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Parametric instability in periodically perturbed dynamos
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We examine kinematic dynamo action driven by an axisymmetric large-scale flow that
is superimposed with an azimuthally propagating nonaxisymmetric perturbation with a
frequency ω. Although we apply a rather simple large-scale velocity field, our simulations
exhibit a complex behavior with oscillating and azimuthally drifting eigenmodes as well
as stationary regimes. Within these nonoscillating regimes we find parametric resonances
characterized by a considerable enhancement of dynamo action and by a locking of the
phase of the magnetic field to the pattern of the perturbation. We find an approximate
fulfillment of the relationship between the resonant frequency ωres of the excitation and the
eigenfrequency ω0 of the undisturbed system given by ωres = 2ω0, which is known from
paradigmatic rotating mechanical systems and our prior study [Giesecke et al., Phys. Rev.
E 86, 066303 (2012)]. We find further, broader, regimes with weaker enhancement of the
growth rates but without phase locking. However, this amplification regime arises only
in case of a basic (i.e., unperturbed) state consisting of several different eigenmodes with
rather close growth rates. Qualitatively, these observations can be explained in terms of a
simple low-dimensional model for the magnetic field amplitude that is derived using Floquet
theory. The observed phenomena may be of fundamental importance in planetary dynamo
models with the base flow being disturbed by periodic external forces like precession or
tides and for the realization of dynamo action under laboratory conditions where imposed
perturbations with the appropriate frequency might facilitate the occurrence of dynamo
action.

DOI: 10.1103/PhysRevFluids.2.053701

I. INTRODUCTION

Usually it is assumed that magnetic fields of galaxies, stars, and planets are generated by the
magnetohydrodynamic dynamo effect, which describes the transfer of kinetic energy from a flow of
an electrically conducting fluid into magnetic energy. Regarding stellar or planetary bodies, magnetic
fields are supposed to be powered by convection-driven flows [1]. However, there are also alternative
concepts for planetary dynamos with a flow driven by mechanical stirring, like precession (which
has been considered as an alternative forcing for the geodynamo [2] and the ancient lunar dynamo
[3,4]), or tidal forcing (which has been proposed to be responsible for the ancient Martian dynamo
[5] and, as well, for the early lunar dynamo [6]).

Although mechanical stirring, whether by precession or by tides, is capable to drive a dynamo by
its own [7,8], it is more likely that in the case of realistic planetary models a combination of different
types of forcing is responsible for the total flow, with tides and/or precession acting as a periodic
perturbation to a base flow (e.g., convectively driven motions [9]). Despite the small amount of energy
provided instantaneously by the perturbation flow, its impact can be large since the perturbation may
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act as a kind of catalyst that allows a transfer of energy from the available rotational energy, which
is huge but does not contribute to magnetic induction, into a more usable form of flow [10]. In
particular, a periodic perturbation of some base flow may cause a parametric resonance resulting,
e.g., in the excitation of free nonaxisymmetric inertial waves like they have been found in simulations
and experiments of precession-driven flows [11–15]. Such time-dependent nonaxisymmetric flow
perturbations in turn may significantly enhance the ability of the system to drive a dynamo via
yet another resonance attributed to the magnetic field generation process by coupling low-order
rotational modes of the fluid flow [16].

A paradigmatic system related to the dynamo effect is the disk dynamo, in which a current is
guided from the edge of a rotating conductive disk to the disk axis in such a way that the induced
magnetic field amplifies the original (seed) field. A positive effect on magnetic self-excitation arises
when periodically varying the rotation rate of the disk with an appropriate frequency [17]. Similar
to periodically perturbed mechanical problems, this system can be described by a Mathieu equation,
which represents a special case of the Hill equation

d2y

dt2
= a(t)y (1)

with a(t + T ) = a(t) being a T -periodic function. A parametric resonance occurs if the excitation
frequency ω is twice the eigenfrequency ω0 of the unperturbed system, i.e., ωres = 2ω0. In this
case the field generation of the disk dynamo is based on a simple axially symmetric variation of
the velocity of a solid body. More relevant for astrophysical objects are fluid flow–driven dynamos
where the induced electrical currents have more degrees of freedom. In that case a perturbation can
enter the induction equation via the induction term u × B, which in turn may involve a periodic
contribution through a perturbed velocity field u = u0(r) + εũ(r,t) with a base flow u0(r) and a
time- and space-periodic function ũ(r,t). Flow models with periodical perturbations have been used,
for example, to explain the strong nonaxisymmetric activity observed in close binary systems [18]
or the superposition of axisymmetric and nonaxisymmetric contributions of magnetic fields in spiral
galaxies [19] where the spiralling arms provide a periodic perturbation in terms of rotating density
waves.

An improvement of fluid flow generated dynamo action is also of great importance for the
conduction of successful dynamo experiments. This can, first, be achieved by optimizing the pattern
of the flow like had been done for the Riga and the Karlsruhe dynamo. However, in other cases,
where this is not readily possible such as in the dynamo experiments in Cadarache [20] and Madison
[21] or for the planned precession dynamo at Helmholtz-Zentrum Dresden-Rossendorf [22], other
types of improvement of dynamo action must be explored.

The present study is mainly motivated by the idea of facilitating dynamo action of a prescribed
large-scale flow by imposing small periodic disturbances. For this purpose, we investigate an
idealized system in a finite cylinder with dynamo action driven by a large-scale prescribed
axisymmetric flow that is periodically perturbed by a nonaxisymmetric distortion propagating around
the symmetry axis of a cylinder. We assume a given periodic perturbation of the velocity field which
is caused and maintained by some unspecified mechanism. We examine the corresponding impact
on growth rates and frequencies of the magnetic field in dependence on the drift frequency and/or
amplitude of the perturbation.

The study is a continuation and generalization of previous work related to the impact of
azimuthally drifting equatorial vortices on dynamo action in the von Kármán-sodium (VKS) dynamo
[23]. Here we present a more general and systematic approach to the phenomenon of parametric
resonance in combination with dynamo action. Basically, we show how time-periodic perturbations
connect different dynamo modes from an unperturbed model, thereby leading to an amplification
of the process of magnetic field generation. Finally, we conclude how such an operation may be
realized in natural and/or experimental dynamos.

The paper is divided into two parts. We start with numerical simulations of the kinematic induction
equation in cylindrical geometry, and we present results for the growth rates dependent on the
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amplitude and the frequency of a paradigmatic perturbation pattern. The geometric structure of
the perturbation is prescribed by an azimuthal wave number m̃ = 2 and a frequency ω of the
propagation of the perturbation pattern around the axis of symmetry. The space-time periodic
behavior is qualitatively similar to distortions caused by azimuthally drifting equatorial vortices that
have been found in water experiments with a geometry and a forcing similar to the VKS dynamo
[24] or the velocity perturbations caused by tidal interactions in a two-body system.

In the second part we develop a simple low dimensional model for the amplitude of the magnetic
field and show that a periodic perturbation, even when it is small, is indeed capable of significantly
enhancing magnetic field generation and may trigger the transfer from a stable state to an unstable
state with an exponentially growing magnetic field.

II. NUMERICAL MODEL

A. Velocity field

We perform three-dimensional simulations of kinematic dynamo action driven by a prescribed
velocity field. The basic flow field in our simulations is a cylindrical adaptation of the so-called S2T2
flow, which consists of two poloidal and two toroidal large-scale flow cells [25]. This axisymmetric
flow field resembles the mean flow driven by two opposing and counter-rotating impellers and has
been applied with slightly different definitions for the radial behavior as a mean flow in various
kinematic studies of the VKS dynamo [23,26–30]. It is well known that this kind of flow drives a
dynamo at rather low critical magnetic Reynolds numbers (Rmcrit ∼ 30 . . . 40 with pseudovacuum
boundary conditions and Rmcrit ∼ 60 . . . 70 with insulating boundary conditions) with a magnetic
eigenmode characterized by an azimuthal wave number m = 1 (equatorial dipole) [31].

