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Roughness-induced transient growth has emerged as a possible cause for transition in
linearly stable boundary layer flows over spherical forebodies. This paper investigates
the optimal growth of perturbations in the axisymmetric, laminar boundary layer over a
hemisphere placed in a Mach 7.32 free stream, with the goals of contributing further insights
and revisiting highly successful, transient-growth based prediction criteria for subcritical
transition over blunt body configurations. Earlier predictions based on local-similarity
approximation to the basic state are extended to a basic state that is obtained from the
compressible Navier-Stokes equations and, hence, accounts for the presence of the bow
shock, the nonsimilar development of the boundary layer, and the convex curvature of the
body surface. The predicted transient growth characteristics are profoundly different from
the previous body of results for boundary layer flows over flat plates and circular cones. More
importantly, the selections of energy norm and objective function used to compute optimal
growth exert a crucial influence on the optimal growth characteristics of a blunt body.
With the conventional energy norm based on both kinetic and thermodynamic fluctuations,
the highest energy gain from the input station to the output station occurs over relatively
short optimization intervals in the vicinity of the stagnation point; however, the associated
kinetic energy gain, which is more closely linked to transition via streak instabilities, is
rather small in magnitude. On the other hand, the mean kinetic energy gain is maximized
when the disturbance inflow location nearly coincides with the location corresponding
to peak wall shear associated with the basic state. Assuming that the roughness-induced
disturbance velocities are proportional to the roughness height, the maximum disturbance
kinetic energy would be reached in the vicinity of the sonic point, which could explain
the measured onset of transition within this region during prior wind-tunnel and flight
experiments.

DOI: 10.1103/PhysRevFluids.2.053903

I. INTRODUCTION

The most common approach to transition prediction relies on modal growth, i.e., exponential
amplification of discrete eigensolutions. The classical linear stability theory is mainly concerned
with individual sinusoidal waves propagating in the boundary layer adjacent to the wall. The
stability characteristics are often evaluated by using the quasiparallel approximation that reduces
the linearized equations of fluid motion to an eigenvalue problem based on ordinary differential
equations. In the limit of incompressible flows, this eigenvalue problem corresponds to a combination
of the Orr-Sommerfeld and Squire equations [1,2]. Effects of weak boundary layer growth, i.e.,
mean-flow nonparallelism can be accounted for by using multiple-scales theory (or other similar
approaches) [3], which yields the leading order correction to the local amplification rate and phase
speed predicted by the quasiparallel theory. A more useful extension to the nonparallel stability theory
was proposed by Herbert [4], who introduced the concept of Parabolized Stability Equations (PSEs).
The main advantages of the PSE technique with respect to the local multiple-scales approach include
its improved computational efficiency and the possibility of accounting for nonlinear interactions [5].
Since then, the PSE technique has been applied to a variety of problems, including the linear and
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nonlinear evolution of instability waves in two- and three-dimensional (2D and 3D) shear flows
across a broad range of speeds.

Besides the exponential growth characteristics of convectively unstable eigenmodes in a boundary
layer flow, external disturbances, e.g., free-stream turbulence and surface roughness, can also have
a large influence on the transition process. An additional route to transition may involve nonmodal
growth, which refers to situations in which transient algebraic growth of disturbance energy is
observed even when the flow is modally stable, i.e., all eigenmodes are damped. Mathematically,
the transient growth is associated with the nonorthogonality of the eigenvectors corresponding to
the linear disturbance equations. Physically, the main growth mechanism corresponds to the lift-up
effect [6–8], which results from the conservation of horizontal momentum in the course of spanwise
varying wall-normal displacement of the fluid particles. Schmid and Henningson [2] and Schmid [9]
provide a thorough review of transient growth theory and results.

Recently, transient growth has been suggested as a candidate mechanism for many cases of
bypass transition [10]. The term “bypass transition” has been historically used to differentiate the
well-known paths to transition via modal amplification of small-amplitude disturbances from the
transition phenomena that are not fully understood on a theoretical basis [11,12]. Examples of
bypass transition are the transition due to high levels of free-stream disturbances, as, for example, in
turbomachinery, or the subcritical transition observed in Poiseuille pipe flow experiments [13–16],
transition due to distributed surface roughness on flat plates [17,18] or cones [19], and subcritical
transition observed on spherical forebodies [20–26].

The present study focuses on the subcritical, bypass transition observed on spherical forebodies
at hypersonic speeds. The boundary layer flow over a blunt body, e.g., a reentry capsule, does not
support the growth of modal instability waves. Tollmien-Schlichting waves are stable because of
the strong favorable pressure gradient. The convex curvature of the geometry prevents the growth
of Görtler disturbances. Furthermore, the crossflow velocity component of the boundary layer is
small for spherical shapes, which excludes the appearance of crossflow instabilities. However,
several experimental measurements at different flow conditions have demonstrated that transition
does occur [20,23,26]. This problem has been denominated the “blunt-body paradox” [21]. The
distinction between subcritical and supercritical roughness conditions is important because, in the
limit of supercritical conditions, i.e., large roughness elements, the modification of the mean flow
by the roughness elements is such that the flow can become globally unstable and transition occurs
very close to the roughness location [27–33]. For the subcritical conditions assumed in the present
study, empirical transition correlations [28,34–36] have shown a good agreement with experimental
measurements under the assumption that the receptivity of stationary disturbances to distributed
roughness is linear with the peak-to-valley height k, i.e., the initial amplitude of the induced
disturbance is proportional to k. The stationary disturbances induced by discrete roughness elements
are significantly different in shape from the theoretical optimum, yet they can experience significant
nonmodal growth depending on the roughness characteristics [37–42].

As a result of the blunt-body paradox, transition onset over reentry vehicle nose tips is commonly
predicted via empirical transition correlations. One such well-known correlation is based on
the extensive set of measurements carried out under the PAssive Nosetip Technology (PANT)
Program [43,44]. In its original form, the PANT correlation was expressed as

Re�

(
k

�

Te

Tw

)0.7

=
{

255 at Me = 1: transition onset,

215: onset location,
(1)

where Re� is the boundary layer momentum thickness Reynolds number, � is the momentum
thickness, Te is the edge temperature, Tw is the wall temperature, and Me is the edge Mach number.
In the PANT data, transition was usually observed to occur upstream of the sonic point. The PANT
correlation for transition onset is based on the observation that transition onset occurred only in cases
where the transition parameter on the left-hand side of Eq. (1) exceeded a value of 255 at the sonic
point and the onset location itself correlated with the position where this parameter equaled 215. The
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PANT correlation was examined by Reda and Leverance [34] and Reda [35] for actual conditions of
reentry environment as simulated in a ballistic range. Significant discrepancies were noted between
predicted and experimentally observed transition zone behavior. By using the same form of Eq. (1),
a modified correlation was obtained through a curve fitting of the ballistic range data:

Re�

(
k

�

Te

Tw

)1.30

= 574. (2)

Recently, Reshotko and Tumin [36] developed a transition correlation based on “parallel” transient
growth results for self-similar axisymmetric stagnation point flow. Such parallel transient growth
analysis does not account for the downstream evolution of the boundary layer and the geometry
variation, because it assumes a spatially invariant base flow profile at every streamwise station.
Their correlation for the PANT wind-tunnel database, which was also shown to correlate well with
Reda’s ballistic-range data, was

Re�

(
k

�

)(
Te

Tw

)1.27

= 434. (3)

The form of this correlation is very similar to that of Reda from Eq. (2), with the main difference
being the exponent of the roughness-height parameter on the left-hand side of each correlation. The
transition parameter in the Reshotko and Tumin correlation depends linearly on k/�, because they
assumed the initial disturbance amplitude to scale linearly with the roughness-height parameter.
Despite the favorable agreement between the correlation from Eq. (3) and the available experiments,
the accuracy of transient growth predictions underlying Eq. (3) remains questionable because of
the parallel-flow assumption together with the neglect of surface curvature effects, and secondarily,
the approximations involved in basic state computations.

