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Purely elastic instabilities in a microfluidic flow focusing device
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In this work, we investigate the behavior of dilute and semidilute polymer solutions
flowing in a microfluidic flow focusing device, in which an inlet stream is stretched by
two balanced lateral streams. By varying the flow rates in the inlet and lateral channels and
their ratio, several types of flow transitions are observed and the resulting velocity fields are
analyzed both upstream and downstream of the intersection. At high flow rates, the flow
becomes chaotic and the path to this state depends on both the Weissenberg number and
the imposed Hencky strain. The thresholds of successive elastic instabilities leading to the
chaotic state are also investigated using time-resolved microparticle imaging velocimetry.

DOI: 10.1103/PhysRevFluids.2.053301

I. INTRODUCTION

Understanding the flow of complex fluids through a cross-shaped channel is important for both
fundamental research and practical applications. Cross-shaped channels are commonly used to
investigate the flow of viscoelastic fluids in microfluidic devices where inertial effects are usually
negligible. The standard cross geometry consists of four orthogonal channels with independent flow
rates and can be used in a variety of configurations. The most common configuration is the cross-slot
extensional flow which was extensively studied for polymeric solutions both experimentally [1–3]
and numerically [4]. In this configuration, the flow rates are opposite in opposing channels, with
two balanced inlet flow rates, and two balanced outlet flow rates, creating a stagnation point at
the center of the intersection and generating a strong extensional flow in the central region, with
relevant applications in extensional rheometry [5–7] and the study of the deformation of biological
samples [8–10]. Recently, flow focusing devices have also received particular attention [11–14]. In
this configuration, three channels are used to deliver fluids, and the flow from the central channel
is focused between balanced sheath streams coming in from the lateral channels. This can be used
to create calibrated droplets [11] and study elastic instabilities at high extensional rates [12,15].
Both microfluidic cross-slot and flow focusing devices [3,11,13] combine small length scales and
strong extensional flow fields which enable us to investigate elastic instabilities and eventually elastic
turbulence under negligible inertia [16–20].

In this experimental work, we investigate the onset of purely elastic flow instabilities of polymeric
solutions in a microfluidic flow focusing device using flow visualization and micro-particle image
velocimetry (PIV). The advantage of this configuration over other geometries known to trigger elastic
turbulence [21–23] is the ability to independently vary the lateral and the central flow rates hence
changing the extensional strain rate independently of the strain imposed to the fluid injected through
the central inlet. Previous works have been done on this flow configuration either numerically [12]
or experimentally [13], and in both cases a similar behavior was found: at low flow rates the flow is
steady and symmetric, and above a critical flow rate an elastic instability renders the flow asymmetric
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FIG. 1. (a) Shear viscosity η as a function of the shear rate γ̇ measured at T = 22 ◦C, for PAA polymer
solutions at c = 300 ppm (diamonds), c = 150 ppm (squares), and 50 ppm (triangles). The continuous lines
are fits using the Carreau model for shear viscosity: η∞ = 0.16 Pa · s, η0 = 1.80 Pa · s, τe = 11.0 s, and
m = 0.61 for c = 300 ppm; η∞ = 0.16 Pa · s, η0 = 0.53 Pa · s, τe = 4.8 s, and m = 0.68 for c = 150 ppm; and
η∞ = 0.16 Pa · s, η0 = 0.24 Pa · s, τe = 3.2 s, and m = 0.82 for c = 50 ppm. (b) First normal stress difference
N1 as function of shear rate γ̇ for the same fluids. The continuous lines are fits by a power law function
N1 = αγ̇ q , with N1 in Pa and γ̇ in s−1: α = 1.81 and q = 0.998 for c = 300 ppm; α = 0.348 and q = 1.05 for
c = 150; and α = 0.120 and q = 1.10 for c = 50 ppm. (c) Diameter versus time measured in the CaBERTM

1 rheometer at T = 22 ◦C, where the continuous lines are the exponential fits of the filament diameters as
function of time in the elasto-capillary regime, from which λ is determined.