In the present study we consider a cylinder with radius R = 1 and height H = 2 so that r ∈ [0; 1]
and z ∈ [−1; +1]. The total flow U tot in the simulations is given by the sum of an axisymmetric
poloidal and toroidal contribution Up + U t and a nonaxisymmetric contribution εU m̃ with an
azimuthal wave number m̃ and an amplitude factor ε:

U tot = Up + U t + εU m̃. (2)

The axisymmetric flow field is derived from an axisymmetric time-independent scalar potential
�(r,z) given by

�(r,z) = J1(κr) sin

(
2πz

H

)
(3)

with J1 the cylindrical Bessel function of order 1, κ = 3.8317 the first zero of J1 in order to enforce
ur = 0 on the radial boundary and H the height of the cylinder. The actual axisymmetric flow is
composed of a poloidal part given by

Up(r,z) = ∇ × �(r,z)eϕ (4)

and a toroidal component given by

U t(r,z) = −
√

κ2 +
(

2π

H

)2

�(r,z)eϕ. (5)

The prefactor for the toroidal component ensures that the flow fulfills the Beltrami property, i.e.,
∇ × U = kU with k = −

√
κ2 + (2π/H )2, which maximizes the kinetic helicity h = (∇ × U) · U .

Figure 1 presents a contour plot of the axisymmetric flow field where the colors denote the toroidal
flow component and the arrows represent the poloidal flow component.

The nonaxisymmetric perturbation is derived from a time-dependent scalar potential �̃(r,ϕ,z,t),
which is defined by

�̃(r,ϕ,z,t) = r cos(2πr − 1) cos

(
2πz

H

)
cos(m̃ϕ + ωt) (6)
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FIG. 1. Contour plot of the axisymmetric velocity field. The colors denote the azimuthal velocity component,
and the arrows represent the poloidal component of the axisymmetric velocity field.

with m̃ the azimuthal wave number of the perturbation and ω the frequency. The flow perturbation
is then given by

U m̃(r,ϕ,z,t) = ∇ × �̃(r,ϕ,z,t)ez. (7)

Note that the perturbation flow U m̃ has no component along the axial direction. The particular
distribution given by (7) vanishes at the top and the bottom of the cylinder with the maximum at
the midplane. The pattern of the nonaxisymmetric perturbation for the case m̃ = 2 is shown in the
equatorial plane in Fig. 2. The orientation of the perturbation flow differs from the model applied
in Ref. [23] where equatorial vortices were modeled with vanishing radial component and a local
symmetry axis perpendicular to the symmetry axis of the cylinder like have been observed in water
experiments with von Kármán–like flow driving [24].
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FIG. 2. Cut of the velocity perturbation in the equatorial plane. The axial dependence of the perturbation
ensures that Um vanishes at the top and bottom boundaries. The perturbation flow is parallel to the equatorial
plane and has no component along the axis.
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The time scale used in the simulations is the advective time scale τ = R/Umax defined by the
radius of the cylinder (R = 1 in our study) and the maximum speed

Umax = max
(√

U 2
p (r,z) + U 2

t (r,z)
)

with Up and Ut taken from Eqs. (4) and (5).
The frequency ω of the azimuthal propagation of the perturbation is given in units of umax

ϕ /Rmax

with the maximum of the azimuthal velocity component umax
ϕ of the unperturbed velocity field

defined by Eqs. (3) and (5), and Rmax the corresponding radius at which the azimuthal velocity takes
its maximum value.

B. Results

The numerical solutions that are presented in the following are obtained by time stepping the
magnetic induction equation

∂

∂t
B = ∇ × (U × B) + η�B, (8)

where B is the magnetic flux density and η denotes the constant magnetic diffusivity. We apply
a finite volume method with a constraint transport scheme that ensures the exact treatment of the
solenoidal property of B (for details see Refs. [32,33]). For the sake of numerical performance,
we use pseudovacuum boundary conditions B × n = 0, which in comparison with more realistic
insulating boundary conditions do not dramatically impact the solutions except a shift of the growth
rates to larger values thus reducing the critical magnetic Reynolds number required for the onset of
dynamo action. The magnetic Reynolds number characterizes the flow amplitude and is defined as

Rm = UmaxR

η
(9)

with Umax the maximum of the axisymmetric velocity field and R the radius of the cylinder. The
Reynolds number is determined by the axisymmetric basic flow and hardly changes when adding
the perturbation flow with an amplitude ε < 1.

All our models have run for at least several diffusion times (given by τ = R2/η), which is generally
by far sufficient to identify the leading eigenmode and to accurately calculate its growth rates.

1. Basic state

The upper panel of Fig. 3 shows the magnetic field growth rate against the magnetic Reynolds
number for the basic flow without perturbation. Due to the axisymmetry of the flow field all azimuthal
modes are decoupled and follow separate curves. Regarding the m = 1 mode (red curve in Fig. 3),
we can roughly divide the solutions into two regimes. Below Rm ≈ 83 the m = 1 mode is clearly
dominant and does not oscillate. Dynamo solutions with a positive growth rate are found in the range
39 � Rm � 78. Above Rm ≈ 83 the mode with m = 1 changes its character into an oscillating
mode (see bottom panel in Fig. 3) which always describes a decaying solution that does not cross
the dynamo threshold. Despite the different temporal behavior, the structure of both eigenmodes is
quite similar (see Fig. 4). A time series showing the evolution of the magnetic field at Rm = 120 is
shown in Fig. 5.

Indeed, we find time-dependent solutions with the characteristic evolution shown in Fig. 5 in all
our simulations with a magnetic Reynolds number above Rm = 83. These results are typical for a
dynamo beyond an “exceptional point” which is a point in the spectrum of a linear operator where two
eigenfunctions coalesce which, until this point, had different growth rates and zero frequencies (see,
e.g., Refs. [34,35]). In the present case the observed behavior can be explained only by means of two
eigenfunctions with different radial structures having complex-conjugate eigenvalues with exactly
(and not only approximately) the same growth rates and opposite frequencies. The appearance of such
modes with complex-conjugate eigenvalues is quite common in dynamo theory. Dynamos exhibiting
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FIG. 3. Growth rates (top) and frequencies (bottom) versus Rm for the axisymmetric flow field given by
(4) and (5).

FIG. 4. Magnetic field energy density B2 for Rm = 60 (left) and Rm = 120 (right). The isosurfaces are
colored with the azimuthal field.
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FIG. 5. Evolution of the structure of the axial magnetic field component Bz during one oscillation period.
The isosurfaces show time snapshots of Bz at 50% of the time-averaged absolute value. The exponential decay
has been removed. Rm = 120, unperturbed run (ε = 0). (a) t = 0.0000, (b) t = 0.0074, (c) t = 0.0148, (d) t =
0.0222, (e) t = 0.0297, (f) t = 0.0371, (g) t = 0.0445, (h) t = 0.0519, (i) t = 0.0593, (j) t = 0.0667, (k) t =
0.0741, (l) t = 0.0816, (m) t = 0.0890, (n) t = 0.0964, (o) t = 0.1038, and (p) t = 0.1112.

such exceptional points are, for example, found in simple spherically symmetric α2 dynamo models
with radially varying α profiles, which served also as a simple model to understand reversals of the
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geomagnetic field [36,37]. The typical exceptional point pattern for the formation of such modes
modes is nicely visible in the red curves of Fig. 3.

2. Nonaxisymmetric perturbation

In the following we present results from simulations with the perturbation added to the basic
flow at Rm = 30 where the growth rates of the unperturbed eigenmodes are well separated and at
Rm = 120 where the growth rates of the first unperturbed eigenmodes are rather close. In both cases
the unperturbed solutions do not exhibit dynamo action. However, for Rm = 120 the unperturbed
solutions exhibits an oscillation of the amplitude with a frequency of |ω0| ≈ 0.41.

The addition of the perturbation slightly changes the geometric structure of the eigenmodes
(see Fig. 6) and has a clear impact on growth rate and/or frequency (Figs. 7 and 8). In all cases,
the growth rates tend to their unperturbed values for large perturbation frequencies |ω|, and we
find sharp, narrow maxima symmetrically distributed around the origin. At Rm = 30 we find one
maximum at ω = 0 [Figs. 7(a) and 7(b)] whereas at Re = 120 we find two maxima around ω ≈ ±1
with the exact location of the maxima slightly depending on the amplitude of the perturbation ε

[Figs. 7(c) and 7(d)]. In the vicinity of these maxima the growth rates show a parabolic behavior, and
in the following we call this regime the resonant regime [marked by the shaded regions for ε = 0.3
in Figs. 7(b) and 7(d)].