Spatial transient growth analysis, including nonparallel effects, of the boundary layer over
a sphere at free-stream Mach number of 6 was presented by Tumin and Reshotko [45] and
Zuccher et al. [46]. In these studies, the velocity and temperature profiles were calculated
using local-similarity approximation. Mack’s energy norm [47], which accounts for kinetic and
thermodynamic fluctuations as explained in Sec. II, was used to measure the growth of the optimal
initial perturbations. Their results showed that the optimal energy amplification is stronger in the
vicinity of the stagnation point and for short optimization intervals; however, the optimal optimization
intervals were not reported. Also, the streamwise convex curvature was found to reduce transient
growth. The results do not appear to explain the experimental observation that, when the roughness
height is increased, the transition location was first observed in the vicinity of the sonic point and
then moved upstream up to a certain distance from the stagnation point [23,26,44].

The nonparallel spatial transient growth analysis in the present paper is based on the compressible
Navier-Stokes (NS) computations [48] of laminar flow over a hemisphere of radius R = 0.0889 m
at zero angle of attack. The free-stream conditions are selected to match the experiments by
Kaattari [49], namely, M∞ = 7.32, Re′ = 14.6×106 m−1, and T∞ = 65 K, and isothermal wall
condition with Tw = 300 K. Recently Li et al. [48] examined the effects of outgassing on the modal
instability of boundary layer flow over this body and found the modal growth to be insignificant in
the absence of any outgassing. The mass-injection rate was defined as μin = ρwvw/(ρ∞u∞), where
ρw and vw denote the density and velocity normal to the wall, respectively, of the injected fluid, and
the subscript ∞ denotes free-stream values. First mode waves were observed to become marginally
unstable for μin ≈ 0.007, which is a value larger than those corresponding to typical injection rates.
The mass-injection rate needed to reach N -factor values of N = 7 to N = 13 was μin = 0.01 to
μin = 0.013. Therefore, transition in zero or weak outgassing cases presents yet another example
of the blunt-body paradox. For the selected flow conditions, Kaattari [49] experimentally studied
the effect of mass injection on wall heat transfer. He observed that, upon mass injection, the onset
of transition begins a few degrees downstream of the sonic point and moves upstream as the mass
injection is increased.
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The present transient growth analysis includes two separate definitions of the objective function
or energy gain: the ratio between the energy norm at the outlet and inlet locations, which was
used by Refs. [45,46], and the ratio between the mean energy norm along the optimization interval
and the energy at the inlet location, which accounts for possible overshoots in energy evolution across
the optimization range. Furthermore, two different energy norm definitions are selected. Besides the
conventional energy norm used for compressible boundary layer flows that includes kinetic and
thermodynamic fluctuations developed by Mack [47], the kinetic energy alone is also used as the
energy norm. The reason to look at the kinetic energy growth is the finding from the stability analysis
of finite-amplitude streaks in compressible boundary layers [50,51] where the secondary instabilities
that would lead to bypass transition are driven by the strength of the streamwise velocity shear of the
streak. Therefore, secondary instabilities are expected to become unstable when the transient growth
is able to produce a disturbance with higher kinetic energy. Paredes et al. [52] presented the nonlinear
evolution of finite-amplitude optimal perturbations and the instability analysis of the resulting streaks.
Their results show that the boundary layer perturbed by finite-amplitude streaks becomes unstable
for streak amplitudes of Asu > 0.16, where Asu(ξ ) = [maxη,ζ (ũ) − minη,ζ (ũ)]/(2ū∞).

We note that the optimal growth theory does not address the generation (i.e., receptivity) of
streak disturbances responsible for bypass transition; and, in fact, disturbance profiles resulting
from realistic external disturbances usually result in suboptimal transient growth [40,53,54]. While
this represents a clear limitation of the optimal growth theory, it does contribute useful insights
by providing an upper bound on the nonmodal energy amplification due to spanwise periodic
disturbances. Indeed, for reasons that are not fully understood as yet, transition correlations derived
from optimal growth considerations appear to capture the measured trends related to blunt-body
paradox, as mentioned in the context of Eq. (3). The present work may be viewed as an initial step
toward the assessment and potential improvement of such correlations, by extending the application
of spatial transient growth to nonsimilar flows.

The paper is organized as follows. Section II provides a summary of the optimal growth theory
based on the PSE. The results are presented in Sec. III that is subdivided into three subsections.
The characteristics of the laminar flow over the hemisphere are presented in Sec. III A, together
with the application of previous transition correlations to the computed basic state. Transient growth
results for the hypersonic spherical forebody are presented in Sec. III B, including the comparison
of predictions based on two separate energy gain definitions: the ratio between outlet and inlet
disturbance energy norms and the ratio between mean and inlet disturbance energy norms. Also,
results are obtained for the optimization of the Mack’s energy norm that accounts for kinetic and
thermodynamic fluctuations and for optimization of the kinetic energy alone. In Sec. III C, the
implications of the transient growth predictions are investigated, especially in the context of the
correlations for roughness-induced transition and the experimental measurements by Kaattari [49].
Conclusions are presented in Sec. IV.

II. METHODOLOGY

Transient growth analysis is performed using the linear PSE as explained in the literature [55–58].
For completeness, the present section outlines the methodology, which bears strong similarities with
the optimization approach based on the linearized boundary layer equations [59–61]. The advantage
of the PSE-based formulation is that it is also applicable to more complex base flows where the
flow evolves along the streamwise direction and the boundary layer approximation may not hold.
The PSE approach can also be easily extended to unsteady disturbances. While infinite Reynolds
number asymptotic results cannot be directly computed using this technique, good agreement is
achieved between the two methodologies for incompressible and compressible regimes as shown
by Paredes et al. [58,62].

In the PSE context, the perturbations have the form

q̃(ξ,η,ζ,t) = q̂(ξ,η) exp

{
i

[∫ ξ

ξ0

α(ξ ′) dξ ′ + βζ − ωt

]}
+ c.c., (4)
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where c.c. denotes complex conjugate. The suitably nondimensionalized, orthogonal, curvilinear
coordinate system (ξ,η,ζ ) denotes streamwise, wall-normal, and spanwise coordinates and (u,v,w)
represent the corresponding velocity components. Density and temperature are denoted by ρ and
T . The Cartesian coordinates are represented by (x,y,z). The vector of perturbation fluid variables
is q̃(ξ,η,ζ,t) = (ρ̃,ũ,ṽ,w̃,T̃ )T , and the vector of amplitude functions is q̂(ξ,η) = (ρ̂,û,v̂,ŵ,T̂ )T .
The vector of basic state variables is q̄(ξ,η) = (ρ̄,ū,v̄,w̄,T̄ )T . The streamwise and spanwise wave
numbers are α and β, respectively; and ω is the angular frequency of the perturbation.