but still steady; at higher flow rates, the velocity field becomes time dependent. Oliveira et al. [12]
argued that the transition to asymmetric flow is a stress-relief mechanism, and a review on these
instabilities can be found in Ref. [24]. In a recent work in a millifluidic T-junction device, Varshney
et al. [15] observed a direct transition to unsteady flow, without the onset of a steady asymmetric flow.
As will be shown, these two flow instabilities may occur in the setup used in this work, depending
on the velocity ratio and the inlet flow rate in the main channel, eventually resulting in chaotic flows
at even higher flow rates, a regime not previously investigated in detail in flow focusing devices,
and which is addressed in this work. The remaining of this paper is structured as follows: we start
by presenting the rheology of the fluids and the experimental setup, followed by a description of the
experimental results. The paper ends with a discussion of the results and how the flow field changes
with the relevant dimensionless parameters.

II. POLYMERIC SOLUTIONS

The fluids studied are dilute and semidilute solutions of polyacrylamide (PAA), with an average
molecular weight M = 18 × 106 Da (Polysciences), in a mixture of glycerol and water with 88.7
± 0.2% per weight of glycerol. The PAA concentrations tested were c = 300, 150, and 50 ppm
in weight, which correspond to c/c∗ = 1.8, 0.9, and 0.3 respectively, where c∗ � 170 ppm is the
estimated overlap concentration [3]. A small amount (400 ppm in weight) of spherical fluorescent
tracer particles (diameter ø= 1μm, Nile red particles, Invitrogen) are added to measure the velocity
field using micro-PIV (Dynamic Studio v3.41, Dantec Dynamics). To reduce the adhesion of tracer
particles at the walls of the channels, sodium dodecyl sulfate (SDS) was added at a weight
concentration of 110 ppm. Rheology measurements (shear viscosity η and first normal-stress
difference N1 as a function of shear rate γ̇ ) in steady shear flow were measured with a rotational
rheometer (Physica MCR301, Anton Paar) with a cone-plate geometry of diameter 50 mm and
angle 2◦, using the final solutions with SDS and tracer particles. The resulting viscosity curves
are similar to the rheology without tracers and SDS for the same concentrations of polymer.
These fluids are viscoelastic and only slightly shear thinning as shown in Fig. 1, with the dilute
solutions approaching a Boger fluid behavior [25]. Contrary to similar solutions in which salt was
added [13,20,26,27], the shear thinning property of the solutions used in this work is relevant
for the semidilute solution; the shear viscosity decreases roughly by a factor of four over the
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FIG. 2. (a) Schematic of the flow focusing device. (b–d) Images taken for long exposure times with
rhodamine-tinted solutions in the central channel. The continuous (red) lines were added to highlight the location
of the walls of the flow focusing device. Illustrative flow patterns for (b) stable flow (Wi = 0.30, εH = 1.10),
(c) asymmetric stable flow (Wi = 1.4, εH = 2.94), and (d) time-dependent flow (Wi = 7.3, εH = 3.04).

range of shear rates investigated. The steady shear viscosity curves were fitted with a Carreau
model [28], η = η∞ + (η0 − η∞)[1 + (τeγ̇ )2](m−1)/2, and the best fitting parameters are given in
the caption of Fig. 1(a). The extensional relaxation times, λ, were measured in extensional flow
using a capillary breakup extensional rheometer (CaBER, Haake CaBERTM 1, Thermo Electron),
and the following average values were obtained: λ = 0.34 s at c = 300 ppm, λ = 0.16 s at c = 150
ppm, and λ = 0.062 s at c = 50 ppm [see Fig. 1(c)]. The relaxation times vary nearly linearly with
polymer concentration for the fluids tested, in agreement with the measurements of Sousa et al. [29]
for aqueous PAA solutions.

