K ′(k1)

2H
w

,B = w+d
w

. For a constant flow rate, the drag reduction is defined by Eq. (9)
and the theoretical solution by [14] can be converted to

DRZS,CFR = 3(B − B1)

4B − 3B1
, (29)

where the subscripts “CPD” and “CFR” denote constant pressure drop and constant flow rate
respectively. Using the partial slip concept expressed in Eq. (12), with the B0 derived in Eq. (24),
the DR in a channel flow with grooved wall in one side can be solved analytically:

DR = 3ζ

4ζ + 1
, (30)

where ζ = B0(w + d)/(2H ). Figure 8 compares the analytical drag reductions predicted by Eq. (30)
and DNS results of cases F7–F25 and I7–I25 in Table I with the approximate boundary condition
given by Eq. (12). The modeled simulations agree with multiphase VOF simulations. Also, it shows
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FIG. 8. Drag reduction comparison. The open symbols represent the DNS result; the solid symbols are
predicted by the analytical solution from Eq. (30). The black dots are VOF simulations results. (a) Coverage
ratio φ = 0.25. (b) φ = 0.5. (c) φ = 0.25. –�–, case I7; –�–, case I12; –♦–, case I25.

good agreement between the analytical solution and the DNS results for cases F12, F25, I12, and
I25, whose size of the texture is relatively small compared to the channel height, consistent with
the assumption. For case I7, The deviation is large when φ = 0.75 or when the channel height is
comparable to the groove.

The effective slip length beff for a pipe flow with periodic no-slip or no-shear slots was derived in
Lauga and Stone [15] using bulk quantities such as flow rate and pressure drop. For a plane channel
flow, we obtain

beff = −12QH

W
− 1

12QH

W
− 4

, (31)

where all lengths are normalized by the channel height H , the velocities are normalized by KH 2/μ,
and Q is the nondimensionalized volume flow rate.

Using the expression for Q in [13], Eq. (31) yields the zero-shear model effective slip length:

beff−ZS = B

B1
− 1. (32)

From Eq. (29):

DRZS,CFR = 3beff−ZS

4beff−ZS + 1
. (33)

Note that the drag reduction of a CPD case can be written as DRZS,CPD = 3[1 − 1/(1 + beff−ZS)]. In
[48], the drag reduction in a Couette flow between two surfaces of distance h with a slip length δ on
one surface has a similar form: DR = 1 − 1/(1 + δ/h), where δ/h can be seen as the effective slip
length in a Couette flow.

Comparing to Eq. (33), we observe that

beff = ζ. (34)

In the same manner as the definition of the effective slip length, the effective slip velocity ueff

can be defined as

ueff = 2QH

W
− 1

6
. (35)

And the analytical solution of the effective slip velocity for the zero-shear model is

ueff−ZS = 1

2

(
1 − B1

B

)
. (36)
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FIG. 9. Effective slip lengths comparison. The open symbols stand for the DNS result; the solid colored
ones are from the analytical solution of Eq. (34); the black dots are VOF simulations results; the purple symbols
are predicted by Eqs. (38) and (39). –�–, case I7; –�–, case I12; –♦–, case I25.

Written in terms of the analytical solution obtained, the effective slip velocity is

ueff = ζ

2(ζ + 1)
. (37)

Figures 9 and 10 compare the DNS results with Eqs. (34) and (37) and VOF simulations respectively.
Similar to the plots of drag reduction, the solution performs best when the size of the groove is small
compared to the channel.

C. Scaling law of the drag reduction

To use Eq. (33) as a scaling law, one must know beff a priori. A theoretical prediction for beff is
needed for three scenarios: (i) fully wetted grooved surface; (ii) partially wetted grooved surface;
and (iii) grooves filled with gas.

When the depth of the fully wetted groove is large enough, which is true for the models in this
paper, beff of the grooved surface is asymptotic to

bi
eff = (w + d)

2Hπ
[(1 − φ) ln(1 − φ) + (1 + φ) ln(1 + φ)], (38)

which has been solved in [49] using the conformal mapping method and validated by Wang [38]
for all f � 2 in the notation of this paper. The superscript i ,ii ,iii represents the scenarios itemized
above. The bi

eff for all the fully wetted simulations F7–F25 and all the flat interface simulations

FIG. 10. Effective slip velocities comparison. The open symbols stand for the DNS result; the solid ones
are from the analytical solution derived in this paper. The black dots are VOF simulations results. –�–, case I7;
–�–, case I12; –♦–, case I25.
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FIG. 11. DR scales with beff . Solid line: Eq. (33); red: φ = 0.25; green: φ = 0.5; blue: φ = 0.75; �: cases
F7 and I7; �: cases F12 and I12; ♦: cases F25 and I25; blue shaded area: prediction by [38]; gray shaded area:
prediction by [40].

