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The numerical investigation of a circular Couette flow with a radial temperature gradient
is performed to elucidate the influence of the radial buoyancy on flow and heat transfer for
different values of the Prandtl number when the gravitational acceleration is neglected. We
consider an infinite-length cylindrical annulus of radius ratio 0.8 with the inner rotating
cylinder and the outer stationary cylinder. The flow is stabilized with the outward heating
while it is destabilized with the inward heating. A weakly nonlinear analysis shows that
the transition to stationary axisymmetric modes is supercritical while the oscillatory
axisymmetric modes occur via a subcritical bifurcation. The effect of the centrifugal
buoyancy on the transfer of angular momentum (i.e., torque) is quite weak while the
effect on the heat transfer is significant.
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I. INTRODUCTION

The flow inside a cylindrical annulus with rotating inner cylinder and stationary outer cylinder
subject to a radial temperature gradient has been actively investigated since a few decades ago [1–14],
because of its many industrial applications such as cooling of rotating machinery, solidification of
pure metals, centrifugation, and chemical vapor deposition. This flow can also be used as a model
of the complex geophysical and astrophysical flows in the neighborhood of the equator of planets
and stars [15,16].

The geometry of a cylindrical annulus (Fig. 1) is described by the following parameters: the radius
ratio η = ri/ro and the aspect ratio � = L/d, where ri and ro are the radii of the inner and outer
cylinders, L is the annulus length, and d = ro − ri is the annulus width. The fluid has the density ρ,
the kinematic viscosity ν, and the thermal diffusivity κ . In the Boussinesq approximation, the density
of the fluid is approximated by a linear function of the temperature ρ(T ) ≈ ρ0[1 − α(T − T0)] in
driving force terms of the flow equations while it is assumed constant, as the diffusion properties ν and
κ , in other terms. Here ρ0 is the density at a reference temperature T0 and α is the thermal expansion
coefficient. The Prandtl number Pr = ν/κ and the thermal expansion parameter γa = α	T are
constructed from these properties to characterize the fluid under an imposed temperature difference
	T .

The stability of the flow with a radial temperature gradient in a cylindrical annulus in negligible
gravity field has been studied analytically, in order to recognize the effect of temperature gradient
on the flow instability. Becker and Kaye [1] found that the flow is stabilized by heating the inner
cylinder, while it is destabilized by heating the outer cylinder. Takhar et al. [3] observed that the
critical Taylor number (Tac) decreases rapidly with increasing the Rayleigh number in the flow
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FIG. 1. Sketch of the flow configuration.

between counter-rotating cylinders. Since then, Takhar et al. [6] confirmed that the flow is more
stable in both corotating and counter-rotating cylinders configurations, when the temperature of the
inner cylinder is higher than that of the outer cylinder. Critical wave number also increases steeply by
heating the inner cylinder in a counter-rotating configuration. Ali and Weidman [7], Soundalgekar
et al. [8], Kong and Liu [9], and Jenny and Nsom [10] showed that the critical values of Taylor
number and wave number depend on the flow geometry and the thermal variation of fluid properties.
Recently, Meyer et al. [14] performed a linear stability analysis (LSA) to extend previous studies
and to investigate the effect of the radial buoyancy, i.e., a thermal buoyancy force associated with
the centrifugal acceleration field [11–14], revealing that critical modes depend on the dimensionless
parameters: η, Pr, and γa through a single dimensionless number S = −γaPr/ ln η.

All the above cited studies have revealed the role of the centrifugal buoyancy on the flow stability:
it induces the dissymmetry in the threshold and in the nature of the critical modes: the inward heating
(i.e., with the cooled inner cylinder) is destabilizing and leads to stationary axisymmetric modes
while the outward heating (i.e., with the cooled outer cylinder) is stabilizing and can yield oscillatory
modes depending on the values of the number S as proved by a recent analytical study of Kirillov
and Mutabazi [17] in a short wavelength approximation.

In the present study, we carry out a numerical investigation on circular Couette flow with a
radial temperature gradient to clarify the effect of the radial buoyancy on the flow structure and
heat transfer. This is an extension of the work of Meyer et al. [14]: the eigenvalue spectrum of
the linearized operator is analyzed, and the linear coefficients of the Ginzburg-Landau equation
(GLE) are computed for different control parameters (Pr, γa) for a fixed value of η (=0.8). These
results are completed by a DNS (direct numerical simulation) performed with adopting periodic
boundary conditions in the axial direction. The DNS code is validated by the comparison of
the computed critical values of flow parameters with the predictions of the LSA [14]. Velocity,
vorticity, and temperature fields are computed together with the momentum and heat transfer
coefficients.

The paper is organized as follows: in Sec. II, the flow geometry and the governing equations are
presented together with the adopted numerical methods for their solving. The results are described
in Sec. III and discussed in Sec. IV. The last section contains conclusions.
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II. PROBLEM FORMULATION

We consider the incompressible flow of a Newtonian fluid in a cylindrical annulus of radius
ratio η = 0.8 (Fig. 1) with rotating inner cylinder at an angular frequency 
i and with stationary
outer cylinder (
o = 0). The two cylinders are maintained at different constant temperatures Ti

and To, creating a radial temperature gradient acting on the fluid layer. The temperature difference
	T = Ti − To is assumed to be small enough for the validity of the Boussinesq approximation.