Regarding the frequencies (Fig. 8) we see an amplitude oscillation except in the resonant regime
[marked by the shaded regions in the right panels of Figs. 8(b) and 8(d)] where the amplitude
oscillations vanish. In that regime the field pattern exactly follows the perturbation pattern, i.e., the
magnetic field exhibits an azimuthal drift ωd that is determined by the frequency of the perturbation
(phase locking, ωd = ω/2 for the m̃ = 2 perturbation; see time series in Fig. 6). For large |ω|
the azimuthal phases of magnetic field and velocity perturbation are not connected and we see an
amplitude oscillation of the magnetic field with an oscillation frequency ωa roughly proportional to
the excitation frequency ωa ∼ ω.

In the following, we refer to the above described resonances as parametric resonances that approx-
imately fulfill the relation for the location of the resonance maximum ωres = 2ω0 with ω0 the eigen-
frequency of the unperturbed problem which would be ω0 ≈ 0.41 for the case shown in Figs. 8(c)
and 8(d). The deviation from this relation increases for increasing ε, most probably because of the
growing impact of the perturbation on the base state. A dependence of the location of the maxima
on the parameter ε is also observed in our model introduced in Sec. III (see Sec. III C 3 and Fig. 15).

For weak amplitudes of the perturbation we see a weakly pronounced third maximum between
the main maxima [e.g., see red curve for ε = 0.1 in Figs. 7(c) and 7(d)]. Similar to the solution
shown in Fig. 14 below this interim maximum is not connected to a regime with phase locking and
vanishes for increasing ε.

At Rm = 30 we find no further features beside the parametric resonances in the behavior of
the growth rates. This can be attributed to the large differences of the unperturbed growth rates
(see Fig. 3, top panel) of the distinct azimuthal eigenmodes which reduces the interaction between
the individual modes. The behavior changes at Rm = 120 where, in addition to the sharp resonance
peak, a number of further extremes emerge at larger |ω| with a rather broad shape. These maxima do
not occur in conjunction with phase locking, and the enhancement of dynamo action is less intense
than within the regime of parametric resonance. In the following, we refer to this phenomenon as
a parametric amplification to distinguish from the sharp parametric resonance. In the amplification
regime, the frequency of the amplitude oscillation varies roughly ∝ω with a small jump within the
outer maxima [see Fig. 8(c)]. This jump indicates that in this regime a different eigenmode dominates
compared to the mode around the origin (with the parametric resonance).

The nearly perfect symmetry with respect to the origin differs from the behavior found in a
previous study [23] where an imposed breaking of the equatorial symmetry of the flow causes a
faster azimuthal drift of the leading dynamo mode proportional to the degree of symmetry breaking
and a corresponding asymmetric behavior of the resonance maximum with respect to the origin.
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FIG. 6. Evolution of the structure of the axial magnetic field component Bz with velocity perturbation in
the resonant case during one rotation period. The isosurfaces show time snapshots of Bz at 50% of the time
averaged absolute value. The exponential growth has been removed. Rm = 120,ε = 0.3,ω = 1. (a) t = 0.0000,
(b) t = 0.0074, (c) t = 0.0148, (d) t = 0.0222, (e) t = 0.0297, (f) t = 0.0371, (g) t = 0.0445, (h) t = 0.0519,
(i) t = 0.0593, (j) t = 0.0667, (k) t = 0.0741, (l) t = 0.0816, (m) t = 0.0890, (n) t = 0.0964, (o) t = 0.1038,
and (p) t = 0.1112.
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(a) (b)

(c) (d)

FIG. 7. Growth rates against the perturbation frequency for Rm = 30 [(a), (b)] and Rm = 120 [(c), (d)]
for various perturbation amplitudes ε. The right-hand side provides a detailed view of the behavior close to
the origin. (a) Rm = 30,ε = 0.3. (b) Zoom on the center of (a). The shaded region denotes the regime with
parametric resonance. (c) Rm = 120. The shaded red region denotes the regime with parametric amplification
for ε = 0.3. (d) Zoom on the center of (c). The shaded red region denotes the regime with parametric resonance
for ε = 0.3.

The boost of growth rates seen in Fig. 7 is also reflected in the behavior of the critical magnetic
Reynolds number Rmcrit that is required for the onset of dynamo action. There are considerable
variations of the growth rates with Rm and with ω (see Fig. 9). However, when restricting Rm to the
crucial regime in the vicinity of the dynamo threshold, the growth rates do not change much with
the perturbation frequency, and nearly all curves around the onset of dynamo action take the same
evolution (Fig. 9). A beneficial impact on dynamo action is found only for small ω (blue curves
in Fig. 9). Accordingly, the most significant decrease in Rmcrit is found for ω = 0 [Fig. 10(a)],
and the reduction can reach considerable values of up to 30% [from Rmcrit = 39.6 at ε = 0 to
Rmcrit = 26.3 at ε = 0.5, Fig. 10(b)]. The behavior of Rmcrit with the sharp reduction around ω ≈ 0
essentially reflects the structure of the growth rates at Rm = 30 with one sharp peak around ω = 0
as is shown in Figs. 7(a) and 7(b). The secondary regimes with enhanced growth rates that emerge
at larger Reynolds number and larger perturbation frequencies hardly impact the primary onset
of dynamo action around Rm ≈ 30 . . . 40 but can be related to a second dynamo regime with a
threshold around Rm ≈ 120 (see, e.g., solid red curve in Fig. 9) where no dynamo action is obtained
at all without perturbation. The existence of a second regime with dynamo action is less important
in the context of experimental dynamos but can be associated with subcritical phenomena in fully
nonlinear simulations and may be causative for possible deviations from ideal scaling laws by
providing additional energy for the dynamo process [10].
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(a) (b)

(c) (d)

FIG. 8. Frequencies of the amplitude oscillations versus perturbation drift frequency for Rm = 30 [(a), (b)]
and Rm = 120 [(c), (d)]. The right-hand side provides a detailed view on the behavior close to the origin.
(a) Rm = 30,ε = 0.3. (b) Zoom on the center of (a). The red shaded region denotes the regime with parametric
resonance. (c) Rm = 30,ε = 0.3. The red shaded region denotes the regime with parametric amplification that
goes along with a small shift of the amplitude oscillation. (d) Zoom on the center of (c). The red shaded region
denotes the regime with parametric resonance at ε = 0.3.
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FIG. 9. Growth rate versus Rm for ε = 0.1 (dashed curves) and ε = 0.3 (solid curves). The solid black
curve denotes the case ε = 0.
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(a) (b)

FIG. 10. (a) Critical magnetic Reynolds numbers against perturbation frequency ω for ε = 0.1 and ε = 0.3.
The horizontal green line denotes the case ε = 0. (b) Critical magnetic Reynolds number versus perturbation
amplitude ε for ω = 0 where the maximum reduction of Rmcrit takes place.

III. LOW-DIMENSIONAL MODEL

A. Amplitude equation

In order to find a qualitative explanation for the behavior observed in the simulations presented
above, we derive a simple low-dimensional analytical model for the amplitude of distinct dynamo
modes. The framework presented in this section must be seen as a toy model, where the parameters
are chosen to reproduce qualitatively the observed features in the former section. Our model is based
on an azimuthal decomposition of the global magnetic field. In doing so, the dynamics of each
azimuthal mode is determined by one eigenmode with the largest growth rate. The decomposition
yields a linear system of equations that couples all odd azimuthal wave numbers. From this model,
we find different scenarios leading to an enhancement of the growth rate, which are not described by
the classical parametric instability. Although we assume a cylindrical domain, most of the following
considerations require only the existence of a well-defined symmetry axis in order to allow a
reasonable decomposition into azimuthal field modes and are also valid, e.g., in spherical geometry.