Upon introduction of the perturbation form (4) into the linearized NS equations together with the
assumption of a slow streamwise dependence of the basic state and the amplitude functions, thus
neglecting the viscous derivatives in ξ , the PSE are recovered:

Lq̂(ξ,η) =
(

A + B
∂

∂η
+ C

∂2

∂η2
+ D

1

hξ

∂

∂ξ

)
q̂(ξ,η) = 0. (5)

The linear operators A, B, C, and D are given by Pralits et al. [55], and hξ is the metric factor
associated with the streamwise curvature. The system of Eqs. (5) is not fully parabolic due to the
term ∂p̂/∂ξ in the streamwise momentum equation and also due to the presence of other terms
that are quadratic in the streamwise wave number α [63–66]. However, for the purely stationary
disturbances of interest in this work, α = 0 and the pressure gradient term ∂p̂/∂ξ can be dropped
from the equations as justified by Refs. [56,67], which found that ∂p̂/∂ξ is of higher order for
transient growth problems and, therefore, can be neglected without any significant loss of accuracy.

The optimal initial disturbance, q̃0, is defined as the initial (i.e., inflow) condition at ξ0 that
maximizes the objective function, J , which is defined as a measure of disturbance growth over a
specified interval [ξ0,ξ1]. The definitions used in the present study correspond to the outlet energy
gain J = Gout and mean energy gain J = Gmean and are defined as

Gout = E(ξ1)

E(ξ0)
, (6)

Gmean = 1

ξ1 − ξ0

∫ ξ1

ξ0
E(ξ ′) dξ ′

E(ξ0)
, (7)

where E denotes the energy norm of q̃. The energy norm is defined as

E(ξ ) =
∫

η

q̂(ξ,η)H ME q̂(ξ,η) hξ hζ dη, (8)

where hζ is the metric factor associated with the azimuthal curvature, ME is the energy weight matrix,
and the superscript H denotes conjugate transpose. The selection of Gout corresponds to the “outlet
energy gain” that is commonly used in studies of the optimal-perturbation problem [59,60]. The
selection of Gmean defines the “mean energy gain” and corresponds to the optimization of the mean
energy. This latter definition accounts for a possible overshoot in the disturbance energy evolution
that are not accounted for by the former definition and is found to be present in the hemisphere case
as documented in Sec. III B.

The choice of the energy norm is known to influence the optimal initial perturbation as well as
the magnitude of energy amplification [46,57,61]. Here we use the positive-definite energy norm
derived by Mack [47] and Hanifi et al. [68], which is defined by

ME = diag

[
T̄ (ξ,η)

γ ρ̄(ξ,η)M2
,ρ̄(ξ,η),ρ̄(ξ,η),ρ̄(ξ,η),

ρ̄(ξ,η)

γ (γ − 1)T̄ (ξ,η)M2

]
. (9)

Additionally, the kinetic energy norm is also used for optimization in this paper. The kinetic energy
of a perturbation is defined by

K(ξ ) =
∫

η

q̂(ξ,η)H MK q̂(ξ,η) hξ hζ dη, (10)

053903-5



PEDRO PAREDES, MEELAN M. CHOUDHARI, AND FEI LI

where

MK = diag[0,ρ̄(ξ,η),ρ̄(ξ,η),ρ̄(ξ,η),0]. (11)

To differentiate when the total energy norm E or the kinetic energy norm K are used, a corresponding
subscript is added to the energy gain, resulting in four options for the objective function: Gout

E , Gmean
E ,

Gout
K , and Gmean

K .
The variational formulation of the problem to determine the maximum of the objective functional

J of Eq. (7) leads to an optimality system [58], which is solved in an iterative manner, starting from
a random solution at ξ0 that must satisfy the boundary conditions. The PSE, Lq̃ = 0, are used to
integrate q̃ up to ξ1, where the final optimality condition is used to obtain the initial condition for
the backward adjoint PSE integration, L†q̃† = cmeanF (q̃), where cmean = 0 for the outlet energy gain
optimization and cmean = 1 for the mean energy gain optimization, and F (q̃) is a function of the direct
solution [55]. At ξ0, the adjoint solution is used to calculate the new initial condition for the forward
PSE integration with the initial optimality condition. The iterative procedure finishes when the value
of J has converged up to a certain tolerance, which was set to 10−4 in the present computations.

Nonuniform stable high-order finite difference schemes (FD-q) [69,70] of sixth order are used
for discretization of the PSE along the wall-normal coordinate. The discretized PSE are integrated
along the streamwise coordinate by using second-order backward differentiation. The number of
discretization points in both directions was varied in selected cases to ensure convergence of the
optimal gain predictions. The wall-normal direction was discretized using Ny = 201, with the nodes
being clustered toward the wall [70]. No-slip, isothermal boundary conditions are used at the wall,
i.e., û = v̂ = ŵ = T̂ = 0. The amplitude functions are forced to decay at the far-field boundary
by imposing the Dirichlet conditions ρ̂ = û = ŵ = T̂ = 0, unless otherwise stated. The far-field
boundary coordinate is set just below the shock layer. Verification of the present optimal growth
module against available transient growth results from the literature is shown in Refs. [58,62].

III. RESULTS

Transient growth results are presented for the hypersonic flow over an spherical forebody. First,
the characteristics of the basic state are analyzed and transition correlation formulas are applied to
the computed basic state solution. Then the transient growth analysis is shown, including results for
selected objective function definitions. Finally, the implications of the transient growth predictions
are investigated.

A. Basic state and transition correlations

Transient growth analysis is performed for a Mach 7.32 flow over a blunt, hemispherical capsule
at zero angle of attack. The free-stream unit Reynolds number is Re′ = 14.6×106/m, the free-stream
temperature is T∞ = 65 K, and the total pressure pt = 5.5208×106 Pa (800 psi). The isothermal wall
condition is set with Tw = 300 K. The radius of the body is R = 0.0889 m. This flow configuration
corresponds to one of the conditions from the experiments presented by Kaattari [49]. The basic
state boundary-layer flow over the hemisphere surface was computed on various grids by using a
second-order accurate algorithm as implemented in the finite-volume compressible Navier-Stokes
flow solver VULCAN-CFD (see Ref. [71] and http://vulcan-cfd.larc.nasa.gov for further information
about the solver). Details about the numerical solution, together with the boundary conditions, and
the convergence study for the basic state are given by Ref. [48]. Specifically, the code uses an iterative
shock capturing adaptation of the grid and outflow nonreflective boundary conditions based on the
characteristics. Here we use the solution obtained using 258 points along the hemisphere surface
and 706 points in the wall normal direction with at least 200 points in the boundary layer. The Mach
number contours are shown in Fig. 1(a). The boundary-layer edge Mach number is subsonic over a
significant portion of the body length and the maximum edge Mach numbers within the peripheral
region are low supersonic at most.
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FIG. 1. (a) Mach number contours of the basic state with sonic line in black color and (b) graphical definition
of angular coordinate, θ .

The computational coordinates, (ξ,η,ζ ), are defined as an orthogonal body-fitted coordinate
system. The metric factors are defined as

hξ = 1 + κη, (12)

hζ = rb + η cos(φ), (13)

where κ denotes the streamwise curvature, rb is the local radius, and φ denotes the inclination of
the local tangent to the body surface, i.e., sin(φ) = drb/dξ . The angular coordinate, θ , is related
to the streamwise coordinate by ξ = θ R. Figure 1(b) shows a graphical definition of the angular
coordinate. The streamwise curvature is constant along the hemisphere, κ = 1/R = 11.249 m−1,
and the local radius is rb = R sin(θ ). Note that the spanwise wave number β of Eq. (4) corresponds
to a nondimensional, integer azimuthal wave number, denoted by m. In what follows, the flow
variables are nondimensionalized with free-stream values.