A. Governing equations

The conservation of mass, momentum, and energy is expressed through the continuity, Navier-
Stokes, and energy equations, which relate the velocity u, the pressure p = ρ0π , and the temperature
deviation θ from the reference temperature To, i.e., θ = T − To. In cylindrical coordinates (r,ϕ,z)
these equations read [12–14]
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∂z2 . The last term in the
right-hand side of Eq. (1b) represents the centrifugal buoyancy per mass unit, which results from
the coupling between the temperature gradient and the centrifugal acceleration gc = (u2

r /r)er . The
kinematic and thermal boundary conditions at the cylindrical surfaces are

u = ri
ieϕ, θ = 	T at r = ri ; u = 0, θ = 0 at r = ro. (2)

In the following, lengths are scaled by the gap width (d), flow velocities by the rotation velocity of
the inner cylinder (ri
i), and the temperature field by the temperature difference (	T ). The resulting
control parameters are the Prandtl number Pr, the radius ratio η, the thermal expansion parameter
γa , and the Taylor number defined as Ta = Re

√
d/ri , where Re = ri
id/ν is the Reynolds number.

The system of Eqs. (1) possesses a base state solution which is stationary and invariant in both
axial and azimuthal directions [14]:

V (r) = Ar + B

r
, �(r) = ln(1 − η)r

ln η
, A = − η

1 + η
, B = η

(1 − η)
(
1 − η2

) . (3)

The full solution can be cast in the form⎛
⎝u(t,r)

p(t,r)
θ (t,r)

⎞
⎠ =

⎛
⎝V (r)er

P (r)
�(r)

⎞
⎠ +

⎛
⎝u′(t,r)

p′(t,r)
θ ′(t,r)

⎞
⎠, (4)

where (u′,p′,θ ′) are perturbation velocity, pressure, and temperature fields around the base flow (3).
The substitution of Eq. (4) into Eqs. (1) yields

L(u′,p′,θ ′) + N(u′,p′,θ ′) = 0, (5)
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where L and N represent the linear and nonlinear parts of the system (1) with respect to the
perturbation fields.

For the LSA, the nonlinear part N(u′,p′,θ ′) is neglected and the linearized system L(u′,p′,θ ′) = 0
is solved by expanding the perturbations into normal modes of the form [14]

(u′,p′,θ ′) = (û(r),p̂(r),θ̂(r)) exp[σ t + i(ωt + nϕ + kz)], (6)

where σ, ω, n, and k are, respectively, the temporal growth rate, frequency, azimuthal wave number,

and axial wave number of the perturbation flow. The vector �(r) = (û(r),p̂(r),θ̂(r))
T

is the structure
function. It satisfies the Sturm-Liouville system:

L�(r) = sB�(r), with s = σ + iω,

�

(
η

1 − η

)
= �

(
1

1 − η

)
= 0, (7)

where the operators L and B are given by
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⎜⎜⎜⎝
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0 1 0 0 0
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⎞
⎟⎟⎟⎠. (9)

We have introduced the local angular frequency 
 = V/r and a differential operator D = d/dr .
The Laplacian operator should be understood as � = r−1D(rD) − n2r−2 − k2.

In the system (7), the coupling of the temperature gradient with the perturbation of the radial
velocity (D� û) is the source of the temperature perturbation which, in turn, couples with the velocity
field via the centrifugal buoyancy (−γar


2θ̂) to amplify the flow perturbation.
Nonlinear analysis can be performed with using the normal mode expansion of the system (5).

This method is, however, cumbersome for such a problem [18,19] so that we use the DNS to obtain
nonlinear properties of the flow.

B. Numerical methods

The eigenvalue problem (7) was solved by the Chebyshev spectral collocation method. Each
normal mode is expanded into a Chebyshev power series and Eqs. (7) are discretized with the
Chebyshev-Gauss-Lobatto collocation points. The resulting generalized eigenvalue problem in
matrix form is solved by the generalized Schur decomposition or QZ decomposition to compute
eigenvalues and eigenvectors [11].

For the DNS, the governing equations were discretized by a finite-volume method in a cylindrical
coordinate system. A second-order central difference method was employed for spatial discretization
of the derivatives. A hybrid scheme was used for time advancement: nonlinear terms and cross-
diffusion terms were explicitly advanced by a third-order Runge-Kutta scheme, and the diffusion
terms were implicitly advanced by the Crank-Nicolson scheme [12,13]. A fractional step method
was employed to decouple the continuity and momentum equations [20]. The fast Fourier transform
(FFT) was used to solve the Poisson equation resulting from the fractional step method [20]. The
velocity and the temperature were assumed to be periodic in the axial direction (z):

u(r,ϕ,z) = u(r,ϕ,z + L), θ (r,ϕ,z) = θ (r,ϕ,z + L), (10)
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FIG. 2. Grid system (every four grid points is plotted in radial direction for clarity); (a) r-ϕ plane, (b) r-z
plane.

where L is the domain length in the axial direction fixed to L = 4d. The number of grid cells used
in the present study is 64(r) × 64(ϕ) × 64(z). The uniform grid was adopted in the azimuthal and
axial directions, while grid points clustered close to the cylinder surfaces were used in the radial
direction with the minimum grid size 0.005 d (Fig. 2).

III. RESULTS

A. Threshold of the instability

The threshold and the nature of instability were determined by both the linear stability analysis
and the DNS. Both methods yield the same results within a precision of 0.8% (Table I). For a fixed
value of Pr, the critical values of Ta increases with γa . At large Pr, the outward heating (γa > 0)
induces critical oscillatory modes (ωc �= 0), while the critical modes are stationary (ω = 0) in inward
heating (γa < 0).