We start again with the magnetic induction equation (8). We assume a prescribed velocity field
U = U(r,t) that is composed of an axisymmetric component U0 and a periodic perturbation with
the azimuthal wave number m̃ propagating in the azimuthal direction with the frequency ω:

U(r,t) = U0(r,z) + ε[um̃(r,z)ei(m̃ϕ+ωt) + u−m̃(r,z)e−i(m̃ϕ+ωt)], (10)

where the parameter ε characterizes the amplitude of the perturbation. We now reduce the induction
equation to a system of equations for the amplitudes of azimuthal magnetic field modes characterized
by a wave number m. We assume that the magnetic field B can be decomposed according to

B =
M∑

−M

b̂m(t)bm(r,z)eimϕ (11)

with the complex amplitude b̂m(t) ∈ C that fulfills b̂m = b̂∗
−m in order to ensure a real-valued

magnetic field. We further suppose a normalization for the function bm given by∫∫
bm · b∗

mr dr dz = 1. (12)

The decomposition (11) assumes that the individual modes are modulated only by a simple
temporal varying amplitude, which in general is not correct (if the linear operator is nonnormal
as in case of the induction equation). Furthermore, we consider only the leading eigenmode for
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each azimuthal wave number, and we additionally suppose that only one single mode is close to be
unstable. Consequently, the decomposition (11) into azimuthal modes can at least qualitatively be
justified.

The coefficient b̂m(t) can be computed by forming the scalar product

b̂m(t) = 〈B,bm〉 =
∫∫∫

B · b∗
me−imϕ dV (13)

so that the temporal evolution of b̂m(t) is governed by

d

dt
b̂m(t) = d

dt
〈B,bm〉 = 〈∇ × (U × B) + η�B,bm〉. (14)

Using the velocity field (10) with an explicit m̃ = 2 distortion yields the evolution equation for the
amplitude b̂m(t) with an explicit coupling to the magnetic modes b̂m±2(t):

d

dt
b̂m(t) = αm,mb̂m + ε(e−iωtαm,m+2b̂m+2 + eiωtαm,m−2b̂m−2) (15)

with

αm,m =
∫∫∫

[∇ × (U0 × bmeimϕ) + η�bmeimϕ] · b∗
me−imϕ dV,

αm,m±2 =
∫∫∫

[∇ × (u∓2 × bm±2e
imϕ)] · b∗

me−imϕ dV . (16)

The magnetic field B must be a real-valued function which requires b̂m = b̂∗
−m and hence entails

αm,m = α∗
−m,−m and αm,m±2 = α∗

−m,−m∓2. (17)

We now write system (15) in an explicit form:

...

d

dt
b̂−5 = εeiωtα−5,−7b̂−7 + α−5,−5b̂−5 + εe−iωtα−5,−3b̂−3,

d

dt
b̂−3 = εeiωtα−3,−5b̂−5 + α−3,−3b̂−3 + εe−iωtα−3,−1b̂−1,

d

dt
b̂−1 = εeiωtα−1,−3b̂−3 + α−1,−1b̂−1 + εe−iωtα−1,1b̂1,

d

dt
b̂1 = εeiωtα1,−1b̂−1 + α1,1b̂1 + εe−iωtα1,3b̂3,

d

dt
b̂3 = εeiωtα3,1b̂1 + α3,3b̂3 + εe−iωtα3,5b̂5,

d

dt
b̂5 = εeiωtα5,3b̂3 + α5,5b̂5 + εe−iωtα5,7b̂7,

... (18)

which can be written in compact form as a matrix equation

d

dt
B(t) = A(t)B(t) (19)
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with B(t) = (. . . ,b̂−m,b̂−m+2, . . . ,b̂−1,b̂1, . . . ,b̂m−2,b̂m · · · )T and a tridiagonal matrix A(t) given by

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .

· · · 0 δ∗
3f

∗
t α∗

3 δ∗
2ft 0 · · ·

· · · 0 δ∗
1f

∗
t α∗

1 γ ∗ft 0 · · ·
· · · 0 γf ∗

t α1 δ1ft 0 · · ·
· · · 0 δ2f

∗
t α3 δ3ft 0 · · ·

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (20)

where we used the abbreviations αj = αj,j ,γ = α1,−1,δ1 = α1,3,δ2 = α3,1,δ3 = α3,5 and ft =
εe−iωt . The nondiagonal elements of A represent the coupling between the azimuthal modes
introduced by the nonaxisymmetric flow perturbation. In the unperturbed case these nondiagonal
elements vanish and all azimuthal modes b̂m(t) decouple. In that case the diagonal elements are the
eigenvalues

αj,j = αj = αr
j + iαi

j ,

where αr
j , the real part of αj , denotes the growth rate of the unperturbed case and implicitly

incorporates the magnetic Reynolds number, and αi
j , the imaginary part of αj , denotes the frequency

of the unperturbed case. The off-diagonal parameters, originally labeled with αm,m±2, prescribe the
interaction of the modes with themselves and/or with adjacent modes.

In case of a perturbation with an azimuthal wave number m̃ = 2 we achieve two classes of
magnetic modes which incorporate even azimuthal wave numbers and odd azimuthal wave numbers.
Here only the second class with odd wave numbers is relevant because the even modes typically
decay on a faster time scale, and we could not find any growing solutions with even azimuthal
symmetry in our simulations presented above.

Note that the approach outlined above does not constitute a perturbation theory in the strict
mathematical sense. The nonaxisymmetric spatio-temporally periodic perturbation changes the
structure of the solution (the geometry of the eigenvector) by coupling different azimuthal modes,
and the limiting case ε → 0 is different from the case ε = 0. This means that the addition of a
propagating wave with ε �= 0 changes the shape of the modes bm in comparison with the simple
axisymmetric case so that the coefficients αm,m depend implicitly on ε and ω. However, in the
limit ε → 0 we assume that αm,m(ε �= 0) ≈ αm,m(ε = 0) and that the addition of a nonaxisymmetric
perturbation does not change the eigenvector of the unperturbed problem.

B. Direct solution for truncation at m = ±1

In order to solve the set of ordinary differential equations for the eigenvalues, i.e., growth rate
and frequency, the system must be truncated at a fixed azimuthal wave number M . We start with the
most severe approximation and cut the system (18) at m = ±1. We obtain two coupled differential
equations

db̂−1

dt
= α∗b̂−1 + εγ ∗e−iωt b̂1, (21)

db̂1

dt
= εγ eiωt b̂−1 + αb̂1, (22)
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where we used the abbreviations

α = α1,1 = α∗
−1,−1,

γ = α1,−1 = α∗
−1,1. (23)

Taking the derivative of Eq. (22) yields

d2b̂1

dt2
= εγ eiωt

(
iωb̂−1 + db̂−1

dt

)
+ α

db̂1

dt
. (24)

We use (21) to replace db̂−1

dt
and then (22) to ultimately get rid off b̂−1 which gives

d2b̂1

dt2
= [−iωα − |α|2 + ε2|γ |2]b̂1 + (iω + 2αr )

db̂1

dt
. (25)

We search for solutions b̂1(t) ∝ eσ t which yields the relation

σ 2 − (iω + 2αr )σ − [−iωα − |α|2 + ε2|γ |2] = 0 (26)

with the solutions

σ1,2 = αr + i
ω

2
± 1

2

√
4ε2|γ |2 − (2αi − ω)2. (27)

We distinguish two cases in dependence of the sign of 4ε2|γ |2 − (2αi − ω)2.
(1) For |2αi − ω| < 2ε|γ | we obtain one frequency

σ i = ω

2
(28)

and two different growth rates

σ r
1,2 = αr ± 1

2

√
4ε2|γ |2 − (2αi − ω)2. (29)

For small deviations of the forcing frequency ω from twice the unperturbed frequency 2αi we can
write for the growth rate:

σ r
1,2 ≈ αr ± ε|γ |

[
1 − (2αi − ω)2

4ε2|γ |2
]
, (30)

and we find two extrema for the growth rate σ
r,max
1,2 = αr ± ε|γ | when the perturbation frequency

is equal to twice the intrinsic frequency ω = 2αi . Around this maximum the growth rate is locally
parabolic.

(2) For |2αi − ω| > 2ε|γ | we get only one growth rate

σ r = αr (31)

and two frequencies

σ i
1,2 = ω

2
± 1

2

√
(2αi − ω)2 − 4ε2|γ |2. (32)

For large ω these frequencies tend to σ i
1 = ω and σ i

2 = αi .
Figure 11 shows the behavior of σ (top panel: growth rate, bottom panel: frequency) versus

the perturbation frequency. In the resonant regime, i.e., for |2αi − ω| < 2ε|γ |, the growth rates of
both interacting modes separate and form a bubble-like pattern, and the location of the maximum
is given by twice the frequency of the unperturbed problem. Width and height of the resonance are
determined by the interaction parameter γ and by the amplitude of the perturbation ε (height ∼ε|γ |
and width ∼4ε|γ |).

