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We use high-resolution direct numerical simulations to study the anisotropic contents of
a turbulent, statistically homogeneous flow with random transitions among multiple energy
containing states. We decompose the velocity correlation functions on different sectors of
the three-dimensional group of rotations, SO(3), using a high-precision quadrature. Scaling
properties of anisotropic components of longitudinal and transverse velocity fluctuations
are accurately measured at changing Reynolds numbers. We show that independently of
the anisotropic content of the energy containing eddies, small-scale turbulent fluctuations
recover isotropy and universality faster than previously reported in experimental and
numerical studies. The discrepancies are ascribed to the presence of highly anisotropic
contributions that have either been neglected or measured with less accuracy in the foregoing
works. Furthermore, the anomalous anisotropic scaling exponents are devoid of any sign
of saturation with increasing order. Our study paves the way to systematically assess
persistence of anisotropy in high-Reynolds-number flows.

DOI: 10.1103/PhysRevFluids.2.052602

The notion that all turbulent flows attain universal properties at small scales, regardless of
the macroscopic details, has been an enduring and yet unproved concept in turbulence research
[1–3]. The energy containing scales in many flows such as shear, rotation, natural convection,
thick layers, atmospheric boundary layer, and magnetohydrodynamic flows are all strongly affected
by anisotropic (and nonhomogeneous) effects of the extrinsic stirring and boundary conditions,
resulting in seemingly different flow configurations [4–13]. As such, anisotropic fluctuations are
always connected to some degree of nonuniversality, i.e., dependence on the empirical setup. Can
we disentangle anisotropic from isotropic statistical contributions? Are there any universal facets
of turbulence? How does the relative importance of anisotropic and isotropic fluctuations vary with
turbulence intensity? These are the questions we attempt to address.

On the one hand, all phenomenological turbulence theories point toward a return-to-isotropy, at
small enough scales [1–3]. On the other hand, measurements of anisotropic contributions as functions
of scale separation have revealed persistent small-scale anisotropy in hydrodynamical turbulence
[14–18], magnetohydrodynamics [19,20], and passive scalar mixing [21,22]. The persistence of
anisotropy as reported in Refs. [16,17,21] was later reconciled with the postulate of local isotropy as
an effect of the existence of anomalous scaling in both isotropic and anisotropic correlation functions
[22,23].

In this Rapid Communication we investigate the return to isotropy vs persistence of anisotropy,
using direct numerical simulations (DNS) of turbulent flows subject to large-scale shear at
high Reynolds numbers Re ≡ u′rf /ν, where rf denotes the typical forcing scale, u′ is the
root-mean-square velocity fluctuation, and ν is the viscosity. We use an exact decomposition of
multipoint turbulent correlation functions in the eigenbasis of the SO(3) group of rotations, which
is the only systematic method to disentangle isotropic from anisotropic contributions and to further
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FIG. 1. Evolution of I3 and I2 in the Lumley triangle ( ) for the 20483 RKF. The laminar state given by the
forcing configuration is shown by ( ). The inset shows steady-state evolution of I2 ( ) and I3 ( ) as functions
of t/TE . The reference line at zero is the isotropic state. Typical isocontours of the velocity magnitude in the
1C (I+) and 2C (I−) regions are also shown.

distinguish among different anisotropic turbulent fluctuations. However, the utility of the SO(3)
decomposition has largely been impeded by practical difficulties in both experiments and simulations.
High-Reynolds-number experiments are beset with limitations on the set of directions that can be
probed in three-dimensional (3D) space and consequently resort to ad hoc curve fits to separate
isotropic from anisotropic scaling properties [24]. Similarly, simulations have until now managed
to perform the SO(3) decomposition at low Reynolds numbers only [22], due to computational
bottlenecks (see the Supplemental Material [25] for an estimate). Consequently, until now results
concerning the multiscale statistical properties of anisotropic fluctuations have been characterized
by considerable scatter, thus calling into question their universal nature and in some instances even
jeopardizing the fundamental postulate of small-scale isotropy [18].