To get a better insight into the effect of the centrifugal buoyancy and the centrifugal force, we
have analyzed the spectrum of the eigenvalues of the operator L, in particular, those corresponding
to axisymmetric modes (n = 0). Yoshikawa et al. [11] showed that, in the inviscid approximation,

TABLE I. Critical parameters and coefficients of the Ginzburg-Landau equation against Pr and γa (η = 0.8).

Tac Tac kc ωc τ0 τ0

Pr γa (LSA) (DNA) (LSA) (LSA) (LSA) (DNS) ξ0 c0 cg c1 l

−10−2 46.533 46.594 3.134 4.16 4.791 0.269 60.82
−10−3 47.281 47.231 3.133 3.66 3.559 0.270 29.31

10 0 0 0 0
10−3 47.452 47.380 3.132 3.54 3.475 0.270 25.69
10−2 48.246 48.209 3.132 2.98 3.288 0.270 17.84

−10−2 43.996 44.343 3.136 0 17.6 9.59 0.269 0 0 0 1157.24
50

10−2 48.292 49.020 3.123 0.008 7.19 3.294 0.271 −0.469 0.002 −0.469 −60.04

−10−2 41.337 41.509 3.140 51.0 36.326 0.268 2485.11
0 0 0 0−10−3 46.643 47.160 3.133 10.5 3.801 0.269 1499.98

100
10−3 47.748 47.595 3.128 0.002 7.17 3.527 0.270 −0.951 0.001 −0.951 −53.62
10−2 47.932 48.905 3.128 0.009 7.21 3.097 0.270 −0.181 0.003 −0.218 −431.22
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FIG. 3. (a) Variation of the growth rate with the wave number for Ta = 47.4 and (b) marginal stability
curves for η = 0.8 and Pr = 10 for isothermal case (γa = 0), inward heating (γa = −0.01) and outward
heating (γa = 0.01). Stationary and oscillatory modes are shown by solid and broken lines, respectively.

the problem contains two different modes: the centrifugal mode and the temperature mode. For a
given value of the radius ratio, the behavior of the critical modes depends on the Prandtl number.
Figure 3(a) illustrates the behavior of eigenvalues in the cases of isothermal (γa = 0), inward heating
(γa = −0.01), and outward heating (γa = −0.01) at a given set of Pr and Ta (Pr = 10, Ta = 47.4).
The fastest growing modes (i.e., modes with the largest σ ) are stationary and axisymmetric and occur
at a critical wave number kc = 3.13 in these three cases [Fig. 3(b)]. These modes are centrifugal
ones, but their growth rates are modified by the centrifugal buoyancy. As the centrifugal buoyancy
enhances and weakens the centrifugal force in inward and outward heating, respectively [14], the
growth rate becomes larger and smaller for a negative and positive γa compared to the isothermal
case. The variation of the growth rate with the criticality parameter ε = Ta/Tac − 1 and the marginal
stability curves for Pr = 50 shows that no oscillatory mode is expected near the criticality for
inward heating (Fig. 4). In outward heating (γa > 0) where the fluid layer is in stable stratification
under the centrifugal gravity field gc, oscillatory modes can become critical when γa is larger
than a certain threshold γ ∗

a that depends on η and Pr [14]. The dispersion curves σ = σ (k) and
ω = ω(k) computed for Pr = 50 at critical conditions (Ta = Tac) illustrate the merging of the
different eigenvalue branches (Fig. 5). Figure 6 shows the variation of the growth rate and the

FIG. 4. (a) Variation of the growth rate with the criticality ε = Ta/Tac − 1 and (b) marginal curves of the
first two unstable modes, for η = 0.8, Pr = 50, and γa = −0.01. Branches of stationary and oscillatory modes
are shown by solid and broken lines, respectively.
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FIG. 5. Variation of the growth rate and the frequency with the wave number k for η = 0.8 and Pr = 50 at
Ta = Tac. The thermal expansion parameter γa = 0.001 < γ ∗

a = 0.002 in (a) and (b) and γa = 0.01 > γ ∗
a in

(c) and (d).

frequency with the criticality parameter together with the marginal stability curves and the frequency
dispersion curve of oscillatory modes.

In the neighborhood of the instability threshold, the complex linear growth rate s = σ + iω can
be expanded into power series of the axial wave number k:

s = σ0ε + σ1q
2 + i[ωc + ωTaε + cgq + ω2q

2] + O(q3), (11)

where q = (k − kc) and the coefficients are given by the following partial derivatives evaluated at
the critical condition:

σ0 = Tac

(
∂σ

∂Ta

)
c

, σ1 = 1

2

(
∂2σ

∂k2

)
c

, cg =
(

∂ω

∂k

)
c

,

ωTa = Tac

(
∂ω

∂Ta

)
c

, ω2 = 1

2

(
∂2ω

∂k2

)
c

. (12)

B. Complex Ginzburg-Landau equation

The dispersion relation (11) is identical to the linear part of the complex Ginzburg-Landau
equation (GLE) describing the amplitude of a Fourier mode eikz. The GLE, which can describe
perturbation flow in its weakly nonlinear regime, is given by [21,22]

τ0

(
∂A

∂t
− cg

∂A

∂z

)
= ε(1 + ic0)A + ξ 2

0 (1 + ic1)
∂2A

∂z2
− l(1 + ic3)|A|2A + g(1 + ic5)|A|4A, (13)
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FIG. 6. Stability analysis for η = 0.8, Pr = 50, and γa = 0.01: Variation of the growth rate (a) and the
frequency (b) with the criticality ε = Ta/Tac − 1, marginal curves of the first two unstable modes (c), Variation
of the frequency of the oscillatory mode with the wave number, i.e., dispersion relation (d).

where

τ0 = 1

σ0
, ξ0 =

(
−σ1

σ0

)1/2

, c0 = ωTa

σ0
, c1 = ω2

σ1
.