The streamwise evolution of basic state streamwise velocity ū, streamwise mass flux ρ̄ū,
convective momentum flux ρ̄ū2, temperature T̄ , and Mach number M , at the boundary-layer edge is
plotted in Fig. 2(a). The boundary-layer edge, ηe = δh, is defined as the wall-normal position where
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FIG. 2. Streamwise evolution of (a) basic flow variables at the edge of the boundary layer (ūe, ρ̄eūe, T̄e,
and Me), and (b) boundary layer thickness, δh, boundary layer momentum thickness, � and boundary layer
momentum thickness Reynolds number Re�.
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FIG. 3. Streamwise evolution of (a) wall-normal derivative of basic state streamwise velocity and
temperature variables at the wall normalized with the corresponding maximum value and (b) pressure gradient
parameter in terms of boundary layer scales ρ̄e�

2/μ̄e×dūe/dξ .

h0/h0,∞ = 0.995, where h0 is the stagnation enthalpy. The edge streamwise velocity and edge
temperature exhibit a monotonic growth and decay, respectively, with distance from the stagnation
point. In agreement with inviscid flow theory, the streamwise mass-flux peak is located at the
sonic point, Me = 1, which is located at θ = 41.1◦. The peak of the convective momentum flux at
boundary-layer edge ρ̄eū

2
e occurs approximately 15◦ downstream of the sonic point. The boundary

layer thickness δh, the momentum thickness � and the boundary layer momentum-thickness
Reynolds number, Re� = ρ̄eūe�/μ̄e, are plotted in Fig. 2(b). The momentum thickness is roughly
10 times smaller than the boundary layer thickness δh.

The wall shear τw = (μ̄ūη)w and wall heat ratio qw = (κ̄ T̄η)w are proportional to the wall-normal
derivative of streamwise velocity (ūη ≡ ∂ū/∂η) and temperature (T̄η ≡ ∂T̄ /∂η) at the wall,
respectively, for the present flow configuration with constant wall temperature. Both quantities, (ūη)w
and (T̄η)w, are plotted in Fig. 3(a). The wall shear distribution peaks roughly 5◦ downstream of the
sonic point. The wall heat flux monotonically decreases from the stagnation point. Figure 3(b) shows
the pressure gradient parameter in terms of boundary layer scales, ρ̄e�

2/μ̄e×dūe/dξ . Although
not shown, the pressure gradient expressed as the Hartree parameter βH remains within 4% of the
theoretical value (βH = 0.5) up to θ < 30◦, but increases thereafter, reaching βH = 0.83 at θ = 85◦.

The profiles of the basic state variables are plotted in Fig. 4 for θ = 10◦, 30◦, 60◦, and 90◦.
At the locations closer to the stagnation point (θ = 10◦ and 30◦), the basic state velocity profiles
resemble those of the classical similarity solution for stagnation point flow. Specifically, the wall-
normal velocity is negative throughout the boundary layer, the streamwise velocity increases with
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FIG. 4. Basic state variables at selected angular positions; namely, (a) θ = 10◦, (b) θ = 30◦, (c) θ = 60◦,
and (d) θ = 90◦. The horizontal dashed line represents the position of the boundary-layer edge.
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FIG. 5. Roughness heights needed for transition to occur following the PANT (kPANT), Reda (kReda) and
Reshotko and Tumin (kRT) correlations. The vertical dotted line denotes the sonic point.

distance from the stagnation point, and the boundary layer thickness remains nearly constant. At
farther downstream locations (θ = 60◦ and 90◦), the wall-normal velocity becomes positive, and
the boundary layer thickness increases with θ . The local-similarity solution used by Refs. [45,46]
assumes a constant boundary layer thickness, a linear acceleration of the streamwise velocity, and
an unaltered negative wall-normal velocity along the body length. As seen from Figs. 2(b) and 3(b),
these assumptions are clearly violated beyond the sonic point but would also lead to appreciable
quantitative discrepancy up to that location.

Here the transition correlations discussed in the Introduction are applied to the present problem.
As previously mentioned, the existing transition correlations relate the value of Re� at the transition
onset location to a local roughness parameter, which corresponds to the nondimensional roughness
height modified by a wall cooling factor, that achieves its maximum value in the vicinity of the sonic
point. The PANT transition correlation from Eq. (1) assumed the empirical disturbance parameter
(T̄e/T̄w)(k/�) to correlate with the relative kinetic energy at the top of the roughness elements,
ρ̄kū

2
k/ρ̄eū

2
e . In the correlation developed by Reshotko and Tumin [36], the roughness-induced energy

is assumed to be proportional to the relative kinetic energy, ρ̄kū
2
k/ρ̄eū

2
e , the roughness-induced

velocities are assumed to be proportional to the roughness height, ūk/ūe ∝ k/�, and the wall-
cooling ratio T̄e/T̄w is assumed to be equal to ρ̄k/ρ̄e. Then the input energy was assumed to be
Ein ∝ (T̄e/T̄w)(k/�)2. Furthermore, the energy norm at transition is related to this input energy
through the “parallel” transient growth energy gain G, i.e., Etr = GEin. The dependence of the
energy gain on the wall-cooling factor and Reynolds number was obtained with parallel transient
growth computations using self-similar stagnation flow profiles. Finally, the correlation constant
on the right-hand side of Eq. (3) was obtained by fitting with the PANT wind-tunnel and Reda’s
ballistic range databases [35,44,72]. The roughness heights needed to meet the previously introduced
boundary layer transition correlations for the present configuration of a hemispherical forebody are
plotted in Fig. 5 as a function of the angular position. The roughness height needed for transition to
occur as predicted by the three correlations falls within the narrow range of k ∈ (0.045,0.060) mm.
The three theories agree that the transition location would first occur upstream of the sonic point for
a uniform roughness height along the body surface.

B. Transient growth characteristics

For a nonsimilar boundary layer such as the hemispherical forebody, both the initial and final
locations must be varied in order to obtain an overall picture of the optimal growth characteristics.
Thus, the computational effort involved is significantly greater than that of a self-similar boundary
layer such as a flat plate or a sharp cone. The transient growth results are subdivided in two parts.
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FIG. 6. Optimal outlet energy gain Gout
E as a function of the azimuthal wave number m for selected initial

and final optimization positions: (a) θ1 = 90.0◦, (b) θ1 = 64.5◦, (c) θ1 = 32.2◦, and (d) θ1 = 12.9◦.

First, the effect of inflow and outflow disturbance locations, azimuthal wave number, and streamwise
and azimuthal curvatures, as well as the definition of the objective function corresponding to either
outlet or mean energy gain definitions are studied. Second, the overall results are presented for the
mean total and kinetic energy gains.