III. EXPERIMENTAL SET-UP

The microchannels are made in house in polydimethylsiloxane (PDMS), with custom SU-8 molds.
We checked, through bright light imaging on different microchannels produced independently on
different days, that the dimensions were constant within ±2 μm. Moreover, due to the elasticity of
the channels, we observed a deformation of the channels of about 5% in the xy plane for the higher
flow rates, well above the onset of time-dependent flow. The geometry can be seen as two straight
channels crossing, as illustrated in Fig. 2(a). The first channel forms the central entry, and the exit
and has a width w1 = 100 μm. The second channel is orthogonal to the first and composes the lateral
entrances with a constant width w2 = 200 μm. The depth of the channels is constant h = 110 μm.
The corners of the intersection are rounded with a radius of 5 μm. Both lateral branches have the
same length (5 mm) from inlet to cross section, the inlet channel is 10 mm long, while the outlet
channel is longer (30 mm) to measure the evolution of the velocity field as the fluid flows away from
the intersection.

Constant flow rates in the channels are imposed using Hamilton syringes on a low-pressure
neMESYS syringe pump (Cetoni GmbH). To minimize the oscillations in the three imposed inlet
flow rates, induced by the discrete microsteps of the motor of the syringe pump, the volume of
the syringes was chosen to ensure that the piston velocity is at least one order of magnitude
higher than the pulsation free rate given by the manufacturer. The outlet channel is open to the
atmosphere. The entry flow rate is Q1, the two side flow rates are equal and noted Q2, while the
exit flow rate is Q3 = Q1 + 2Q2. The average velocities are U1 = Q1/(hw1), U2 = Q2/(hw2), and
U3 = Q3/(hw1), respectively.

A flow focusing experiment can be characterized by two parameters: the degree of deformation
of the fluid in the central channel and how fast this deformation occurs. Different dimensionless
numbers can be used to describe the instabilities [30,31]. The degree of deformation is generally
described by the Hencky strain, εH = ln(U3/U1). In cases where the normal stresses generated by
the shear flow is the main cause of instability [17,20], we can define a shear Weissenberg number,
Wishear = N1/(2σp), where N1 and σp are the first-normal stress difference and polymeric component
of the shear stress evaluated at the wall conditions. Another dimensionless number one can consider
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is the Deborah number De, which is defined as the ratio between the relaxation time of the fluid and
a characteristic time scale of the flow, De = λ/tf . If we estimate tf as the time needed for a fluid
element to accelerate through the intersection from U1 at x � −w2/2 to U3 at x � w2/2, assuming a
linear increase of the velocity in the extensional flow, we obtain De = λ(U3 − U1)/[w2 ln(U3/U1)].
We can also define a Weissenberg number dependent of the strain rate ε̇, Wi = λε̇, which is
important in strong extensional flows [5]. In our setup, these three values are related and can be used
in combination with εH to describe the flow of a viscoelastic fluid. Here the accessible range of εH

results in similar values for Wi, Wishear, and De. Therefore, in the following, we will use εH and
Wi to describe the flow conditions. We have verified that this choice does not significantly change
the results presented here. When calculating the Weissenberg number, the strain rate is estimated as
ε̇ = (U3 − U1)/w2, thus Wi = λ(U3 − U1)/w2. Expressed as functions of the imposed flow rates, the
Weissenberg number and the Hencky strain are Wi = 2Q2λ/(w1w2h) and εH = ln(1 + 2Q2/Q1),
respectively. The flow rate in the exit channel ranges from 2.1 nl/s to 150 nl/s, which correspond
to estimated shear rates γ̇ � 2U3/w1 = 2Q3/(hw2

1) in the range 4–275 s−1. The lowest limit of the
flow rate is imposed by the size of the smallest syringes available, while the high shear rate limit
depends on the resistance of the channels. The resulting Reynolds number (Re = ρU3w1/η) ranges
approximately from 10−4 to 0.01 where η is the shear viscosity measured at the characteristic shear
rate γ̇ � 2U3/w1. Inertia is negligible at such low Reynolds number flows, therefore the instabilities
observed are purely elastic.