The main features of this work are the following. First, we have achieved sufficiently high
Reynolds numbers for a paradigmatic homogeneous shear configuration obtained from a random
Kolmogorov flow (RKF). Second, we have adopted a highly accurate Lebedev quadrature [26,27]
for expanding the correlation functions in the irreducible representations of the SO(3) symmetry
group. On an N3 grid, our SO(3) algorithm reduces the computational complexity from ∼O(N6) to
∼O(N3 log N ), thus expanding the range of problems where the SO(3) decomposition can be viable
(see the Supplemental Material [25] and Refs. [28,29] for details regarding computational intensity).

We discover that the flow evolution reveals unexpected bimodal statistics of the energy containing
scale, characterized by chaotic oscillations between two states I+ and I−, corresponding to
predominantly one-component (1C) and two-component (2C) axisymmetric macrostates (see 3D
rendering in Fig. 1), respectively. We exploit the existence of the two macrostates in assessing
universality as a function of the large-scale flow configurations. The main results are the following.
(i) By going to smaller and smaller scales, isotropy is recovered faster than previously thought.
We argue that this is due to the existence of nonvanishing anisotropic contributions from
the j = 4 sector (see below) discarded or incorrectly measured in previous works [18,30,31].
(ii) We show that the anisotropic fluctuations of longitudinal and transverse velocity increments
scale similarly. We confirm the theoretical expectation that all nonuniversal contributions are hidden
in the power-law prefactors, sector by sector in the SO(3) decomposition of the velocity correlations.
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TABLE I. Listed are the following DNS parameters: Taylor scale Reynolds number Rλ = √
20 Re/3,

resolution N 3, kmaxη = Nη/3 [where η = (ν3/ε)1/4 is the Kolmogorov length scale with ε the mean dissipation],
the forced wave vectors k1 and k2, the nondimensional shear rate FTE/u′ (where F is the anisotropic forcing
amplitude), and the length of the stationary-state simulation in multiples of large-eddy turnover time TE , Ttot/TE .

Rλ N kmaxη k1 k2 FTE/u′ Ttot/TE

290 1024 1.94 ±(2,0,0) ±(1,0,0) 0.48 118
450 2048 1.92 ±(2,0,0) ±(1,0,0) 0.45 50

(iii) The anisotropic scaling properties, contrary to previous expectations based on low-Reynolds-
number calculations, do not saturate at higher orders and are universal and Reynolds independent at
least up to the values investigated here.

We study the RKF [31] by evolving the 3D incompressible Navier-Stokes equations in a triperiodic
domain,

∂u/∂t + u · ∇u = −∇p/ρ + ν∇2u + f, (1)

where p is the pressure and ρ is the constant density. An anisotropic and statistically stationary
state is attained by forcing only two wave numbers (see Table I) in the y direction, fy(x,t) =
F [f̃y(k1,t)eik1·x + f̃y(k2,t)eik2·x], where F is a constant amplitude and the Fourier coefficients
f̃y(k1,2,t) follow independent divergence-free Ornstein-Uhlenbeck processes [32]. At variance with
the standard nonhomogeneous Kolmogorov flow [33], we recover translationally invariant statistics
by averaging the random forcing phases over multiple large-eddy turnover times TE ≡ rf /u′. To
quantify the anisotropy in the energy containing scales we examine the temporal evolution of
the two invariants I2(t) = (bij bji/6)1/2 and I3(t) = (bij bjkbki/6)1/3 of the Reynolds stress bij =
(〈uiuj 〉/〈ukuk〉) − δij /3 [34]. Figure 1 shows I2 plotted against I3 at different time instants, in
the Lumley triangle [35]. Surprisingly enough, despite the high Reynolds number, the dynamics
is attracted by two different anisotropic axisymmetric states I+ and I−, where I3 > 0 and I3 < 0,
respectively. The isocontours of the kinetic energy magnitude reveal a stark contrast in the large-scale
structures between the 1C and the 2C macrostates (see Fig. 1). The transition between I+ and I−
occurs suddenly during the time evolution, as shown in the inset of the same figure by the temporal
evolution of the two invariants. Notice that the large-scale configurations always avoid the isotropic
I2 = I3 = 0 state. The oscillations in the Reynolds stress suggest the existence of multiple turbulent
states akin to those found in Taylor-Couette and von Kármán swirling flows [36–38]. Here, to assess
the degree of small-scale universality at changing the large-scale anisotropy, we will show results
conditioned on the sign of I3.