053701-15



ANDRÉ GIESECKE, FRANK STEFANI, AND JOHANN HERAULT

-2 -1 0 1 2

-0.4

-0.2

0.0

0.2

0.4

ω

gr
ow

th
 r

at
e

-2 -1 0 1 2
-2

-1

0

1

2

ω

fr
eq

ue
nc

y

FIG. 11. Growth rate (top) and frequency (bottom) versus ω for αr = 0,αi = 0,|γ |2 = 1, and ε = 0.3. The
solid (dashed) curve shows the solution corresponding to σ1(σ2).

In the resonant regime, we find the frequency exactly proportional to ω/2, which implies that the
phase of the m = 1 eigenmode becomes locked to the m = 2 velocity perturbation and the pattern
of the nonaxisymmetric magnetic field is enslaved to the azimuthal phase of the flow perturbation.
Outside of the resonant regime, i.e., for |2αi − ω| > 2ε|γ | the growth rates collapse, and we find
two frequencies with different asymptotic behavior for |ω| � 1. One solution converges against the
unperturbed value, αi (Fig. 11, solid curve in bottom panel), and the second solution tends to the
frequency of the perturbation ω (Fig. 11, dashed curve in bottom panel).

Two distinguished locations can be found exactly at the transition from the nonresonant to the
resonant regime. At these exceptional points [34,35], where |ω − 2αi | = ±2ε|γ |, we see an abrupt
change of growth rates and frequencies in combination with a degeneration of the eigenvalues and
a collapse of the corresponding eigenfunctions.

C. Coupling to larger azimuthal wave numbers

1. Application of Floquet theory

We now treat the general case and consider system (18) for in principle arbitrary m anticipating
that later we will have to truncate our model at a fixed value for mmax = ±M in order to perform

053701-16



PARAMETRIC INSTABILITY IN PERIODICALLY . . .

explicit calculations of the eigenvalues. We revert to Floquet theory (see, e.g., Ref. [38]), which
implies that the time dependence of the solution of a differential equation of the form

d

dt
B(t) = A(t)B(t) (33)

with a T -periodic matrix A(t) = A(t + T ) and a n-dimensional vector B is given by

B(t) = P (t)eRt (34)

with a T -periodic invertible matrix P (t) = P (t + T ) and a constant matrix R. It is always possible
to find a transformation, the Lyapunov-Floquet transformation,

B(t) = P (t)X(t), (35)

such that the previously time dependent linear system (33) becomes a linear system

d

dt
X(t) = RX(t) (36)

with the time-independent coefficient matrix R. From (33) and (34) we get

d

dt
B = Ṗ eRt + PReRt = APeRt (37)

so that

R = P −1AP − P −1Ṗ . (38)

We now write

P = eiDt (39)

from which immediately follows

P −1Ṗ = iD (40)

so that the constant coefficient matrix R in the transformed system (36) can be written as

R = e−iDtAeiDt − iD. (41)

In our particular case we can write

A(t) = eiDωt Âe−iDωt (42)

with

Dω =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

−M
2 ω 0

0 −M−2
2 ω 0

0
. . . 0

0 M−2
2 ω 0

0 M
2 ω

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(43)

and Â the matrix with the components of A but without the time modulation e±iωt . This gives

R = Â − iDω (44)

so that from (36) we end up with the system

dX

dt
= (Â − iDω)X. (45)
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The solutions are given by X = X0e
σ̃ t with σ̃ ∈ C the eigenvalues in the transformed system

which are the roots of the characteristic equation

|Â − iDω − σ̃I| = 0, (46)

where | · · · | denotes the determinant and I is the identity matrix.

2. Truncation at M = 1

In order to check the validity of the computations from the previous section we solve the case
M = 1 and compare with the solution obtained in Sec. III B. We have(

d
dt

b̂−1
d
dt

b̂1

)
=

(
α∗ εe−iωtγ ∗

εeiωtγ α

)(
b̂−1

b̂1

)
=

(
e−i ω

2 t 0
0 ei ω

2 t

)(
α∗ εγ ∗
εγ α

)(
ei ω

2 t 0
0 e−i ω

2 t

)(
b̂−1

b̂1

)
(47)

so that

Â =
(

α∗ εγ ∗
εγ α

)
and Dω =

(−ω/2 0
0 ω/2

)
. (48)

The characteristic equation for the eigenvalues becomes(
α∗ + i

ω

2
− σ̃

)(
α − i

ω

2
− σ̃

)
− ε2|γ |2 = 0 (49)

with the solutions

σ̃1,2 = αr ± 1
2

√
4ε2|γ |2 − (2αi − ω)2, (50)

which, when taking into account the transformation B = P (t)X(t) = eiDωtX according to Eq. (35),
is identical to the solution (27) obtained previously in Sec. III B.

3. Truncation at M = 3

In the next step we include higher order modes with m = ±3 so that we have to compute the
characteristic equation∣∣∣∣∣∣∣∣∣

α∗
3 + i 3ω

2 − σ̃ εδ∗
2 0 0

εδ∗
1 α∗

1 + i ω
2 − σ̃ εγ ∗ 0

0 εγ α1 − i ω
2 − σ̃ εδ1

0 0 εδ2 α3 − i 3ω
2 − σ̃

∣∣∣∣∣∣∣∣∣ = 0, (51)

where we used the abbreviations α1 = α1,1,α3 = α3,3,γ = α1,−1,δ1 = α1,3, and δ2 = α3,1. Before
we specify the general solution of (51) we briefly discuss three limit cases in order to prove the
validity of the solution and illustrate distinct properties of the solutions resulting from different types
of coupling.

a. Weak coupling. We first assume no coupling between m = 1 and m = 3 as well as between
m = +1 and m = −1 (i.e., |γ |2 = |δ1δ2| = 0) so that the matrix A(t) is a diagonal matrix. We obtain
the unperturbed solutions for the m = 1 mode and a second set for the m = 3 mode,

σ̃1,2 = αr
1 ± i

(
αi

1 − ω

2

)
and σ̃3,4 = αr

3 ± i

(
αi

3 − 3ω

2

)
. (52)
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FIG. 12. Growth rate (real part of σ̃1 . . . σ̃4) and frequencies (imaginary part of σ̃1 . . . σ̃4) versus ω for strong
coupling between m = 1 and m = 3 (|δ1δ2| � |γ |2). αr

1 = −0.1,αr
3 = −0.2,αi

1 = αi
3 = 0,|γ |2 = 0,δ1δ2 =

1,ε = 0.3. The blue curves show the solutions σ̃1 (solid curves) and σ̃2 (dashed curves), and the red curves
show σ̃3 (solid curves) and σ̃4 (dashed curves). Note that the real parts of σ̃1 and σ̃3 (solid curves in a) and of
σ̃2 and σ̃4 (dashed curves in a) collapse exactly. (a) Growth rate, (b) Frequency, and (c) Frequency (close up).

If only the coupling between the m = ±1 mode and m = ±3 is weak (i.e., |γ |2 � |δ1δ2|), we
obtain the characteristic equation[(

α∗
3 + i

3ω

2
− σ̃

)(
α3 − i

3ω

2
− σ̃

)][(
α∗

1 + i
ω

2
− σ̃

)(
α1 − i

ω

2
− σ̃

)
− ε2|γ |2

]
= 0, (53)

and we recover the previous solution (27) from Sec. III B with the resonance from the interaction of
m = 1 and m = −1 at ω = 2αi

1 and two separate solutions for the m = 3 mode:

σ̃1,2 = αr
1 + i

ω

2
± 1

2

√
4ε2|γ |2 − (

ω − 2αi
1

)2
and σ̃3,4 = αr

3 ± i

(
αi

3 − 3ω

2

)
. (54)

Note that the first part of Eq. (54) also corresponds to the solution denoted in Eq. (50) for a truncation
at M = 1.

b. Strong coupling between m = 1 and m = 3. Now we assume that the coupling between
m = 1 and m = −1 can be neglected but the coupling between m = 1 and m = 3 remains strong,
i.e., |δ1δ2| � |γ |2. Then the characteristic equation for the calculation of the eigenvalues reads[(

α∗
3 + i

3ω

2
− σ̃

)(
α∗

1 + i
ω

2
− σ̃

)
− ε2δ∗

1δ
∗
2

][(
α3 − i

3ω

2
−σ̃

)(
α1 − i

ω

2
− σ̃

)
− ε2δ1δ2

]
= 0.