The visualization setup includes a high-speed camera (Miro M340, Vision Research) and a double
pulsed high-repetition rate laser (LDY301, Litron Lasers), which can be operated up to 10 kHz. The
pulsed laser is connected to an inverted microscope (Olympus, IX83) using a liquid optical fiber
and an adapter for collimating the light. We use an Olympus 10× objective with numerical aperture
NA = 0.3 and a measurement depth of approximately 20 μm. The objective holder can be moved
vertically with micrometric precision. We determine the location of the top and bottom walls of the
channel by focusing at the immobile particles that adhere to the walls. Once the positions of the
upper and lower walls are found, we place the focal plane of the objective at the middle. We chose to
work at the midplane of the channel to minimize the effect of the focal depth of the objective because
both the z variation of the velocity profile and the flow component out of plane are expected to be less
significant therein. Velocity fields are extracted from double frame images taken at a frequency facq

at the middle plane of the channel with a time dt between two images in a pair. Movies are taken for
a duration longer than 10λ at a frame rate higher than 20/λ. At the same time dt is chosen to obtain a
maximum displacement between a pair of images close to 5 pixels, or is fixed at 1/facq for the lowest
applied flow rates. This methodology ensures at least one order of magnitude between the higher
limit of the frequency window and the inverse of the relaxation time of the fluid and allows for a good
resolution of the velocity field using the Adaptive Particle Image Velocimetry implemented in the
Dynamic Studio software. All experiments were performed at room temperature, T = 22 ± 1 ◦C.
This setup was first tested with Newtonian fluids (various glycerol-water mixtures) to estimate
the noise in the measured velocity field induced by the syringe pump at various flow rates. Small
amplitude oscillations were observed at the lower applied flow rates with the smaller syringes, which
are consistent with the discrete nature of the pump stepper motor, but these oscillations disappear at
higher flow rates such as those used in the viscoelastic flows reported here.

IV. RESULTS

The velocity components along the central direction x and the lateral direction y are u and v,
respectively. Movies taken with a dyed fluid (rhodamine B, Sigma-Aldrich) at various Wi and εH

are included as Supplementary Materials [32], and illustrative images of different flow regimes are
presented in Figs. 2(b)–2(d). The solutions used in PIV experiments contain only fluorescent tracer
particles and no dye. We also observed the appearance of large lip vortices at the reentrant corners
of the downstream channel. These vortices are reminiscent of what is observed in contraction
flow experiments [33]. Figure 2(d) illustrates the need of using fast velocimetry experiments to
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FIG. 3. Space-time diagrams of dimensionless velocity components (a, c, e, g) v/U1, (b, d, f, h) u/U1,
(i, k, m, o) v/U3, and (j, l, n, p) u/U3 all taken for εH = 3.04.

obtain insight in the transient behavior of the downstream flow at high Wi. As can be seen in the
entry channels, from the gray-scale intensity variation, the flow is complex, but in the exit channel
the fluctuations have a higher wavelength. This clearly shows that the time scale of the velocity
fluctuations is large compared to the time needed for a tracer to cross the visualization window.

A. Transition to chaotic flow

Figure 3 shows space-time diagrams of u and v at x/w1 = −1.5 (upstream) and x/w1 = 1.5
(downstream) for a fixed εH and varying Wi. For the lowest Wi presented, the velocity field is steady
and symmetric [Figs. 3(a) and 3(b)]. At higher Wi, the flow becomes asymmetric while remaining
steady [Figs. 3(c) and 3(d)]. Increasing Wi, the velocity field becomes time dependent, with periodic
oscillations [Figs. 3(e) and 3(f)]. As the flow rate is further increased, oscillations lose their long-time
correlation, and the flow is described as semiperiodic. Finally, at high Wi, the flow becomes chaotic
with large nonperiodic fluctuations of the velocity field [Figs. 3(g) and 3(h)]. This is similar to
what was observed recently by Varshney et al. [15] in a T-channel, which can be seen as a flow
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FIG. 4. (a) Power spectra of u/U1 measured at x = −1.5w1 and y = w1/4 for εH = 3.04 as a function of
the dimensionless frequency f λ for c = 50 ppm and Wi = 0.13 (very light orange), c = 50 ppm and Wi = 0.85
(light green), c = 300 ppm and Wi = 3.1 (red), and c = 300 ppm and Wi = 9.3 (dark blue). (b) Power spectra
of u/U3 measured at x = 1.5w1 for the same flows and fluids. (a, b) The dashed lines are a guide to the eye to
illustrate typical power law decay in the elastic turbulence regime.