The longitudinal and transverse velocity increments are defined as δuL(x,r) ≡ δu(x,r) · r̂ and
δuT (x,r) ≡ δu(x,r) − δuL(x,r)r̂, respectively, where δu(x,r) ≡ u(x + r) − u(x) is the two-point
velocity difference at separation vector r and r̂ is the unit vector along r. The pth-order longitudinal
structure function (LSF) and transverse structure function (TSF) are, respectively,

S(p,L)(r) ≡ 〈[δuL(x,r)]p〉, (2)

S(p,T )(r) ≡ 〈[δuT (x,r) · δuT (x,r)]p/2〉, (3)

where 〈·〉 denotes space and time averages. Since S(p,L)(r) are scalar functions of a vector argument,
they can be expanded in spherical harmonics Yjm(r̂) [39] as

S(p,L)(r) =
∞∑

j=0

m=+j∑
m=−j

S
(p,L)
j,m (r)Yjm(r̂). (4)
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FIG. 2. A log-log plot of |S(3,L)
j,m | vs r for different (j,m) sectors at Rλ = 450. Symbols correspond to sectors

(0,0) ( ), (2,0) ( ), (4,4) ( ), and (6,6) ( ), respectively. The inset shows the corresponding logarithmic local
slopes for sectors (0,0) and (4,4) at Rλ = 300 (closed symbols) and Rλ = 450 (open symbols). The horizontal
line at 1.0 is the exact result for sector (0,0) [41].

The index j labels the different degrees of anisotropy, while the dependence on m distinguishes
different degrees of freedom within a given anisotropic sector. The TSF can be expanded similarly via
the corresponding projections S

(p,T )
j,m . The projection on the j = 0 sector corresponds to the isotropic

case, the only one that will survive if the external forcing is invariant under rotation. Theoretical
speculations suggest that at high enough Re and for small enough scales r 
 rf , a foliation of the
physics in different j sectors occurs, characterized by different power-law scaling [22,40],

S
(p,L)
j,m (r) = 	

(p,L)
j,m

(
r

rf

)ξL
j (p)

,

S
(p,T )
j,m (r) = 	

(p,T )
j,m

(
r

rf

)ξT
j (p)

.

(5)

All questions can then be translated in terms of the above-defined quantities. Recovery of
isotropy (universality) implies that a strict hierarchy exists among the isotropic and anisotropic
exponents, ξL

0 (p) < ξL
j>0(p). The rate of recovery is measured by the gap between the exponents of

the same order: The smaller the gap, the more slowly the anisotropic contributions decay. Theoretical
considerations suggest that the exponents ξL

j (p) and ξT
j (p) are universal, i.e., independent of the

large-scale configuration. The prefactors 	
(p,L)
j,m and 	

(p,T )
j,m must be nonuniversal, being determined

by the matching for r ∼ rf . The exact expansion (4) together with scaling assumption (5) implies
that in the presence of anisotropy, multiple power laws are present in the undecomposed correlations
such as S(p,L)(r) and hence nontrivial subleading terms can contaminate their scaling behavior.
Conversely, the projected components S

(p,L)
j,m must show a pure power-law behavior. In Fig. 2 we

assess the rate of recovery of isotropy by plotting the magnitudes |S(p,L)
j,m (r)| for p = 3, up to j = 6

[we omit those (j,m) sectors that have negligible intensity or that have similar scaling properties].
All projections exhibit a clear power-law behavior. The isotropic projection scales quasilinearly in
the scale range 44 � r/η � 350, as it does in an isotropic flow, due to the 4/5 law [41–43]. All
sectors have comparable magnitude at the forcing scale, confirming the strong anisotropy of the
energy containing scales. In contrast, the anisotropic projections become more and more subleading
with decreasing r . The quality of the scaling properties are shown in the inset of Fig. 2, where
we compare the logarithmic derivatives of j = 0 and j = 4 at two different Reynolds numbers.
Similar plots are obtained for other moments and for transverse increments. It is important to stress
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along the Cartesian directions x̂ ( ), ŷ ( ), and ẑ ( ). The corresponding projection on the isotropic sector

−5S
(3,L)
(0,0) (r)Y00/4rε is given by ( ). The inertial range (IR) is taken as that range within 5% of the exact IR

result, shown by the dashed line at unity.

that the anisotropic projections shown in Fig. 2 display a quality of scaling never achieved before
concerning both statistical accuracy and extension of the inertial range of scales. An extremely
high numerical and statistical accuracy is required to disentangle fluctuations that differ up to four
orders of magnitude (compare sectors j = 6 and j = 0 at the smallest r). These results have been
possible due to the highly accurate quadrature that has been used for the SO(3) decomposition (see
the Supplemental Material [25] for details concerning accuracy and convergence of the Lebedev
quadrature).