1. Effect of disturbance parameters and objective function definitions

First, we consider transient growth results based on the commonly used energy norm E of
Eq. (8), which accounts for both kinetic and thermodynamic fluctuations. Figures 6(a) through 6(d)
illustrate the effect of initial disturbance location θ0 and azimuthal wave number m on the optimal
outlet energy gain Gout

E at a fixed output location. Four different outflow locations are chosen to
cover a majority of the computational domain. They vary from a location shortly downstream of the
stagnation point (θ1 = 12.9◦) to the outflow of the computational domain (θ = 90◦). For each of these
outflow locations, several inflow locations are chosen to help illustrate the overall trends in transient
growth characteristics, which are plotted in Fig. 6, for each of these optimization intervals (θ0,θ1).
Results for the farthest downstream outlet location (θ1 = 90.0◦) are shown in Fig. 6(a), whereas
Fig. 6(d) displays the results for an output location that is modestly downstream of the stagnation
point (θ1 = 12.9◦). As shown in previous studies using self-similar boundary layer profiles over a
sphere [45,46], the energy amplification is stronger for outflow locations closer to the stagnation point
[Fig. 6(d)]. Results for θ1 = 64.5◦ and θ1 = 90.0◦ show a larger energy gain for shorter optimization
intervals, i.e., when the inflow location is only modestly upstream of the outflow location, showing
a maximum for θ0 ≈ 83.8◦ with θ1 = 90.0◦ and for θ0 ≈ 61.2◦ with θ1 = 64.5◦. Results for outflow
locations closer to the stagnation point, i.e., θ1 = 32.2◦ [Fig. 6(c)] and θ1 = 12.9◦ [Fig. 6(d)], show
a similar behavior to the transient growth results on the incompressible, stagnation, planar Hiemenz
flow [62]. For these cases, as the inflow location moves closer to the stagnation point from the
inflow station corresponding to the first local maximum in Figs. 6(c) and 6(d) (θ0 � 16.1◦ for
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û
v̂
ŵ
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FIG. 7. Initial and final amplitude vectors for optimal outlet energy gain Gout
E , θ1 = 32.2◦, and (a) θ0 = 9.67◦

and m = 130 and (b) θ0 = 25.8◦ and m = 320. The profiles are normalized with the local energy norm E. The
horizontal dashed lines represent the boundary-layer edges.

θ1 = 32.2◦ and θ0 � 7.73◦ for θ1 = 12.9◦), the optimal gain continues to increase in a monotonic
fashion. As described by Paredes et al. [62], this increase is accompanied by a change in the optimum
initial disturbance. For initial disturbance locations close to both planar and axisymmetric stagnation
points, where the basic state exhibits a strong negative wall-normal velocity relative to the streamwise
velocity, the wall-normal extent of the optimal disturbance shape function becomes much longer
than the thickness of the boundary layer. Figure 7(a) shows the initial and final amplitude vectors
for one such case where the initial position is close to the stagnation point, specifically, θ0 = 9.67◦,
θ1 = 32.2◦, and m = 130. Observe that the wall-normal velocity component of the perturbation
extends up to the shock layer (η ≈ 6.7 mm). For this case, a Neumann boundary condition was
set at the far field for all the perturbation variables. As seen from Fig. 7(a), the resulting mode
shapes do approach zero perturbation values in the far-field boundary. The resulting gain was nearly
unaffected and the most significant impact was to allow a smooth perturbation decay outside the
boundary layer up to the far-field boundary. This boundary condition was also used to obtain the
optimal energy gain of Fig. 6(d) for θ0 = 3.22◦ and θ1 = 12.9◦. If the disturbance profiles were
to extend even further, i.e., up to the body-shock location, then the boundary conditions will need
to be modified to explicitly account for the shock [73]. However, the physical significance of the
parametric region where this change becomes necessary remains open to question, especially in the
context of problems where the suspected cause for transition is linked to surface roughness. The long
extent of the perturbation and the associated small optimal azimuthal wave numbers are unlikely
to represent roughness-induced transition. Therefore, the present results are confined to the (entire)
region of initial locations where the initial profiles are deemed to be not influenced by the shock.
For the initial location corresponding to the local maximum of energy gain for short optimization
intervals, i.e., θ0 = 25.8◦ and m = 320 in Fig. 6(c), Fig. 7(b) shows that the peak of the wall-normal
velocity is located at η ≈ 0.2 mm, and the disturbance components quickly decay to zero farther
away from the surface. In contrast to the differences in optimum initial profiles depending on the
value of θ0, the final disturbance profiles for both θ0 = 9.67◦ [Fig. 7(a)] and θ0 = 25.8◦ [Fig. 7(b)]
are almost identical to each other.

Figure 8 shows the streamwise evolution of the energy norm E for optimal outlet energy gain
with optimal azimuthal wave numbers and selected initial locations shown in Figs. 6(b) and 6(c)
with θ1 = 64.5◦ and θ1 = 32.2◦, respectively. Although the outlet energy gain at θ = θ1 is being
optimized, the location of maximum energy norm is located within the range of optimization, i.e., at
θ0 < θ < θ1, instead of at the outlet location θ1 for most of the selected initial locations. This finding
is a consequence of the geometry and flow acceleration along the body. The subsequent decay in the
energy norm up to θ = θ1 indicates that the optimization of the mean energy gain Gmean

E might be
more appropriate for this problem.
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FIG. 8. Evolution of energy norm for highest outlet energy gain Gout
E for selected initial location for a fixed

θ1: (a) θ1 = 64.5◦ and (b) θ1 = 32.2◦. The plots display energy evolution over the entire length of hemisphere
and the fixed value of θ1 in each case is indicated by the vertical dashed line.

The effect of streamwise and azimuthal curvatures is studied in Fig. 9. Optimal outlet energy
gains as a function of the azimuthal wave number for the initial and final locations of Fig. 6(b)
are calculated using the same basic state profiles but by artificially setting hξ = 1 to neglect the
effects of streamwise curvature [Fig. 9(a)] and hζ = 1 to neglect the effects of azimuthal curvature
[Fig. 9(b)]. The comparison with results including the effect of both curvature terms (dashed lines)
shows that the streamwise curvature has a stronger effect than the azimuthal curvature. As expected,
the effects of the streamwise and azimuthal curvatures become stronger as the optimization interval
is increased. The maximum energy gain is slightly reduced after dropping the azimuthal curvature
terms, with a maximum reduction that is less than a factor of 2 for θ0 = 19.3◦ in Fig. 9(b). However,
neglecting the streamwise curvature terms [Fig. 9(a)] changes the transient growth behavior, reaching
the maximum energy gain for a different azimuthal wave number and optimization interval, and
increases the maximum energy amplification by a factor of approximately 3.

Results analogous to those in Figs. 6(b) and 6(c) but based on the alternate definition of objective
function corresponding to the mean energy gain are shown in Figs. 10(a) and 10(b), respectively. By
optimizing the mean energy gain over the streamwise domain, the results in Fig. 10 account for the
interior maximum in disturbance energy observed with the conventional, outlet energy gain (Fig. 8).
Figure 10(a) shows an important disparity between both energy gain definitions for θ1 = 64.5◦.
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FIG. 9. Optimal outlet energy gain Gout
E as a function of the azimuthal wave number m neglecting (a)

streamwise curvature (hξ = 1) and (b) azimuthal curvature (hζ = 1) effects for selected initial positions and
same final position, θ1 = 64.5◦. For reference, results accounting for both curvatures are added as dashed lines
with the corresponding colors. Note that both subfigures share the same legend.
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FIG. 10. Optimal mean energy gain Gmean
E as a function of the azimuthal wave number m for selected initial

and final optimization positions (a) θ1 = 64.5◦ and (b) θ1 = 32.2◦. The results with J = Gout
E are added for

reference as dashed lines with the corresponding colors for each θ0.