The parameters τ0 and ξ0 represent the characteristic time and the coherence length of perturbation,
respectively. For time-dependent perturbations, c0 and c1 are the linear dispersion coefficients, and
cg is the group velocity. The third and fourth terms at the right-hand side of Eq. (13) concern the
nonlinear state of flow. The constants c3 and c5 are nonlinear dispersion coefficients. The Landau
constant l determines the nature of the bifurcation from the base flow (3) [23]. If l > 0, the bifurcation
is supercritical. For stationary perturbation flow, the amplitude saturates at the equilibrium value
Ae = √

ε/ l after a large enough time. If l < 0, the bifurcation is subcritical and no saturation is
expected for the GLE of the third order. Then, the fifth order nonlinearity, i.e., the fourth term at the
right-hand side of Eq. (13), is at least needed for saturation.

The linear coefficients were computed by LSA and the nonlinear coefficient l was extracted from
DNS results. For validation of the numerical code, the time constant τ0 has also been computed by
DNS. From the linear growth of the amplitude [Fig. 7(a)], the growth rate σ is determined. The
variation of σ in function of the Taylor number Ta gives the constant τ0. The results of both LSA and
DNS agree quite well with each other (Table I). In the present study, the amplitude of a perturbation
mode (|A|) was defined as follows:

|A| = 1

2πrmL ri
i

∫ L

0

∫ 2π

0
|ur (rm,ϕ,z)| dϕdz, where rm = ri + ro

2
. (14)
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FIG. 7. (a) The growth and saturation of the amplitude of perturbation mode for Ta = 50, Pr = 20, and
γa = 0.01. (b) The growth rate of the instability plotted against Ta for Pr = 20, γa = 0.01.

In the DNS, the spatial modulation of the complex amplitude was ignored because of the periodic
boundary conditions in the axial direction. The complex amplitude can thus be represented as
A = |A(t)| exp[iφ(t)] so that the amplitude equation (13) is split into two equations: one for the real
amplitude |A| and another for the phase φ:

τ0
d

dt
(ln |A|) = ε − l|A|2 + g|A|4 =: f (|A|2),

τ0
d

dt
(φ) = εc0 − lc3|A|2 + gc5|A|4. (15)

The plot of (d ln |A|/dt) against |A|2 (e.g., Fig. 8) allows us to determine the coefficients l and g

[24]: l is given by the slope at the origin |A|2 = 0; g is determined only for subcritical bifurcation
from the abscissa |Am|2 of the maximum of f (|A|2) [Fig. 8(b)]:

l = − df (|A|2)

d|A|2
∣∣∣∣
|A|2=0

, g = l

2|Am|2 < 0. (16)

The computed values of the coefficients are given in Table I for some values of γa and Pr. We
found that all the stationary modes appear through a supercritical bifurcation (i.e., with l > 0)
while oscillatory modes through the subcritical transition. For Pr = 50 and 100, the bifurcation
to oscillatory axisymmetric modes is subcritical for γa = 0.001 and 0.01 while the transition to
stationary axisymmetric modes is supercritical for all values of Pr. The coherence length ξ0 is almost
independent of Pr for inward and outward heating. The characteristic time τ0 weakly varies with Pr

FIG. 8. The derivative of the amplitude logarithm plotted against the square of the amplitude: (a) for
γa = 0.001, Pr = 10, Ta = 48 (supercritical bifurcation); (b) for γa = 0.01, Pr = 50, Ta = 49 (subcritical
bifurcation).
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FIG. 9. Instantaneous velocity and temperature fields of flow in the r-z plane for Pr = 10 and γa =
0.01 (the abscissa x is a shifted radial coordinate: x = r − ri): (a) Ta = 49, (b) Ta = 55, (c) Ta = 60,
(d) Ta = 65.

for γa > 0 while it strongly increases with Pr for γa < 0. Thus, the dependence of the perturbation
slowing down near the onset, i.e., the time τ = τ0/ε with Pr, exhibits an asymmetric behavior for
inward and outward heating: for a given fluid, the perturbations grow faster in the outward heating
than in the inward heating. For the subcritical bifurcation to oscillatory modes for γa = 0.01, we
found g = −2.07 × 106 for Pr = 50 and g = −1.79 × 107 for Pr = 100.