(55)

and we have two kinds of solutions, one for the coupled system of m = −1 and m = −3 and a
second one for the coupled system with m = 1 and m = 3 mode:

σ̃1,2 = 1
2

[
αr

1 + αr
3 + i

(
αi

1 + αi
3 − 2ω

)] ± 1
2

√
4ε2δ1δ2 + [

αr
1 − αr

3 + i
(
αi

1 − αi
3 + ω

)]2
, (56)

σ̃3,4 = 1
2

[
αr

1 + αr
3 − i

(
αi

1 + αi
3 − 2ω

)] ± 1
2

√
4ε2δ1δ2 + [

αr
1 − αr

3 − i
(
αi

1 − αi
3 − ω

)]2
. (57)

The expressions (56) and (57) generalize the resonance between two independent eigenmodes.
Whereas the real parts of σ̃1,2 and σ̃3,4 collapse [blue and red curves in Fig. 12(a)], we obtain
four different solutions for the frequencies that describe two sets of counter-rotating eigenmodes
[Figs. 12(b) and 12(c)]. As in the previous case, for large |ω| we see an asymptotic behavior
according to ±ω respectively αi

1 and/or αi
3 after back transformation to the original system. Note

that the product δ1δ2 is always real and positive, and the second term under the square root in Eq. (56)
and in Eq. (57) remains complex for all ω (provided αr

1 − αr
3 is nonzero) so that frequency locking

cannot be expected unlike the case of a parametric instability described in Eq. (27). Nevertheless, the
growth rates again exhibit a regime with amplification but with the maximum at ω = αi

3 − αi
1, and,
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(a) (b)

FIG. 13. (a) Growth rates versus γ 2 and ω for δ1δ2 = −3 and 0 � |γ |2 � 5. (b) Growth rates versus δ1δ2

and ω for |γ |2 = 1 and −5 � δ1δ2 � 5. Only the leading mode is shown. Details on the behavior at |γ |2 = 1
and δ1δ2 = ±3 can be extracted from Fig. 14. In both cases αr

1 = −0.1,αr
3 = −0.2,αi

1 = αi
3 = 0, and ε = 0.3.

in contrast to the previous case with m = 1 and m = −1 coupling, we do not see any intersection
or merging of growth rates [Fig. 12(a)]. The transition between the regime with nearly unchanged
growth rate and the regime with amplification is smooth and goes along with a change of the behavior
of the frequencies [Figs. 12(b) and 12(c)].

c. General solution. In general the computation of the determinant (51) yields a characteristic
equation for the eigenvalues σ given by a polynomial of order four that reads

σ 4 + pσ 3 + qσ 2 + rσ + s = 0 (58)

with

p = −2
(
αr

1 + αr
3

)
,

q = |α′
1|2 + |α′

3|2 + 4αr
1α

r
3 − 2ε2δr − ε2|γ |2,

r = −2
(
αr

3|α′
1|2 + αr

1|α′
3|2

) + 2ε2|γ |2αr
3 + 2ε2

[(
αr

1 + αr
3

)
δr + (

αi
1 + αi

3 − 2ω
)
δi

]
,

s = −2ε2

{
δi

[
αi

1α
r
3 + αr

1α
i
3 − ω

2

(
3αr

1 + αr
3

)] + δr

[
ω

2

(
3αi

1 + αi
3

) + αr
1α

r
3 − αi

1α
i
3 − 3

4
ω2

]}
−ε2|α′

3|2|γ |2 + |α′
1|2|α′

3|2 + ε4|δ|2, (59)

and the abbreviations α′
j = αj − i

jω

2 and δ = δ1δ2. All coefficients of the polynomial (58) are real
valued, and we obtain four complex solutions σ1, . . . ,σ4.

In the following, we always apply negative values for the unperturbed growth rates, i.e., we
consider models with a magnetic Reynolds number below the dynamo threshold without the
perturbation. The interaction parameters |γ |2 and δ1δ2 are chosen such that characteristic and
representative solutions are obtained with properties reminiscent of the simulations. Figure 13
shows the impact of the interaction parameters |γ |2 and δ1δ2 for the case αr

1 = −0.1,αr
3 = −0.2 and

αi
1 = αi

3 = 0, with the perturbation amplitude fixed at ε = 0.3. For fixed δ1δ2 = −3 the growth rates
increase monotonically with |γ |2, which parameterizes the interaction of m = 1 and m = −1 modes
[Fig. 13(a)]. In contrast, the variation of δ1δ2, which parameterizes the interaction of m = 1 and
m = 3 (respectively m = −1 and m = −3), may significantly change the structure of the growth
rates [Fig. 13(b)]. Basically, we obtain two different types of solutions, which are shown in detail
in Fig. 14. For a δ1δ2 < 0 the growth rates have three maxima, and we have two regimes with
a parametric resonance symmetrically around the origin. The third maximum corresponds to a
parametric amplification and is embedded between the parametric resonances. The pattern is rather
similar to the behavior for small perturbation frequencies found in the simulations at Rm = 120
[see Figs. 7(c) and 7(d)]. For a positive value of δ1δ2 we obtain one absolute maximum at ω = 0.
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FIG. 14. Characteristic pattern of the growth rates (a), (b) and frequencies (c), (d) in dependence of ω for
δ1δ2 = −3 [(a), (c)] and δ1δ2 = +3 [(b), (d)]. For both cases αr

1 = −0.1,αr
3 = −0.2,|γ |2 = 1,ε = 0.3. The blue

and red curves denote the solutions belonging to σ̃1,2, and the green and orange curves denote the solutions
belonging to σ̃3,4. Note that the frequency plots are not transformed into the original system.

However, in this case the single maximum emerges on top of a regime with amplification so that the
overall pattern is different from the case shown in Figs. 7(a) and 7(b).

The exemplary solutions show a combination of the phenomena that arose in the various limit
cases discussed in the previous section. We find two resonance maxima symmetric with respect to
the origin (for ε = 0.3 at ωmax = ±0.65528) resulting from the coupling of m = 1 and m = −1
[see red and blue curves in Fig. 14(a)], but the resonance condition is no longer determined by a
single and simple relation that involves the unperturbed frequencies αi

1 and/or αi
3. The location of the

resonance maximum slightly depends on the amplitude of the perturbation. This is shown in Fig. 15,
which presents the growth rates against ω and ε [Fig. 15(a)], the respective maximum against ε

[Fig. 15(b)], and the increase of the maximum of the growth rate versus the perturbation amplitude ε

[Fig. 15(c)]. Beside the linear dependence of the location of the regimes with parametric resonance
on the perturbation frequency, a peculiar feature is the existence of the third maximum around the
origin. This smaller third local maximum results from an indirect interaction between m = ±1 and
m = ±3 without merging or splitting of the growth rates and without phase locking [see Fig. 14(c)].
A similar phenomenon has been found for small ε � 0.1 in the simulations at Rm = 120 (Fig. 7).