While the optimal outlet energy gain decreases as the inflow location moves closer to the stagnation
point, the optimal mean energy gain has a local minimum for θ0 ≈ 45◦ and continues to increase
for θ0 → 0. The optimal azimuthal wave numbers are consistently larger for the mean energy
gain optimization at each initial location. Results of Fig. 10(a) for Gmean

E and θ1 = 64.5◦ resemble
those of Fig. 6(c) for Gout

E and θ1 = 32.2◦, because the mean energy gain definition accounts for
the nonmonotonic evolution of E(ξ ), which as will be shown next, reaches its maxima within
the optimization domain and close to θ ≈ 30◦ for θ0 = 12.9◦ and θ0 = 19.3◦. Figure 10(b) shows
the effect of initial location on the optimal gain for the final optimization location θ1 = 32.2◦. The
differences between the results with both energy gain definitions are less noticeable for this case. The
initial and final disturbance amplitude vectors corresponding to θ1 = 32.2◦ are plotted in Fig. 11 for
two combinations of initial locations and optimal azimuthal wave numbers. Specifically, Fig. 11(a)
corresponds to θ0 = 9.67◦ and m = 130 whereas Fig. 11(b) corresponds to θ0 = 25.8◦ and m = 400.
The optimal initial perturbations based on the two different objective functions are compared with
each other for the fixed set of parameters corresponding to θ0 = 9.67◦, θ1 = 32.2◦, and m = 130.
Between the initial profiles corresponding to mean energy gain [Fig. 11(a)] and those based on
the outlet energy gain, the mean energy gain corresponds to wall-normal and azimuthal velocity
profiles with a shorter wall-normal extension and the peaks of these profiles are located closer to
the wall. Specifically, the peak of the wall-normal velocity moves closer to the wall by a factor of
approximately 4. Thereby, the choice of objective function based on the mean energy gain appears
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FIG. 11. Initial and final amplitude vectors for optimal mean energy gain Gmean
E , θ1 = 32.2◦, (a) θ0 = 9.67◦

and m = 130 and (b) θ0 = 25.8◦ and m = 400. The profiles are normalized with the local energy norm E. The
horizontal dashed lines represent the boundary-layer edge.
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FIG. 12. Evolution of energy norm for highest gain in mean energy for selected initial location for a fixed
θ1: (a) θ1 = 64.5◦ and (b) θ1 = 32.2◦. The plots display energy evolution over the entire length of hemisphere
and the fixed value of θ1 in each case is indicated by the vertical dashed line.

more relevant to roughness-induced perturbation. The final perturbations are rather similar for both
objective functions. Analogous comparison for the shorter optimization interval of θ0 = 25.8◦ and
θ0 = 32.2◦ can be made on the basis of results for mean energy gain with m = 400 in Fig. 11(b) and
those for outlet energy gain with m = 320 in Fig. 7(b). In this case, both initial and final perturbation
profiles are similar for both definitions of the energy gain, although the peak of the wall-normal
velocity is again located closer to the wall due to the combined effect of choosing mean energy gain
as the metric for optimization and the larger azimuthal wave number corresponding to the maximum
gain in this case.

The streamwise evolution of disturbance energy based on the optimization of mean energy gain
across the spatial intervals from Fig. 10 (and corresponding optimal azimuthal wave numbers), is
plotted in Fig. 12. For most initial positions of interest, the disturbance energy obtained in this
manner reaches larger values within the optimization domain than those obtained by optimizing the
outlet energy gain (Fig. 8).

2. Overall transient growth results

The optimal mean energy gain Gmean
E is plotted in Fig. 13(a) in the parameter space of θ0 and

θ1, for each corresponding optimal azimuthal wave number m. The domain of the contour plot is
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FIG. 13. (a) Contours of optimal mean energy gain Gmean
E and (b) evolution of E/E0 and K/E0 optimizing

for optimal combinations of θ0, θ1, and m. The solid line in the contour plot indicates the value of θ1 corresponding
to maximum Gmean

E for a given θ0.
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FIG. 14. (a) Contours of optimal mean kinetic energy gain Gmean
K and (b) evolution of K/K0 and E/K0 for
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to maximum Gmean

K for a given θ0.

limited by the line θ1 = θ0 (i.e., zero optimization interval or GE = 0) on the bottom and by the line
θ1 
 θ0 (i.e., rather larger optimization interval) on the top. The region beyond the upper boundary
is excluded herein because the initial perturbation profiles (particularly the wall-normal velocity)
for these parameter values do not exhibit sufficient decay at the wall-normal distance corresponding
to the shock location and the transient growth analysis is not able to converge to a satisfactory
result. Therefore, this portion of the plot is deemed unnecessary for the present analysis because the
perturbations with an extended wall-normal support are unlikely to be excited by wall roughness.
Figure 13(a) confirms the previous observations based on the energy norm E from Eq. (8). The
highest energy gain occurs for relatively short optimization intervals in the vicinity of the stagnation
point as indicated by the black line nearly parallel to the lower boundary of the plot. Figure 13(b)
shows the evolution of the energy norm E for parameters that produce the maximum mean energy
gain at selected θ0. The maximum energy ratio is E/E0 ≈ 500. The evolution of the kinetic energy
budget for these perturbations is also shown in this plot. Compared to the total energy norm E of
Eq. (8), the kinetic energy norm K of Eq. (10) exhibits a different trend as seen from Fig. 13(b).
The kinetic energy growth for optimal perturbations initiated near the stagnation point is negligible
compared with the growth in total energy E. Specifically, the maximum kinetic energy ratio for
θ0 = 1.91◦ is K/K0 ≈ 2. As the initial location is moved downstream, the kinetic energy content
of the perturbation increases and for θ0 = 51.0◦, the magnitude of kinetic and total energy norms
are nearly equivalent. The stability analysis of finite-amplitude streaks in compressible boundary
layers [50,51], as well as the analysis of Paredes et al. [52] for the present configuration, shows that
the secondary instabilities that can potentially lead to bypass transition are driven by the strength
of the streamwise velocity shear. Therefore, the reduced kinetic energy content of the perturbations
initiated near the stagnation point as seen in Fig. 13(b), motivates the alternate selection of the energy
norm for optimization, namely, one that is based on the kinetic energy alone.

Figure 14(a) shows iso-contours of optimal mean kinetic energy gain Gmean
K in the parameter

space of θ1 and θ0. Similar to Fig. 13(a), the results are delimited by θ1 = θ0 and θ1 
 θ0. The
main difference between both figures is that for optimization of GK there exists an optimum set
of parameters that lead to a maximum Gmean

K in the interior of the domain. Also, this interior
peak exists only for θ0 > 15◦. Figure 14(b) shows the evolution of the kinetic energy K and total
energy E for the selected sets of parameters that produce the maximum gain in mean kinetic
energy at selected values of θ0. A similar trend to Fig. 13(b) is observed: while the kinetic energy
experiences a maximum growth of K/K0 ≈ 90 for θ0 ≈ 44◦, the total energy growth is reduced for
larger θ0. For the largest θ0 plotted, θ0 = 63.7◦, the total energy is almost equivalent to the kinetic
energy.
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FIG. 15. (a) Optimal mean energy gains, Gmean
E and Gmean

K , as a function of θ0 and corresponding optimization
intervals, θ1 − θ0, and (b) azimuthal wave numbers, m, and β = m/(R sin θ0).