C. Flow patterns

We have performed DNS in both outward and inward heating for Pr ∈ 10,50,100, which were
representative for the different modes obtained in LSA. For Pr = 10, axisymmetric stationary
counter-rotating vortices are formed in the annulus at the onset of the instability. Figure 9 shows
instantaneous velocity fields in the r-z plane together with instantaneous temperature fields for
γa = 0.01 and different values of Ta. Figure 10 represents the variation in time and in axial direction
of the temperature field for the same parameters as in Fig. 9. As Ta increases, vortices become
unstable and for Ta > 55, wavy vortex flow sets in with oscillations in time that propagate both in
the axial and azimuthal directions (Figs. 9(c), 9(d), 10(c), and 10(d). This transition scenario of flow
patterns is identical for both inward heating (γa < 0) and outward heating (γa > 0) at Pr = 10. It
is worthwhile to remind that, for isothermal flow (γa = 0), a wavy vortex flow appears at a similar
value of Ta (around Ta = 57 for η = 0.8). Therefore, for small values of Pr, although the radial
buoyancy has an influence on the threshold of the first instability, it has no significant effect on the
threshold of the secondary instability.

For large values of Pr, a different scenario of flow transitions was found in outward heating
(γa > 0). Axial velocity and temperature fields in the midgap cylindrical surface and their space-time
diagrams are presented in Figs. 11 and 12, respectively, both for Pr = 50 and γa = 0.01. The
instability leads to counter-rotating helical vortices, traveling in the axial direction [Figs. 11(a) and
12(a)]. However, as Ta increases, vortices become stationary and axisymmetric [Figs. 11(b) and
12(b)]. Like in the case of small values of Pr, a further increase of Ta leads to the wavy vortex flow
[Figs. 11(c) and 12(c)]. The three-dimensional cores of each vortices can be seen in Fig. 13. On the
other hand, for the inward heating (γa < 0), no inclined vortices appeared at the onset Tac even at
Pr = 100: the instability yields stationary axisymmetric vortices as in the case of low values of Pr
(Fig. 14), confirming the stationary nature of the bifurcation predicted by the LSA.
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FIG. 10. Space-time diagram of temperature field for Pr = 10 and γa = 0.01 at the midgap r = rm and a
given ϕ: (a) Ta = 49, (b) Ta = 55, (c) Ta = 60, (d) Ta = 65.

D. Momentum and heat transfer

1. Current density of the angular velocity and pseudo-Nusselt number

Averaging the ϕ-momentum equation (1c) over time and over a cylindrical surface area A(r) =
2πrL yields the current density J� of the angular velocity � (t,r) = uϕ/r . This current density is
conserved in the radial direction [25]:

dJ�

dr
= 0, J� = r3

[
〈ur� 〉A − ν

∂〈� 〉A
∂r

]
, (17)

where

〈X〉A = 1

A

∫∫
A

X rdrdϕdz. (18)

Figure 15 illustrates the profiles of J� for some values of Ta: J� is constant across the gap and
depends only on the value of Ta for stationary states (Pr = 10, γa = −0.01) as well as for oscillatory
states (Pr = 100, γa = 0.01).

FIG. 11. Instantaneous axial velocity field in the midgap cylindrical surface (r = rm) for Pr = 50, γa =
0.01, and η = 0.8: (a) Ta = 49, (b) Ta = 51, (c) Ta = 60.
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FIG. 12. Space-time diagrams of the temperature for Pr = 50 and γa = 0.01 in the midgap cylindrical
surface (r = rm) at a given ϕ: (a) Ta = 49, (b) Ta = 51, (c) Ta = 60.

The transfer of the transverse momentum in the radial direction can be quantified with the
pseudo-Nusselt number defined as follows [25]:

N� = J�

J�
lam

, (19)

where J�
lam is the current density of angular velocity in the laminar flow (3), which is given by

J�
lam = 2νB = 2νr2

i


i

1 − η2
. (20)

The pseudo-Nusselt number N� is the analog of the Nusselt number Nu of the thermal convection; it
measures the efficiency of the transport of the angular velocity in the radial direction by the perturbed
flow, compared to the purely molecular transport in the laminar flow [25]. For an isothermal flow, it
indicates the dissipation rate (ε) through the relation N� = (1 + η)2ε/4 [13].

The variation of the pseudo-Nusselt number N� with Ta is shown in Fig. 16 for Pr = 10 and
100. In the laminar regime, N� = 1 and then starts to increase with Ta when the vortices appear in
the flow. Only a very weak effect of the radial buoyancy is found, while it affects significantly the
flow behavior near the threshold. Indeed, the radial buoyancy has no impact on the N� for Ta � 55,
because the centrifugal force effect dominates completely the dynamics of the flow. Moreover, no
effect of Pr on the variation of N� is detected.

FIG. 13. Cores of the azimuthal vorticity ωϕ for Pr = 50 and γa = 0.01: (a) Ta = 49 (ωϕ = ±0.1),
(b) Ta = 51 (ωϕ = ±0.16), (c) Ta = 60 (ωϕ = ±0.28). Blue and red cores are of positive and negative ωϕ .
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FIG. 14. Space-time diagram of the temperature field for Pr = 100, γa = −0.001 at the midgap r = rm and
a given ϕ: (a) Ta = 47, (b) Ta = 60.