Regarding the frequencies, we abandon the presentation of the back-transformed frequencies in
Fig. 14. We see a quite complex interaction of frequencies around the origin. Note in particular
the merging and splitting of the frequencies that belong to the m = −1 and the m = 1 branches
[red and blue curve in Figs. 14(c) and 14(d)], which indicate the regions with phase locking. For
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FIG. 15. Characteristics of the eigenvalues for αr
1 = −0.1,αr

3 = −0.2,αi
1 = αi

3 = 0,|γ |2 = 1, and δ1δ2 = −3.
(a) Growth rate versus perturbation frequency ω and perturbation amplitude ε, (b) Variation of the resonance
frequency ωmax with the perturbation amplitude, and (c) Maximum of the growth rate versus perturbation
amplitude.

large ω we obtain linear scalings ∝±1/2ω and ∝±3/2ω, which after the back-transformation with
P (t) = eiDωt correspond to a behavior ∝±ω and ∝±2ω. Further complicated patterns are possible
in particular when considering complex couplings and/or a nonvanishing frequency for the base
modes (αi

1 and αi
3). In contrast to the previous cases, a nonvanishing imaginary part of an eigenvalue

of the unperturbed state, like it occurs, for example, in the case of a parity-breaking flow that yields
azimuthally propagating eigenmodes, results in a system of equations that is no longer symmetric
with respect to a sign change of the perturbation frequency ω. This is shown, for example, in Fig. 16
with a clear asymmetric behavior with respect to ω when αi

1 �= 0. Nevertheless, as previously, we
find that for sufficiently high frequencies the influence of the perturbation on the growth rate is
negligible and the growth rates approach again their unperturbed values (but note the exchange of
the m = ±1 and m = ±3 branches in Fig. 16). This behavior may allow an allocation of each curve
to the original azimuthal modes and to determine which azimuthal modes couple or interact in order
to form the coupled eigenfunction of the perturbed problem.

4. Cutoff at M = 5

Not surprisingly the behavior becomes more complex when increasing the truncation level to
M = 5. Here we abstain from specifying the characteristic equation which by virtue of its length, and
its complicated structure does not offer any additional insights. We limit ourselves to three examples
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FIG. 16. Asymmetric behavior of growth rates (a) and frequencies (b) when the natural frequency of the
system is �= 0. αr

1 = −0.1,αi
1 = 1.0,αr

3 = −0.2,αi
3 = 0,|γ |2 = 1,δ1δ2 = −3,ε = 0.3. The blue and red curves

denote the solutions belonging to σ̃1,2, and the green and orange curves denote the solutions belonging to σ̃3,4.
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FIG. 17. Growth rates (a), (b) and frequencies (c), (d) versus perturbation frequency for ε = 0.3 Note
the large difference of the unperturbed growth rates on the case shown in (b) and (e). The red and blue
(green and yellow, light-blue and violet) curves denote the solutions σ̃1,2 (̃σ3,4 ,̃σ5,6). (a), (d) αr

1 = −0.1,

αr
3 = −0.2,αr

5 = −0.3,αi
1,3,5 = 0,|γ |2 = 1,δ1δ2 = δ3δ4 = −10, (b) αr

1 = −0.1, αr
3 = −2.0, αr

3 = −3.0,

αi
1,3,5 = 0,|γ |2 = 1,δ1δ2 = δ3δ4 = −10, (c), (f) αr

1 = −0.1,αr
3 = −0.2,αr

5 = −0.3,αi
1,3,5 = 0,|γ |2 = 5,δ1δ2 =

−3,δ3δ4 = +3, and (e) αr
1 = −0.1,αr

3 = −2.0,αr
3 = −3.0,αi

1,2,3 = 0,|γ |2 = 1,δ1δ2 = δ3δ4 = −10.

that present typical solution patterns for growth rate and frequency (Fig. 17). The extension of the
truncation level goes along with new parameters that describe the eigenvalues of the unperturbed
new mode, denoted with αr

5 and αi
5, and the interaction of the new mode with itself and/or the

m = 3 mode, denoted by δ3δ4. Again we see a combination of resonances with phase locking and
amplification, and we have a symmetric pattern with respect to the sign of the perturbation frequency
as long as the imaginary parts of the involved dynamo modes and the coupling coefficients remain
zero.

The behavior of the growth rates confirms the impression from the previous paragraph. A resonant
behavior characteristic for a parametric instability with phase locking results only from the coupling
of m = 1 and m = −1 (blue and red curves in Fig. 17), whereas an interaction of m = ±1 with
m = ±3 or m = ±5 happens only indirectly, producing a smoother parametric amplification patterns.
Furthermore, we do not only see parabolic shapes around individual resonance maxima but also
broader regimes composed of several local maxima [see, e.g., blue curves in Fig. 17(c)]. Particularly
striking is the fact that the regimes with an enhancement of the growth rate are significantly
broadened, allowing a transition from a stable solution to an unstable solution for a wide range
of perturbation frequencies. The pattern becomes simpler when the original modes have larger
differences in their unperturbed growth rates [Fig. 17(b)] so that the interaction of modes with
different |m| would require larger values for the corresponding interaction parameters.

D. The impact of the truncation level M

The discussion of the impact of the truncation order is not straightforward, because when
increasing the order from M to M + 2, new parameters get involved that parametrize the interaction
of the new modes with themselves and with the adjacent mode with m = M − 2. In fact, putting the
new parameters to zero always leads to the solutions corresponding to the lower order truncation
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FIG. 18. Comparison of the solutions for the truncation level M = 1 . . . 5 using different values for the
interaction parameters δ1δ2 and δ3δ4. The plots correspond to solutions for increasing order of truncation.
For all cases we use αr

1 = −0.1,αr
3 = −0.2,αr

5 = −0.3,αi
1,3,5 = 0,|γ |2 = 1, and ε = 0.3. The red and blue

(green and yellow, light-blue and violet) curves denote the solutions σ̃1,2 (̃σ3,4 ,̃σ5,6). (a) δ1δ2 = δ3δ4 = 0
corresponding to a truncation at M = 1, (b) δ1δ2 = −3,δ3δ4 = 0 corresponding to a truncation at M = 3, and
(c) δ1δ2 = −3,δ3δ4 = −3 corresponding to a truncation at M = 5.

plus a solution of the type denoted in Eq. (54) for a single mode that emerges without interaction
with the system. Figure 18 demonstrates the change in the solutions when increasing the truncation
level. Note that for a truncation level M = 5 the solutions for δ1δ2 = δ3δ4 = 0 correspond to the
solutions at order M = 1 [Fig. 18(a)]. Likewise, for δ1δ2 �= 0 and δ3δ4 = 0 we recover the solutions
at order M = 3 [Fig. 18(b)].

Furthermore, the addition of new modes that come along with an increase of the truncation
level results in a change of the structure of the solutions so that the behavior of the growth rates
becomes more complex. The enlargement of the system by adding new modes always results in
the emergence of new features in the pattern of the growth rates due to the interaction that become
possible with the new modes. The structural changes become less important when the parameters
that come along with increasing the truncation level decrease in amplitude. Figure 19 shows the
results for a truncation at M = 5 with a fixed parameter δ1δ2 = −3 and for decreasing values of δ3δ4

(the parameter that describes the interaction between m = ±3 and m = ±5 modes). The resulting
behavior of the growth rates corresponds to the smooth transition of the state shown in Fig. 18(c) to
the state with δ3δ4 = 0 (corresponding to the truncation M = 3) shown in Fig. 18(b). We conclude
that the analytical model only makes sense when for increasing truncation level the supervened
parameters become negligible at a certain M so that the consideration of further modes with large
M does not cause any further significant change in the structure of the solutions.
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FIG. 19. Comparison of the solutions for the truncation level M = 5 and for decreasing values of δ3δ4.
For all cases we use αr

1 = −0.1,αr
3 = −0.2,αr

5 = −0.3,αi
1,3,5 = 0,|γ |2 = 1,δ1δ2 = −3, and ε = 0.3. The red

and blue (green and yellow, light-blue and violet) curves denote the solutions σ̃1,2 (̃σ3,4 ,̃σ5,6). (a) δ3δ4 = 1,
(b) δ3δ4 = 0.3, and (c) δ3δ4 = 0.1.
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IV. DISCUSSION AND CONCLUSIONS

We have examined dynamo action driven by a mean axisymmetric flow subject to spatio-temporal
periodic perturbations. We have compared the outcome of a three-dimensional numerical dynamo
model in cylindrical geometry with analytic results obtained from a simple low-dimensional model
for the magnetic field amplitude. Our computations show that a periodic excitation by means of
a nonaxisymmetric flow perturbation can be beneficial for dynamo action when the perturbation
frequency is in the right range. The essential properties shown by growth rates and frequencies
of the eigenmode in the simulations can be qualitatively reproduced in the analytical model. This
concerns in particular the occurrence of a localized strong increase of the growth rate and broader
regimes with weaker enhancement when different azimuthal field modes are coupled. We also find
less obvious details that occur in both approaches, like the symmetrical appearance of parametric
resonances and the weak linear dependence of the location of the maximum on the amplitude of the
perturbation. However, a quantitative agreement between the two models does not persist. This could
not be expected because of the simplicity of the analytical model that does not take into account the
particular geometry of the flow and is based on a decomposition of the magnetic field into azimuthal
modes that are not exact eigenmodes of the (disturbed) system. In that sense our analytical approach
is not equivalent to a perturbation method in a systematic mathematical meaning.