The pairs of parameters θ1 and m that lead to the maximum values of Gmean
E and Gmean

K for selected
θ0 values are plotted in Fig. 15. As previously observed, Gmean

E experiences a monotonic decay from
θ0 ≈ 2◦ and Gmean

K reaches a maximum value for θ0 ≈ 44◦. For the farthest downstream initial
locations included in the plot, Gmean

E ≈ Gmean
K , i.e., nearly all of the overall energy corresponds to

the kinetic energy component. Thus, the thermodynamic fluctuations do not experience any growth
for those θ0. Despite the larger values of Gmean

E with respect to Gmean
K , the kinetic energy contains

the streamwise velocity perturbations that lead to secondary instabilities, and subsequently, to the
process of laminar breakdown [50–52]. The evolution of Gmean

E and Gmean
K is rather similar to the

evolution of basic state quantities corresponding to the wall normal derivatives of temperature, T̄η,
and streamwise velocity, ūη, at the wall [Fig. 3(a)]. The optimization interval (θ1 − θ0) that produces
the maximum Gmean

E and Gmean
K falls within the narrow range of (θ1 − θ0) ∈ (5◦,6◦) for θ0 > 10◦.

The short optimization distance is in line with the findings by Theiss et al. [74] pertaining to the
wakes of isolated roughness element over a spherical forebody. The laminar stationary wake of the
roughness element experiences a growth and decay of the streak amplitude within a short distance,
equal to just a few roughness-element diameters downstream of the element. The optimal azimuthal
wave number m and corresponding local spanwise wave number β = m/[R sin(θ0)] are plotted in
Fig. 15(b). For initial locations lower than θ0 = 45◦, the optimal azimuthal wave number shows
a nearly linear trend with θ0, but the optimal local spanwise wave number β = m/[R sin(θ0)] for
optimal GE and optimal GK is contained within the narrow ranges of βE ∈ (10,10.7) 1/mm and
βK ∈ (11.5,12.5) 1/mm, respectively.

Next, the transient growth amplification is plotted in terms of the logarithmic amplification ratio,
the so-called N -factor, based on the total energy norm NE , or kinetic energy norm NK , defined as

NE(ξ ) = 1/2 ln[E(ξ )/E(ξ0)], (14)

NK (ξ ) = 1/2 ln[K(ξ )/K(ξ0)]. (15)

Figures 16(a) and 16(b) show the NE curves with optimal parameters for maximum Gmean
E , and the

NK curves with optimal parameters for maximum Gmean
K , respectively. The envelopes show a similar

evolution to the optimal gains Gmean
E and Gmean

K , in Fig. 15(a). While the maximum NE occurs close
to the stagnation point, the maximum NK is found at θ = 47.5◦.

Figure 17 shows the effect of outflow location θ1 and azimuthal wave number m on the evolution
of the disturbance kinetic energy along the hemisphere, i.e., θ = [θ0,90◦], for a fixed initial position
of θ0 = 44.7◦ that approximately corresponds to the optimal initial location for the highest overall
gain in mean kinetic energy. For increasing θ1, the corresponding optimal m decreases, compounding
the increase in streak spacing because of increased transverse radius at farther downstream locations.
The maximum kinetic energy is achieved for the conditions that coincide with those for the maximum
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FIG. 16. N -factor curves (thin lines) and envelope (thick line) based on (a) total energy growth NE

(b) kinetic energy growth NK . The optimal parameters for maximum (a) Gmean
E and (b) Gmean

K are selected for
each θ0.

mean kinetic energy gain. Figure 17(b) shows the evolution of the kinetic energy at various values of
m for a fixed θ1 = 49.3◦. In this plot, only the curve with m = 721 corresponds to the optimal wave
number for the physical interval of interest, namely, (θ0,θ1) = (44.7◦,49.3◦). Increasing values of
m are seen to reduce the streamwise length of the region over the disturbance kinetic energy would
exceed a specified threshold.

C. Implications of transient growth predictions

Herein the results of this optimal growth analysis are used to reexamine the highly successful
transition criteria of Reshotko and Tumin [36] and the experimental observations of transition near
the sonic location of Kaattari [49]. Note that for short optimization intervals, the initial optimal
disturbance corresponds to pairs of counter-rotating vortices with similar magnitudes of the wall-
normal and spanwise velocity components, and with peak-perturbation locations that are contained
within the boundary layer thickness, as shown in Fig. 11(b). Numerical studies [33,39,40,42,75,76]
have shown that roughness elements induce similar counter-rotating vortices that can experience
transient growth. However, the disturbance induced by roughness elements exhibits a significant
streamwise velocity component, which is not present in the theoretically optimal perturbations.
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FIG. 17. Effect of final optimization location θ1 and azimuthal wave number m on kinetic energy evolution
for optimal mean kinetic energy gain Gmean

K and θ0 = 44.6◦. (a) Evolution of optimal perturbations with
combinations of θ1 and m; (b) evolution of optimal perturbations with suboptimal selected m with fixed
θ1 = 49.3◦.
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FIG. 18. (a) Optimal mean kinetic energy gain and (b) roughness-induced transfer function and roughness
height. The values are normalized with their corresponding maximum or minimum. The vertical lines denote
the sonic point and the location for maximum wall shear.

Therefore, roughness-induced transient growth is certainly possible but always suboptimal. Despite
the reported low amplification ratios in the present configuration, the growth of transient growth
streaks induced by subcritical distributed roughness elements might lead to the onset of nonstationary
streak instabilities that induce transition shortly after their onset [52,74].

As introduced by Reshotko and Tumin [36], the optimal kinetic energy gain can be related to
roughness-induced kinetic energy, Kin = ρ̄kū

2
k , by assuming that the roughness-induced velocities

are proportional to the roughness height ūk/ūe ∝ k/�, and that T̄e/T̄k = ρ̄k/ρ̄e, where T̄k = T̄w.
Then, the induced kinetic energy can be written as

Kin ∝ T̄e

T̄w

(
k

�

)2

ρ̄eū
2
e . (16)

Here ρ̄eū
2
e is not uniform along the streamwise direction [Fig. 2(a)] and therefore is included

in Eq. (16). Note that this term was not included in the correlation derived by Reshotko and
Tumin [36], because they performed a local analysis and used the edge boundary layer values for
nondimensionalization, while here, the global free-stream values are used to be consistent with the
transient growth analysis of Sec. III B.

Furthermore, the energy at the transition location is assumed to be

Ktr = GKKin ∝ Gmean
K

T̄e

T̄w

(
k

�

)2

ρ̄eū
2
e . (17)

Finally, in the spirit of an absolute amplitude criterion for transition, the transition onset location
is associated with a critical disturbance amplitude Atr = √

Ktr ∝ ckk, where ck is defined as the
roughness-induced transfer function from roughness height to amplitude disturbance:

ck =
√(

Gmean
K

T̄e

T̄w

ρ̄e

)
ūe

�
. (18)

This critical disturbance amplitude is assumed to corresponds to the amplitude required for sufficient
amplification of secondary instabilities to achieve subsequent breakdown. At the location of
maximum ck (θck,max ), the roughness height required to produce a certain disturbance amplitude
is minimum, i.e., θck,max = θkmin , and k ∝ 1/ck . Equation (18) can be related to the correlation of
Eq. (3) derived by Reshotko and Tumin [36], by dropping ρe and ue because of the local assumption
used in their analysis and by assuming G1/2/Re� ∝ (2Tw/Te)−0.77.

The optimal mean kinetic energy gain [previously plotted in Fig. 15(a)] divided by its maximum
value, GK,max = 59.6, is shown in Fig. 18(a), together with the locations corresponding to the sonic
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TABLE I. Comparison of angular location of minimum required roughness height for transition onset with
predictions by PANT [43,44], Reda [35], and Reshotko and Tumin (RT) [36] roughness-induced transition
correlations.