I7–I25 are computed and plotted against the DR results in Fig. 11 as the gray shaded area. Note that
since bi

eff is not a function of the gas height, the results do not fall onto one line.
When the surface has zero-shear boundary condition, the exact expression for beff in [40] can be

converted to be

biii
eff = −(w + d)

Hπ
ln

[
cos

(
π

2
φ

)]
. (39)

Similarly, the biii
eff for each simulation result is computed; the biii

eff − DR results are plotted in Fig. 11
as the blue shaded area. Again, because biii

eff is independent of the gas height, the results do not
collapse.

Taking into account those two extreme conditions, bii
eff is a function of the groove geometry

(w,d,b,H ) and the shear rate of the interface (approximated by μr,h). The expression for bii
eff is

bii
eff = (w + d)

2H
B0, (40)

where B0 is from Eq. (24). bii
eff − DR relations from fully wetted and flat interface results are

presented in Fig. 11 as symbols. The solid line is the prediction by Eq. (33). The figure shows that
DR satisfies the scaling with respect to bii

eff derived in Eq. (40). The drag reductions DR of all the
fully wetted grooved cases and all the flat interface cases, plotted against beff , collapse onto a single
line. To conclude, Eq. (38) can only predict the beff of scenario (i); Eq. (39) can only predict scenario
(iii); however, the analytical solution in this paper bridges the gap between these two scenarios.
Figure 11 shows that our solution performs well over the full range of the gas portion.

D. A first order approximation using analytical solution

In [21], the relation between the effective slip length and the friction factor–Reynolds number
product is

beff = 2

(
8

f Re
− 1

12

)
. (41)

In this section, the analytical solution is examined with the experimental data in [21] by estimating a
16% liquid penetration and the interface being flat. Figure12 shows that the analytical solution agrees
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FIG. 12. Comparison of f Re with varying groove fractions φ. � analytical solution with 16% liquid
penetration; � experimental results by Maynes et al. [21]; · VOF simulation of flat interface with 16% liquid
penetration.

with experiment data, especially when the coverage ratio is small. However, this approximation using
the gas to liquid fraction inside the groove is strictly valid only when the channel height is large
relative to the penetration, or when the contact angle is low so that the interface can be assumed to
be flat.

IV. A NOTE ON INTERFACE CURVATURE

A. Predicting meniscus shape

Interface curvature can be modeled using the Young-Laplace equation:

�p = σ∇ · n, (42)

where �p is the pressure difference across the interface, σ is the gas-liquid surface tension, and n is
the local normal. Assuming �p to be constant along the interface, the interface shape for a groove is

Fzz = ξ
(
1 + F 2

z

)3/2
, (43)

where ξ = �p/σ . A three-dimensional (3D) expression is given in [50]. Integrating Eq. (43) twice
with the boundary conditions F (±w

2 ) = 0,Fz(0) = 0 yields the interface shape:

F (z) = −
√

1 − ξ 2z2

ξ
+

√
1 − ξ 2w2/4

ξ
. (44)

Figure13(b) shows the interface shapes for varying pressure difference. As the pressure difference
increases, the interface penetrates towards the bottom of the groove and contact angle increases.
VOF simulations of the same configuration were performed and compared to the results of the
Young-Laplace equation; good agreement was observed [Fig. 13(c)].

B. Wetting: failure

The slope of the interface is

η = Fz = tan (θ − π/2), (45)

therefore

ξ = − η

(w/2)
√

1 + η2
= 2 cos θ

w
, (46)

which is similar to Eq. (1) from [36] when φg ≈ φ = w/(w + d).
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FIG. 13. (a) Schematic diagram of the meniscus interface. (b) The shape of the gas-liquid interface changes
with increasing pressure difference. From top to bottom: �p = 500, 1000, 2000, 5000, 7200 Pa, from top to
bottom. Unit: 10 μm (c) Contact angle θ vs �p. The solid line represents the analytical solution. The symbols
are VOF results.

A critical pressure difference �pcr can be defined as the pressure difference across the meniscus
when contact angle θ = π , provided that the groove is deep enough so that the interface does not
touch the bottom first. The slope of the interface at z = w/2,

lim
η→−∞ ξ = 2 cos(π )

w
= 2

w
. (47)

The critical pressure difference which quantifies failure due to wetting on the sides is

�pcr = 2σ

w
. (48)

In this paper, for case F7 with φ = 0.5, σ = 7.2E − 2 N/m for water at 20 ◦C, �pcr = 7.2 kPa.