focusing device approaching an infinite εH , although in the T-channel the steady asymmetric flow
field was not observed. The fluctuations of the normalized velocities are relatively stronger upstream
because of the smaller average velocity, and it is easier to portray in more detail the evolution of
the velocity field upstream of the intersection. Experimentally, the fluctuations of u and v in the
upstream region can be larger than U1, while downstream U3 is larger than the velocity fluctuations.
However, the understanding of the dynamics of the velocity field as the fluid elements move away
from the intersection is also important for the characterization of elastic effects, especially the decay
of the temporal fluctuations downstream of the source of the perturbation. Figures 3(i)–3(p) present
the space-time diagrams of the velocity profiles downstream of the intersection, at x/w1 = 1.5. As
can be seen, the flow fields upstream and downstream of the intersection are somehow different.
Mainly, the upstream flow asymmetry does not affect significantly the downstream velocity field.
Finally, u/v is comparatively larger downstream of the intersection once instabilities set in, with
u/v � 2 upstream and u/v � 20 downstream of the intersection.

Another way to look at the state of the flow is to compute the power spectrum P of the velocity
time series and measure the exponent of the power law decay with the frequency f that occurs
when a chaotic flow sets in, P ∝ f −n. We calculate the power spectrum by averaging power spectra
obtained on smaller time windows, typically of 500 or 1000 time steps, with a Hann window. We have
also computed the power spectra without any windowing and the results are similar. For Newtonian
fluids, the power spectrum is nearly flat since the flow is steady, and mainly the noise of the velocity
field measurements is observed in the power spectrum. On the other hand, in the elastic turbulence
regime the power spectrum decays with f as a power law with an exponent close to n � 3.5 [21,34].

Figure 4 shows the power spectra of u/U1 and u/U3 presented in Fig. 3 both upstream [Fig. 4(a)]
and downstream [Fig. 4(b)] of the intersection at y = w1/4. The power spectra measured downstream
of the intersection [Fig. 4(b)] shows a transition from flat power spectra with low value of P , for
the symmetric and asymmetric steady flows, to a power spectrum presenting marked peaks at a
given frequency (f λ � 0.2) and its harmonics (Wi = 3.1), and finally a power law decay with
an exponent n � 3.5 at Wi = 9.3, which is consistent with previous studies on elastic turbulence
[21,26,34]. We see that the transition from nearly flat power spectra to power law-like power spectra
occurs alongside an increase of P , which reflects the increase of the amplitude and complexity
of the fluctuations. However, power spectra of velocity measured upstream show a sharp decrease
with increasing frequency, even when the velocity seems steady. This is due to the slow velocities
upstream compared to the velocities downstream (here Q1 = Q3/21), and the limit of our set-up
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FIG. 5. Time evolution of u (top) and corresponding power spectra P of u/U3 as a function of frequency
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lines at the centerline y/w1 = 0. The dashed lines are a guide to the eye to illustrate the power law decay. (a, b)
Glycerol-water mixture (90–10 weight ratio) for εH = 3.69 and Re = 0.005. (c, d) Polymer solution at c = 300
ppm, Wi = 12, εH = 3.69, and Re = 0.0035. (e, f) c = 300 ppm, Wi = 9.3, εH = 3.04, and Re = 0.0027.

resolution. At the lower applied flow rates, we acquire movies at lower frequency to increase the
distance traveled by the particles between two images, hence we lose some higher frequencies in the
power spectrum.

Figures 5(c) and 5(e) present time series of u for chaotic flows at different Wi and εH and the
comparison with a Newtonian fluid at similar flow rate [Fig. 5(a)]. The response is different for y = 0
and y = w1/4 and shows larger fluctuations at y/w1 = 1/4. Indeed, in the two viscoelastic cases
the power law exponent n is higher than 3 at y/w1 = 1/4 and n < 3 at the centerline y/w1 = 0.
This is also seen in Figs. 3(n) and 3(p), where the difference of fluctuations at the centerline and at
y/w1 = 1/4 is clear.