PANT Reda RT: Parallel, GE Nonparallel, Gmean
K

θkmin 27.3◦ 34.8◦ 36.9◦ 39.2◦

point Me = 1 and maximum wall shear (or equivalently, the maximum of (ūη)w for this case with
constant wall temperature). The locations for maximum Gmean

K and (ūη)w are almost at the same
downstream position. This result is in agreement with incompressible parallel transient growth
theory, where the nonmodal growth is known to be driven by the velocity shear [2]. Figure 18(b)
shows that θkmin = 39.2◦, which is slightly upstream of the sonic location θMe=1 = 41.1◦. This result
is in agreement with the experimental observations of the PANT Program [43,44], which reported
that roughness induced transition flashed upstream from the cone to somewhere ahead of the sonic

point when Re�( k
�

Te

Tw
)
0.7 � 255 at the sonic point. Furthermore, Table I shows that the location θkmin

is in agreement with the transition locations predicted by roughness-induced transition correlations.
The present geometry and flow conditions correspond to the experiment study of Kaattari [49],
who focused on the effects of mass addition on transition and heat transfer. Transition onset was
not observed for zero mass injection. As the mass injection rate was increased, the transition
location was first observed at θtr ≈ 45◦, which is in good agreement with the present prediction,
θkmin = 39.2◦, taking into account that the optimization interval is approximately 5◦ [Fig. 15(a)].
Note that although the mass injection can be considered as a wall roughness, it also modifies the
boundary layer profiles [48], and the analysis presented here is performed for the zero mass addition
case in the same way that the roughness correlations are applied using boundary layer parameters
evaluated for the no roughness case.

IV. CONCLUDING REMARKS

Optimal transient growth analysis has been conducted for the laminar flow based on the solution
of the Navier-Stokes equations over a hemisphere of radius R = 0.0889 m at zero angle of attack
and free-stream conditions corresponding to the experiment of Kaattari [49]: M∞ = 7.32, Re′ =
14.6×106 m−1, and T∞ = 65 K. The parabolized stability equations (PSE) were used in a variational
approach to obtain the optimal initial disturbance that leads to the maximum energy gain for a selected
streamwise domain and azimuthal disturbance wave number.

A commonly used objective function for optimal growth predictions corresponds to inlet-to-
outlet gain in the so called Mack’s energy norm, which combines the contributions from both
kinetic and thermodynamic fluctuations. For this choice of objective function, the predicted trends
based on the Navier-Stokes basic state are in agreement with the previous results [45,46] based
on a local-similarity solution to boundary layer equations; specifically, the transient growth is
stronger in the vicinity of the stagnation point and the convex curvature reduces the optimal energy
amplification. The results are also consistent with prior predictions for the incompressible, planar
Hiemenz flow in that, for optimization domains close to the stagnation point, the optimal azimuthal
wave number becomes rather small and the initial perturbation profile extends beyond the boundary
layer edge [62]. In the present hypersonic case, the optimum initial profile extends into the shock
layer, indicating a significant wall-normal velocity perturbation at locations approaching the bow
shock. Such perturbations are unlikely to represent roughness-induced transition.

Optimal growth computations are also performed using an alternate objective function that
maximizes the mean energy gain over the integration domain. The latter selection of objective
function yields larger energy amplification and the resulting optimal initial disturbance profiles
move closer to the wall, denoting perturbations that may be more easily realizable via surface

053903-19



PEDRO PAREDES, MEELAN M. CHOUDHARI, AND FEI LI

roughness. Although the maximum energy gain is obtained for short optimization intervals with
initial locations near the stagnation point, the streamwise velocity shear of the basic flow profiles is
very small in the vicinity of the stagnation point, and consequently, the optimal perturbations excited
near this location do not lead to downstream perturbations with the highest kinetic energy.

The transient growth disturbances are purely stationary and their growth cannot amount to laminar-
turbulent transition. The growth of transient growth streaks can lead to the onset of nonstationary
streak instabilities that typically amplify rather rapidly and induce transition shortly after their onset.
The growth of streak instabilities is intimately connected with the amplitude of transient growth
streaks. Because the streak instabilities are mostly driven by streamwise velocity shear [50–52],
a greater content of kinetic energy within a specified total energy is likely to enhance the growth
of those instabilities, and therefore, potentially lead to an earlier onset of bypass transition. For
this reason, transient growth analysis was performed with the mean kinetic energy gain as the
objective function. The results show that the maximum kinetic energy gain is obtained for an initial
location approximately coincident with the maximum-wall-shear position, which for the present
case is located approximately 3◦ downstream of the sonic point at θMe=1 = 41.1◦. By assuming
that the initial perturbation velocity induced by the roughness is proportional to the roughness
height and that the ratio of basic state densities near the boundary layer edge and roughness height,
respectively, is proportional to the wall-cooling factor, a transfer function from roughness height
to disturbance amplitude is defined and has a maximum at θ = 39.2◦. A larger transient growth
disturbance amplitude is directly linked to a greater destabilization of the secondary instabilities and
subsequent breakdown. This maximum corresponds to the location where a minimum roughness
height would be required to produce a certain disturbance amplitude. This position is compared with
roughness-induced transition correlations [35,36,44] and the agreement is satisfactory. Furthermore,
Kaattari [49] measured the transition location for minimum mass injection at θ ≈ 45◦, which is in
good agreement with the predicted location of peak boundary layer perturbation, considering that
the length of the optimization interval is approximately 5◦.

The implications of these findings for the transition correlation derived by Reshotko and
Tumin [36] are not obvious; however, it will be worthwhile to investigate those in future work
by using the present theoretical formulation to examine the dependence of transient growth on wall
temperature, free-stream Mach number, and geometry radius, and then attempting to derive a revised
transition criterion based on the stronger foundation of nonparallel spatial transient growth.

The optimal energy gains and corresponding initial profiles vary with the choice of energy
norm, and also of the objective function. We show herein that in certain important problems as the
blunt-body paradox, the potential utility of the optimal growth theory could be improved by making
judicious selections of energy norm and objective functions. The resulting predictions provide a
possible explanation for the experimental observation that roughness induced transition over blunt
bodies occurs near or somewhat upstream of the sonic point.

We note that the generation (i.e., receptivity) of the streak disturbances has not been addressed
in this paper. As previously mentioned, disturbance profiles resulting from realistic external
disturbances result in suboptimal transient growth. The present results based on optimal initial
disturbances may therefore be viewed as providing an upper bound on nonmodal energy amplification
due to spanwise periodic disturbances.

The results show a maximum logarithmic amplification ratio based on kinetic energy norm of
NK = 2.24, which corresponds to an amplitude growth of A/A0 = √

K/K0 ≈ 10. Paredes et al. [52]
show that the present boundary layer perturbed by finite-amplitude optimal perturbations becomes
unstable for streak amplitudes Asu > 0.16. Therefore, the needed initial amplitudes of optimal
perturbations for secondary instability would be A0 > 0.01. Taking into account that perturbations
induced by distributed roughness are suboptimal [40], a realistic perturbation would need even larger
initial amplitudes. Consequently, nonlinear effects are expected to be important, and, therefore, the
study of suboptimal nonlinear perturbations that are more readily realizable via distributed roughness
would be very helpful. We hope that the present set of results will spur analyses of this type and also
provide useful guidance for defining the relevant roughness configurations.
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