2. Friction coefficient

The friction coefficient is a dimensionless measure of the torque M = Mez that the fluid exerts
on the inner cylinder and it is given by [12,13]

CM = M

ρ0πr2
i L(ri
i)2/2

. (21)

In Fig. 17, the variation of the friction coefficient CM against Ta is presented for Pr = 10 and 100
together with the coefficient for laminar circular Couette flow given by [12]

CM = 1

η(1 + η)

(
1 − η

η

)1/2 8

Ta
. (22)

The friction coefficient CM on the inner cylinder is equal to its laminar flow value (22) for Ta � 45,
even though the flows are destabilized. This means that weak counter-rotating vortices induced by
the centrifugal buoyancy have little effect on the torque. For Ta > 45, CM depends only weakly on Ta
near the critical values: for the inward heating (γa < 0), CM is larger than that of the outward heating
(γa > 0) in the vicinity of Tac, because the flow is more unstable, and the magnitude of vortices
is stronger for γa < 0. However, for Ta � 55, the radial buoyancy does not make any difference in
torque. This result is a signature of the weak influence of the radial buoyancy γa and the Prandtl
number Pr in the radial momentum transfer which is dominated by the centrifugal force.

FIG. 15. Variation of the current density of angular velocity J � with Ta: (a) Pr = 10, γa = −0.01,
(b) Pr = 100, γa = 0.01.
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FIG. 16. Variation of angular momentum current with Ta for Pr = 10 and 100. The inset shows the
neighborhood of the instability threshold.

3. Radial heat current density and Nusselt number

Averaging the energy equation [Eq. (1e)] on the cylindrical surface (ϕ, z) yields the conserved
radial heat current (J th):

dJ th

dr
= 0; J th = rj th

r , j th
r =

〈
urθ − κ

∂θ

∂r

〉
A

. (23)

The radial variation of the radial heat current density (J th) is illustrated in Fig. 18 for Pr = 100,
where J th is shown to be constant across the gap for different values of Ta. The conservation of the
radial heat current density suggests that J th is a perfect analog of the current density of the angular
velocity J� .

The Nusselt number that measures the relative heat transfer of the convective flow across a
cylindrical surface of radius r compared to the conductive state is expressed as [12]

Nu = J th

J th
cond

, where J th
cond = κ	T

ln η
. (24)

FIG. 17. Total friction coefficient (CM ) against Ta for Pr = 10 and 100. Solid line corresponds to the
isothermal laminar flow values of the [Eq. (22)]. The inset shows the neighborhood of the instability threshold.
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FIG. 18. Radial heat current density across the ϕ-z plane with Ta for Pr = 100; (a) γa = 0.01, (b) γa =
−0.01.

The heat transfer at the inner cylinder surface (ur = 0) is given by

Nui = −η ln η

1 − η

(
∂θ

∂r

)
r=ri

. (25)

In order to illustrate the effect of the centrifugal buoyancy on heat transfer, we present the variation
of Nui with Ta for Pr = 10 and 100 for the inward heating and the outward heating in Fig. 19.
For Pr = 10, the critical modes are stationary axisymmetric independently on the sign of γa , while
for Pr = 100, the critical modes are stationary axisymmetric for inward heating and oscillatory
axisymmetric for outward heating (Figs. 14, 20, and 21). In contrast to the coefficient of the angular
velocity transfer N� , which depends neither on Pr nor on γa , the heat transfer coefficient Nui is
very sensitive to Pr: for a given value of Ta (>Tac), Nui is larger for Pr = 100 than for Pr = 10. For
Pr = 10, the heat transfer is characterized by a monotonic increase with Ta from Nui = 1 at the onset
Tac. The influence of the centrifugal buoyancy (γa) is limited to the neighborhood of the instability
threshold [Fig. 19(a)] and disappears for large values of Ta. The asymmetry induced by the centrifugal
buoyancy on the threshold does not appear in the heat transfer, i.e., Nui(−γa) ≈ Nui(γa) except in
the close neighborhood of the instability threshold where the slope of the curve Nui = Nui(Ta)
exhibits a small difference. The heat transfer is mainly ensured by the vortices generated by the
centrifugal force. Moreover, the appearance of the wavy vortex modes limits the growth of the heat
transfer.

For Pr = 100, the curves of heat transfer Nui(Ta) have different slopes near the instability
thresholds [Tac(−γa) �= Tac(γa)] but quickly coincide around Ta = 48 for γa = ±10−3 and Ta =
52 for γa = ±10−2 [Figs. 19(b) and 19(c)]. The coincidence of these curves corresponds to the
disappearance of the oscillatory mode in the benefit of the stationary modes for γa > 0 as stated
before. The slope of Nui(Ta) curve depends on the sign and the intensity of heating, i.e., on γa . The
asymmetry of the heat transfer is clear in this case because of different nature of vortices that are
formed at the threshold (Figs. 20 and 21). The Nusselt number due to nonaxisymmetric vortices
for γa > 0 is lower than that due to axisymmetric vortices for γa < 0 near the Tac. This difference
is due to the axial flow which drifts vortices in the axial direction and diminishes the heat transfer
in the radial direction. The growth of the heat transfer is limited by the appearance of the wavy
vortex mode which is associated with a decrease of 	Nui � −1. To explain this decrease of Nui ,
we have analyzed separately the convective and diffusive contributions to J th. We found that the
convective contribution increases with Ta for all values of Pr while the diffusive contribution may
change when the wavy vortex sets in (Fig. 22) depending on Pr: for Pr = 10, the slope (∂θ/∂r) of
the mean temperature profile is weakly affected by the wavy mode while for Pr = 100, it increases,
reducing the diffusive contribution to the radial current density and therefore Nui . One may mention
that there is no decrease in the curve N� (Ta) when the transition to wavy mode occurs, since N�

is independent on Pr.
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FIG. 19. Variations of heat transfer coefficients at the inner cylinder with Ta for different values of Pr and
γa . (a) Pr = 10, γa = {±10−3, ± 10−2}, (b) Pr = 100, γa = ±10−3, and (c) Pr = 100, γa = ±10−2

E. Variation of kinetic energy

From the momentum equations [Eqs. (1b)–(1d)], the variation rate of the kinetic energy per unit
volume Ek = 〈u2/2〉V can be derived by averaging over the whole fluid volume. It is expressed as
[12]

dEk

dt
= −〈αθrur�

2〉V + 2
i

r2
o − r2

i

J� − ε, where 〈X〉V =
∫∫∫

C

X rdrdϕdz. (26)

053901-16



RADIAL BUOYANCY EFFECTS ON MOMENTUM AND HEAT . . .