The parametric resonances found in our simulations are characterized by a strong gain in the
growth rate in a narrow range of excitation frequencies, a nonoscillating amplitude of the field, and
the linking of the magnetic phase to the phase of the perturbation. The resonances have also been
found in previous simulations with a different spatial structure of the periodic disturbance (see also
our previous study [23]) as well as in our analytical model in which the shape of the disturbance is
not specified at all. Hence we suppose that the shape of the perturbations is not important for the
occurrence of the observed resonances.

Depending on the parameters in both approaches, simulations and analytical model, we obtain
either a single peak around ω = 0 or two peaks symmetrical located around the origin. Broader
regimes with an enhancement of the growth rates apparently emerge due to the coupling of
eigenmodes with a different azimuthal wave number.

Our analytic model suggests that the parametric resonances in the perturbed system are based
on the coupling of the azimuthal modes with the same modulus of the azimuthal wave number but
with different sign (m = 1 and m = −1 or m = 3 and m = −3 in the example shown in Fig. 16).
This corrects the speculations from our previous study where it was assumed that the parametric
resonance in the perturbed dynamo is based on the interaction of m = 1 and m = 3 [23].

The analytical low-dimensional model is not intended to perfectly reproduce the simulations,
which, indeed, is not even possible, because neither the basic flow field nor the pattern of the
perturbation is considered in the low-dimensional Ansatz. Instead it demonstrates how different
eigenmodes of an unperturbed state become coupled by a perturbation and thus impact the dynamo
ability of the system. In that sense the low-dimensional model reflects some essential properties of our
three-dimensional simulations and provides a plausible explanation for the complex behavior of the
growth rates in different regimes with amplification of the field generation process like appear in our
simulations at Rm = 120. Individual features, such as the single peak around ω = 0 for Rm = 30,
the occurrence of the double maximum symmetrical about the origin with a smaller maximum in
between, or the existence of further broad secondary maxima without parametric resonance, are well
reproduced. However, there is no real consistency between the analytic model and the simulations
and a direct comparison or the reproduction of the particular pattern seen e.g. in Figs. 7(c) and 7(d)
remains impossible.

The resonant behavior is similar to the behavior of periodically perturbed mechanical systems,
but the resonance condition only approximately fulfills the well-known relation ωres = 2ω0 (with ω0

the natural frequency of the unperturbed system) when a larger number of azimuthal field modes is
involved. Furthermore, in accordance with the findings of Ref. [39], the eigenvalues are no longer
determined by a Mathieu-like equation even though the solutions show a similar behavior.

053701-25



ANDRÉ GIESECKE, FRANK STEFANI, AND JOHANN HERAULT

We find additional extended regimes with a significant enhancement of the growth rate but less
pronounced than in the resonant case and without locking of the field to the phase of the perturbation.
Our analytic model shows that the emergence of the amplification regimes requires the interaction
of dynamo modes with distinct azimuthal wave numbers and a basic state which consists of dynamo
modes with growth rates that are sufficiently close to each other. The vast regimes with parametric
amplification have not been found in previous models, because either the higher magnetic field
modes were not even considered (e.g., in the galactic dynamo models by Ref. [19]) or they decayed
on a very fast time scale because the interaction triggered by the nonaxisymmetric perturbation has
been too weak to become effective [23].

The very parametric resonance is limited to a narrow regime of rather small perturbation
frequencies so that a realization in natural dynamos might be rather unlikely but cannot be ruled
out. Nevertheless, the vast regimes with significant amplification caused by the interaction of modes
with different azimuthal wave number in the analytical model and in the simulations may be still
sufficient to turn a subcritical system into a dynamo with exponentially growing magnetic field even
when the perturbation amplitude remains small. This nonresonant parametric amplification can also
be of importance for long-term variations of magnetic activity as, for example, found in the solar
dynamo models of Ref. [40].

We have restricted our interest to linear models with a prescribed flow. However, it has been
found that nonaxisymmetric perturbations also impact the nonlinear state of a dynamo [41] and may
even change the fundamental character of the dynamo by triggering hemispheric asymmetries or
cyclic changes of the large-scale magnetic field orientation known as flip-flop phenomenon or active
longitudes [42]. We further restricted our examinations to a perturbation pattern with azimuthal wave
number m̃ = 2 as it results, e.g., from tidal forces in a two-body system. A possible astrophysical
application may be the impact on flow driving in planetary dynamos, in particular when considering
large Jupiter-like exo-planets that closely surround their host stars or resonance effects for stellar
dynamo models [43]. A possibility for a natural appearance of a perturbation pattern with higher
azimuthal wave number, say, m̃ = 5 and/or m̃ = 6, are free inertial waves that can be excited via
triadic resonances, e.g., in a precession-driven flow [14,44], which in turn may couple various
magnetic field modes and thus improve the dynamo capability of the system.

It is tempting to make use of the beneficial impact of a space-time periodic regular perturbation
on top of a given basic flow in order to excite dynamo action in experiments like the French von
Kármán-sodium (VKS) dynamo [20] or the Madison dynamo [21]. Both experiments utilize a flow
of liquid sodium driven by two opposing and counter-rotating impellers with the time-averaged
flow similar to the flow applied in our study.1 So far the VKS dynamo exhibited magnetic field
self-generation only in case of a flow driven by impellers made of a ferromagnetic alloy [45]
whereas the Madison dynamo did not show dynamo action at all. For both experiments, a reduction
of the critical magnetic Reynolds number by 30%, as found in our simulations, would be of great
relevance. Interestingly, nonaxisymmetric vortex-like flow structures, which might represent the role
of a suitable disturbance, were discovered for both configurations in water experiments ([24,46,47] in
a cylinder) as well as in nonlinear three-dimensional simulations dedicated to the Madison dynamo
[48]. Kinematic dynamo simulations based on various manifestations of the flow field obtained
from these nonlinear hydrodynamic simulations yield a beneficial impact of the nonaxisymmetric
time-dependent flow perturbations, whereas neither the time-averaged flow nor time snapshots of the
velocity field were able to drive a dynamo [48]. This effect was interpreted as dynamo action based
on nonnormal growth [49]. Nonnormal growth describes a perpetual increase of mode amplitudes
by virtue of the appropriate mixing of nonorthogonal eigenstates even if the contributing eigenstates
alone correspond to decaying solutions. However, in contrast to the dynamo models from Reuter
et al. [48] and Tilgner [49] the boost of the growth rates observed in our study already occurs
when applying stationary nonaxisymmetric perturbations and is not related to the time scale given

1The Madison dynamo is running in a sphere.
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by transient growth during the initial phase of the simulations which would depend on the initial
conditions. Hence, we believe that the behavior found in our study is not based on nonnormal growth.
In any case, our simulations show that, although perturbations are able to considerably boost the
growth rates in a wide range of parameters (namely for a wide range of frequencies), a beneficial
impact for the onset of dynamo action by reducing the critical magnetic Reynolds number can only
be expected for stationary and/or slowly drifting nonaxisymmetric perturbations (much slower than
the advective time scale based on the maximum axisymmetric azimuthal flow). Hence, the direct
experimental realization of a beneficial impact provoked by the inherent nonaxisymmetric vortices
is difficult because this would require a technical mechanism to control the azimuthal frequency
of the observed nonaxisymmetric flow structures without significantly altering the basic flow field,
which is hardly conceivable. More promising might be the flow-driving mechanism at the Madison
Plasma Dynamo Experiment (MPDX) [50] where a conducting unmagnetized plasma is exposed to
a torque generated by external currents that interact with a multicusp magnetic field at the boundary.
The resulting forcing drives a flow that is supposed to range deeply into the core plasma and may
provide a possibility to impose appropriate nonaxisymmetric perturbations.
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