C. Results

Simulations are performed to study the effect of the interface curvature in the grooved channel
using both the VOF method and DNS of the liquid region alone, modeling the curved interface
using Eq. (43). The modeled simulations used the approximate boundary condition Eq. (12) at the
curved interface, whose height varies across the span of the groove. Figure14 shows the variation
in drag reduction with respect to contact angle θ and pressure difference �p. Good agreement
is observed between the VOF calculations and the calculations with the approximate boundary
condition. Intriguingly, drag reduction initially increases with increasing �p and θ following which
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FIG. 14. Variation of drag reduction with contact angle θ and pressure difference �p. (Open symbols are
approximate boundary condition with meniscus shape simulations; solid symbols are VOF simulations).

it decreases. Such a trend is also observed in [22,27,28]. This behavior is due to the competing
effects of interface area and height of the interface from the no-slip wall. The large reductions in
drag obtained for �p < 5 kPa results from the increase in the surface area over which larger slip
velocities occur. For larger �p, the interface approaches the bottom of the groove where the gas
layer is thin, which results in the slip velocity decreasing and therefore the total shear stress is greater
on the interface than that on an interface with lower �p.

V. SUMMARY

Multiphase, feature-resolved simulations have been performed to study the factors that contribute
to the drag reduction effect of SHSs: interface shear rate and the shape of the gas-liquid interface.
First, VOF simulation results confirmed that the gas flow behavior inside the groove has an effect
on drag reduction but the liquid penetration into the grooves is more significant. Next, an analytical
solution of the shear flow over longitudinal grooves with coupled gas-liquid interface has been
derived and validated with simulations using approximate gas-liquid boundary condition and VOF
simulations. A scaling law of the drag reduction with respect to effective slip length has been obtained
from the analytical solution. The solution can also be extended to liquid-infused surfaces. Consider
for example two of the liquid conditions in the experiment of [29], μr = 1/2.7 and 30, and the
geometric parameters of case I7 with the grooves filled with a second fluid; the analytical solutions
predict the drag reduction to be 9.50% and 0.35% respectively. Lastly, the shape of the interface
has been examined by prescribing the location of the interface with the Young-Laplace equation
and applying the approximate boundary condition. A series of physically representative meniscal
interfaces which provided spanwise varying gas height in the groove have been simulated. For the
meniscal cases, the drag reduction does not behave monotonically but peaks at a certain meniscal
interface and then drops dramatically. This result can be explained as a compromise between the
gas-liquid contact area and the shear stress on the gas-liquid interface. When liquid penetrates into
the groove, the interface area increases but the local gas is depressed, which increases the shear
stress on the interface. This behavior is also confirmed by VOF simulations.
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APPENDIX: ASYMPTOTIC ANALYSIS OF THE ANALYTICAL SOLUTION

By modifying the shear rate matching between regions I and II in the solution of [38], it is
straightforward to analytically solve the Stokes shear flow over grooves filled with gas:

∂uI(−bw,z)

∂y
= μr

∂uII(−bw,z)

∂y
. (A1)

Here the superscript “w” is used to represent Wang’s notation. bw is the depth of the groove
normalized by (w + d)/2. The expression for B0 and Bm remain the same (see [38] for detailed
solution) and the matrix integrated from Eq. (A1) becomes

∞∑
n=1

−Bw
n Lnmγn − (−1)m

αm

= μr

a

2
Aw

mαm[1 + e−2αmbw

]. (A2)

Moreover, the fully wetted solution by Wang [38] can be recovered from the partial slip solution.
When gas escapes from the liquid, g = 0, f = bw, μr = 1. Taking the limit of the right hand side
(RHS) of Eq. (27),

lim
g→0

RHS = lim
g→0

a

4
Cmαm[−eαm(bw+2g) + eαmbw

]

[(
μr

gαm

+ 1

)
eαmbw +

(
μr

gαm

− 1

)
e−αmbw

]

= a

2
Cm(−e2αmbw

)αm[1 + e−2αmbw

]. (A3)

Comparing to the solution for fully wetted grooves: Cm(−e2αmb) = Aw
m.

Taking the limit of Eq. (24) and applying L’Hopital’s rule, and substituting Cm,

lim
g→0

B0 = lim
g→0

−
∞∑

n=1

1

2
Cn

(−1)n

αn

[−eαn(f +2g) + eαnf ]

[(
μr

gαn

+ 1

)
eαnf −

(
μr

gαn

− 1

)
e−αnf

]

= −
∞∑

n=1

(−1)n

αn

Aw
n (1 − e−2αnb

w

). (A4)

Similar is Bm from Eq. (25):

lim
g→0

Bm = lim
g→0

∞∑
n=1

CnLmn[−eαn(bw+2g) + eαnb
w

]

[(
μr

gαn

+ 1

)
eαnb

w −
(

μr

gαn

− 1

)
e−αnb

w

]

= 2
∞∑

n=1

Aw
n Lmn(1 − e−2αnb

w

). (A5)

Thus, the solution in [38] for fully wetted grooves is recovered from the partial-slip solution. Also,
the solution for fully wetted grooves can be converted to full-gas solution with minor adjustments,
as is shown in Eq. (A2).
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