FIG. 20. Contours of azimuthal vorticity (ωϕ) in the annulus for Pr = 100 and γa = −0.01 with different
values of Ta; (a) Ta = 42, (b) Ta = 45, (c) Ta = 50, (d) Ta = 55.

The first, second, and third terms on the right-hand side of (26) are the contributions of the centrifugal
buoyancy, the radial transport of angular velocity, i.e., the power from torque, and viscous energy
dissipation, respectively. We computed these terms for different values of Ta in the outward (Table II)
and inward heating (Table III). The dissipation rate (ε) is mainly balanced by the radial transport of
angular velocity (J� ). The order of magnitude of the centrifugal buoyancy term remains very small
compared to that of the other terms.

In Fig. 23, we plotted the radial profiles of the right-hand side terms of Eq. (26) to identify
the balance between each terms. While the contribution from the radial transport of the angular
momentum is a constant for r , as previously shown, the dissipation rate has a maximum value on
the inner cylinder and a minimum value in the middle of gap. It reveals that the kinetic energy is lost
near the inner cylinder surface, and it is gained in the middle of gap.

FIG. 21. Contours of azimuthal vorticity (ωϕ) in the annulus for Pr = 100 and γa = 10−2 with different
values of Ta; (a) Ta = 49, (b) Ta = 50, (c) Ta = 51, (d) Ta = 55. (for Ta ∈ {49,50} the modes are non-
axisymmetric vortices, for Ta ∈ {51,55} they are axisymmetric vortices).
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FIG. 22. Radial profiles of the mean temperature for γa = 0.01: (a) Pr = 10, (b) Pr = 100. The abscissa x

is a shifted radial coordinate: x = r − ri .

IV. DISCUSSION

The effect of the radial temperature gradient on heat transfer between the two coaxial cylinders of
a differentially rotating annulus has been computed both in the LSA and DNS for sets of parameters:
γa = ±0.001,±0.01 and Pr = 10,50,100. The gravitational acceleration was neglected (g). There
is a good agreement between the critical values from both methods. The results of the LSA for
different values of γa and Pr can be found in Ref. [14]. The centrifugal buoyancy is responsible
for the thermal convection while the centrifugal force is responsible for Taylor-Couette instability.
The inward heating destabilizes the flow because the centrifugal buoyancy reinforces the action of
centrifugal force while the outward heating stabilizes the flow because the centrifugal buoyancy
is opposite to the centrifugal force. In the latter situation, above the value of Pr∗, inertial waves
are excited and their frequency scales with the Brunt-Väisälä frequency if the viscous damping is
ignored [14]. The present study aimed to complete the former LSA results and to investigate the
stability of the critical modes and the associate flow structures. In particular, we have analyzed the
effect of the parameter γa on momentum and heat transfer. In inward heating, the critical mode
is the centrifugal mode which remains axisymmetric and stationary (the Taylor vortex mode). A
focus has been made on the growth rate of the first two modes in order to identify those associated
to oscillatory and stationary temporal behavior in the case of outward heating. The curves of the
growth rate and the marginal stability curves have been analyzed, especially in the neighborhood
of the threshold. The coefficients of the nonlinear complex Ginzburg-Landau equation have been
computed. The stationary axisymmetric modes occur via a supercritical bifurcation while oscillatory
axisymmetric modes occur via a subcritical bifurcation.

TABLE II. Contribution terms to the variation rate of the kinetic energy for Pr = 10 and γa = 0.01, η = 0.8.

−〈αθrur�
2〉V

2
i

r2
o −r2

i

J � ε Ek

Ta (×10−6) (×10−2) (×10−2) (×10−2)

48 0.0 1.2860 1.2860 8.28897
49 −1.5836 1.3269 1.3264 8.24823
50 −2.2219 1.3495 1.3487 8.21062
55 −4.1847 1.4128 1.4109 8.00485
60 −4.8164 1.3833 1.3803 7.89552
65 −5.2459 1.3544 1.3503 7.78169
70 −5.5752 1.3280 1.3232 7.66805
75 −5.8436 1.3058 1.3004 7.55183
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TABLE III. Contribution terms to the variation rate of the kinetic energy for Pr = 100 and γa = −0.01, η =
0.8.