B. Decay of the time dependence

Figure 6 shows the time evolution of u at different x positions in the outflow channel [see Fig. 2(a)].
The velocity time series in Figs. 6(a) and 6(b) is semiperiodic downstream of the intersection while
upstream the flow is chaotic, as will be shown in Fig. 8. As seen in Fig. 6(a), close to the onset of
the chaotic flow the velocity field stabilizes on a distance comparable to the width of the channel
but smaller than the distance traveled by the fluid during one relaxation time, D = Q3λ/(hw1).
However, for higher εH and Wi the flow remains unstable many channel widths downstream, as
seen in Fig. 6(c). Comparing Fig. 6(a) and Fig. 6(c) shows that the amplitude of the fluctuations
decreases by one order of magnitude in the distance traveled during one quarter of the relaxation
time for Wi = 6.4 and εH = 2.08, while for Wi = 19 and εH = 3.69 the same decay occurs only
approximately over four relaxation times. The corresponding power spectra [Figs. 6(b) and 6(d)]
also show a decrease of n from values similar to what is expected in the elastic turbulence regime,
(n ∼ 3.7) [21,34] close to the intersection, to an exponent much smaller (n � 1) far from the
intersection. Moreover, for chaotic flows, the amplitude of the velocity fluctuations increases with
Wi, as seen in Fig. 7, where we plot the standard deviation normalized by the average velocity in the
chaotic regime for different Wi. The fluctuations decrease faster when Wi is smaller and eventually
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FIG. 6. (a) Normalized velocity u/U3 measured at y/w1 = 1/4 as a function of the normalized time t/λ

at different downstream distances: x/w1 = 1.0625 (dark blue), x/w1 = 1.5 (red), x/w1 = 2 (light green),
x/w1 = 4 (very light orange), for c = 150 ppm, εH = 2.08, Wi = 6.4, and Re = 0.0058. (b) Corresponding
power spectrum of u/U3 as a function of the dimensionless frequency λf , with the dashed lines showing the
power law decay limits. (c) u/U3 at y/w1 = 1/4 at x/w1 = 1.5 (dark blue), x/w1 = 10 (red), x/w1 = 30
(light green) and x/w1 = 150 (very light orange), for c = 300 ppm, εH = 3.69, Wi = 19, and Re = 0.0034.
(d) Corresponding power spectrum.

reach values similar to Newtonian fluids farther downstream in the outflow channel. This behavior
is similar to what was observed by Pan et al. [23] for similar polymeric solutions flowing past a
linear array of cylinders, where the distance required to stabilize the velocity fluctuations increases
nonlinearly with the increase of Wi. Close to the onset of the elastic instability, the fluctuations of
the velocity decay faster, while at high Wi the velocity fluctuations were almost independent of the
distance to the perturbation [23]. In our setup, we do not achieve long-range instability, since at most
the velocity fluctuations vanished at d/w1 � 100. However, it may be possible to induce long-lived
fluctuations for higher Wi, but this would require the use of channels with higher resistance. In our
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FIG. 7. Standard deviation of u normalized by the time average value of u for various Wi and εH = 3.69, for
c = 300 ppm. The black crosses show results for a glycerol-water mixture at a 90–10 weight ratio at εH = 3.69
and Re = 0.005. The dashed line is the average value of the experiments in glycerol-water.
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FIG. 8. Flow field classification map observed upstream of the intersection as a function of εH and Wi for
c = 50 ppm (full symbols), c = 150 ppm (grayed symbols), and c = 300 ppm (hollow symbols). The dashed
lines are guides for the eyes and separate approximately the stable steady symmetric flow regime Ia, the steady
asymmetric regime Ib, the time-dependent regime II, and the chaotic regime III.

case, we could not achieve flows for Wi > 20 because the increase in pressure resulting from the
high flow rates deforms significantly the PDMS microchannels.

V. DISCUSSION

Figure 8 summarizes the different types of flow behavior upstream of the intersection in a εH -Wi
map. The flow field was classified as follows: for low Wi the flow is steady and symmetric [Figs. 3(a)
and 3(b) and upward triangles in Fig. 8]. For higher εH a steady asymmetric flow is first observed
increasing Wi [Figs. 3(c) and 3(d) and stars in Fig. 8] with a clear flow asymmetry in the upstream
branch of the main channel. With increasing Wi, the flow becomes unsteady, either with periodic
oscillations at low εH (squares in Fig. 8) or asymmetric and periodic at higher εH [Figs. 3(e) and
3(f) and downward triangles in Fig. 8]. The flow then becomes semiperiodic, with brief periodic
bursts but without long time correlation, resulting in wide peaks in the power spectra followed by
a strong decay with increasing frequency (diamonds in Fig. 8). Finally, at even higher Wi, the flow
becomes chaotic for all εH tested and is characterized by large fluctuations of velocity with no
defined frequency resulting in a power spectra following a power law decay with an exponent n > 3
[Figs. 3(g) and 3(h), and circles in Fig. 8].

In all cases the flow field of the polymeric solutions changes from Newtonian-like steady and
symmetric flow to chaotic flow as Wi increases, but varying εH leads to some notable differences.
The most obvious difference is the absence of asymmetric flow for lower values of the Hencky strain.
This is consistent with numerical simulations [12], where steady asymmetric flow was predicted only
for εH > 2.4. We also found that the critical Wi corresponding to the onset of chaotic flow decreases
with increasing εH , showing that large extensional normal stresses generated at higher εH (and
higher Wi) are important to the flow instability. Interestingly, for εH = 2.08, no periodic flow was
observed. The main difference between our experiments and the numerical calculations of Oliveira
et al. [12] is the onset of time-dependent flow. In their work, the critical Wi for time-dependent
flow increases with increasing Hencky strain, while, in our experiments, this is the case at low
εH , but the time-dependent flow begins at lower Wi for εH = 3.04 than for εH = 2.08. This may
be due to the differences between experiments and simulations, particularly because the numerical
calculations consisted of two-dimensional (2D) flow while the experiments are realized in 3D
geometries (w1 = w2/2 � h), and also because the constitutive equation used in the simulations
was the upper-convected Maxwell (UCM) model, which does not include shear thinning of the
viscosity as happens in the fluids used in the experiments, and predicts a much larger increase of
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first normal stress difference with shear rate. In the UCM model N1 ∝ γ̇ 2, while in the fluids used
in this work N1 increases approximately linearly with γ̇ as shown in Fig. 1(b).

Future investigations will focus on the dependency of the onset of asymmetry and time dependent
flow on the channel aspect ratio, α = h/w1. This will provide a better understanding of the relevant
dimensionless numbers that characterize the onset of flow instabilities. Additionally, new geometries
were designed numerically to create more homogeneous, nearly constant strain rate through the
intersection [35], and these ideal geometries can also provide valuable information regarding the
critical conditions for the onset of flow instabilities.

VI. CONCLUSIONS

We have shown the complex behavior of viscoelastic fluids in a flow focusing device over a wide
range of Weissenberg numbers and different stretching levels measured by the Hencky strain. We
have also shown that the path toward a chaotic flow depends both on Wi and εH . For low εH , as
Wi increases, the initially stable flow becomes periodic, then semiperiodic before displaying chaotic
behavior at Wi ∼ 10. For high εH , a purely elastic instability at Wi ∼ 0.3 first renders the flow
steady asymmetric, before a periodic state is obtained. Increasing Wi further leads to chaotic flow
with a power law decay of the power spectra compatible with the elastic turbulence regime. The
flow pattern map obtained shows that high Wi is required to reach a chaotic flow, while εH determines
the road to instability. The flow focusing device allows to easily vary independently the level of
stretching of the polymer molecules and the rate of deformation, providing a valuable platform
for extensional rheology measurements. It is also useful to analyze the onset of purely elastic flow
instabilities, allowing for direct comparison between numerical calculations [12] and experiments
since small changes in the input parameters can greatly change the time dependency of the velocity
field and the stability of the system.
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