−〈αθrur�
2〉V

2
i

r2
o −r2

i

J � ε Ek

Ta (×10−8) (×10−2) (×10−2) (×10−2)

41 0.0 1.5056 1.5056 8.28897
42 1.3458 1.4698 1.4698 8.28896
45 7.6977 1.3721 1.3721 8.28882
50 1.6469 1.3672 1.3667 8.19616
55 3.2642 1.4243 1.4230 7.99086
60 4.0720 1.3970 1.3948 7.87574
65 4.5065 1.3657 1.3626 7.76390
70 4.9056 1.3379 1.3341 7.65146
75 5.1916 1.3148 1.3104 7.53564

When Ta was increased, the stationary axisymmetric modes bifurcate to wavy vortex mode, while
the oscillatory modes first become stationary and then bifurcate to wavy vortex mode. The transition
from oscillatory modes to stationary modes, i.e., the disappearance of the time dependence, suggests
that the oscillatory modes are associated with a convective instability. In fact, the oscillatory modes
are the manifestation of inertial waves due to the positive radial stratification of density in the
centrifugal gravity field. The stationary axisymmetric modes are the result of an absolute instability.
The complex Ginzburg-Landau equation yields a framework for the transition from the convective to
absolute instability in a finite box [26]. Using this model, we found that for γa = 10−2, the frequency
vanishes at a small value of ε: ε = 0.011 for Pr = 50 and ε = 0.005 for Pr = 100.

While the intensity of the centrifugal buoyancy has a significant effect on the threshold and the
nature of the critical modes, DNS show that its effect on higher states and on momentum transfer
is very weak. We have found that the radial current density of the angular velocity and the radial
heat current are independent of the radius, in agreement with the theory developed in Ref. [25]
for periodic boundary conditions. However, this should not be the case for nonperiodic boundary
conditions. Moreover, the effect of the centrifugal buoyancy on the heat transfer depends on the value
of Pr: for Pr < Pr∗ (with Pr∗ being the value above which the oscillatory modes become critical
[14]), the modes are mainly driven by the centrifugal force and the heat transfer is not affected by
the centrifugal buoyancy [Fig. 19(a)]. For Pr > Pr∗, the centrifugal buoyancy sensibly modifies the
heat transfer in the neighborhood of the threshold. For large values of Ta, its effects become reduced
[Fig. 19(b)]. The coefficient of the radial transfer of the angular momentum does not depend on
the Pr, and not on γa away from the threshold. This means that the radial transfer of the angular
momentum remains dominated by the centrifugal force. On the other hand, the coefficient of the heat

FIG. 23. Radial profiles of different terms of the kinetic energy balance equation (26) for Ta = 55:
(a) Pr = 10, γa = 0.01, (b) Pr = 100, γa = −0.01. The abscissa x is a shifted radial coordinate: x = r − ri .
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transfer at the inner cylinder Nui depends on the diffusive properties of the fluid through Pr and on
the flow regime. While it increases from the value of the laminar state Nui = 1 to about Nui ∼ 7, it
decreases when the vortex flow appears and reduces the slope of the mean temperature radial profile
at the inner cylinder surface. The heat transfer Nui remains very important compared to the radial
momentum N� .

The power from the centrifugal buoyancy is much smaller than that from the centrifugal force. It
is negative for outward heating, stabilizing the flow to delay the instability. It takes positive values
for inward heating, having destabilizing effects. While the power of the centrifugal force is constant
in the gap, the viscous dissipation rate of the kinetic energy is more important near the rotating inner
cylinder and very weak in the central part of the gap. The centrifugal force power and the dissipation
rate are equal to each other at the surface of the outer fixed cylinder. The DNSs have confirmed the
disymmetry between inward and outward heating in the differentially rotating annulus. It has shown
that the effect of the centrifugal buoyancy is limited to the neighborhood of the threshold. When a
large temperature difference is applied to the fluid, the Boussinesq approximation should be relaxed.
The above mentioned weak effects of the centrifugal buoyancy may be altered by this relaxation.
This remains an open question.

V. CONCLUSION

In the present study, the circular Couette flow in a cylindrical annulus with rotating inner cylinder
and fixed outer cylinder has been studied numerically for representative values of the Prandtl
number to clarify the effect of the radial buoyancy induced by a radial temperature gradient on flow
bifurcation and on heat transfer. The gravitation acceleration was neglected. The linear stability
analysis has been revisited by investigation of the eigenvalue spectrum which shows the coexistence
of the different modes in the outward heating: the temperature mode and the centrifugal mode.
The interaction between these modes is responsible for the oscillatory modes in outward heating.
The reduction of the onset for inward heating is the result of the reinforcement of the centrifugal
force by the centrifugal buoyancy. For all situations, the transition to stationary vortices is found to
be supercritical while that to oscillatory modes is subcritical. The oscillatory modes disappear when
Ta is increased further away from the threshold. The centrifugal force dominates the centrifugal
buoyancy and the flow retrieves the classic transition scenario of the isothermal Couette flow from
Taylor to wavy vortices. The effect of the centrifugal buoyancy on the torque is found only in
the vicinity of the critical Taylor number Tac: the friction coefficient (CM ) and the pseudo-Nusselt
number (N� ) are dependent on Tac. Inward heating causes an enhancement on heat transfer near
Tac, resulting from the onset of counter-rotating vortices. Outward heating reduces the heat transfer
as a consequence of its stabilizing effect on the flow. The behavior of the Nui with Ta highlights
the disymmetry between the inward and outward heating. For large values of Pr, the heat transfer
coefficient diminishes as soon as the wavy vortex mode sets in because of the the change of the
thermal boundary layer. The dissipation of the kinetic energy is more important in the vicinity of
the inner cylinder. It is weaker in the middle of the gap where the centrifugal power is dominant.
The contribution of the power from the centrifugal buoyancy is negligibly small in the evolution of
the perturbation flow kinetic energy.
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