Despite anisotropies being subleading at the small scales, their cumulative effects are important
and strongly influence scaling laws if not properly decomposed. This is shown in Fig. 3, which
compares the undecomposed third-order LSF along the three Cartesian directions along with the
projection on the isotropic sector, all compensated with the exact isotropic 4/5 linear behavior,
−4/5εr . The undecomposed correlations do not compensate well and depend on the chosen direction.
In contrast, the isotropic sector confirms the Kolmogorov plateau [41] on a wide range of scales [44].

To assess universality of the scaling properties sector by sector, we show in Fig. 4 that both
S

(p,L)
j,m [Fig. 4(a)] and S

(p,T )
j,m [Fig. 4(b)] scale similarly when conditioned on I+ or I− events. Using
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FIG. 4. (a) A log-log plot of S
(p,L)
j,m |I+ vs S

(p,L)
j,m |I− at various orders p and sectors (j,m). (b) Same as (a)

but for the transverse structure functions. Universality with respect to large-scale conditioning corresponds to
slope 1 as shown by the dashed straight lines. For clarity, curves are offset upward.
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a least-squares fit we find that the relative scaling exponents for all curves is ∼1 within 5%. This
supports the foliation argument that the scaling exponents, sectorwise, are immune to anisotropic
large-scale effects and hence are universal.

The summary for all scaling exponents of different LSF and TSF projections on the different
sectors are plotted for various orders in Fig. 5. A few final comments are in order. (i) Both ξL

j (p)
and ξT

j (p) have similar values, except for small deviations at orders p � 6 in the j = 0 sector (see
Refs. [45–47] for a discussion on the Reynolds-number dependence of the isotropic exponents). (ii)
At any given order p, a finite gap exists between isotropic and anisotropic exponents, indicating
a strict asymptotic recovery of isotropy for the whole probability distribution function. (iii) For
any j , the scaling exponents do not scale linearly in p, contrary to the dimensional prediction
ξj,dim(p) = (p + j )/3 proposed in Ref. [48], indicating that anomalous scaling is also present in
j > 0 sectors. Importantly enough, the SO(3) scheme using a high-order Lebedev rule [49,50]
enables us to clean the previously reported results. For example, in contrast to Ref. [31], we find that
the exponents in any given anisotropic sector increase with order p with no apparent saturation. We
contend that the saturation observed in Ref. [31] is due to spurious effects induced by combination of
poor accuracy in the SO(3) expansion and potential contamination by hyperviscous effects. In Fig. 5
we also report results for the j = 2 sector from the few prior experiments [18,30]. In experiments,
it is difficult to perform measurements along a sufficiently large number of directions to adequately
resolve the anisotropic fluctuations on the 2-sphere, in contrast ∼O(1000) different directions were
used in this work. As a result, experiments must resort to a fit for the entire right-hand side of Eq.
(4) using data along a few directions only. In order to reduce the number of fitting parameters, the
sum on all sectors is typically cut at j = 2, something that is clearly not enough in view of the
results shown in Fig. 2. Indeed, we find that sector j = 4 is almost as energetic as j = 2, with a
very similar scaling exponent, i.e., the j = 4 contribution is as important as j = 2, at almost all
scales. Figure 5 shows that the results from our exact decomposition clearly differ from that of Refs.
[18,30], wherein sectors j � 4 are neglected. In the presence of many anisotropic sectors, obtaining
scaling exponents by assuming that only the lowest anisotropic sector is dominant can strongly affect
the measured rate of return owing to spurious cancellations. Only the exact SO(3) expansion allows
the measurement of ξj (p), devoid of contamination from sectors j ′ �= j , thus yielding a true gauge
of the rate of return at a given order p. It remains to be clarified if in the homogeneous shear case
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analyzed in Refs. [17,18] the scaling properties of high-order sectors j � 4 are also as important as
in the RKF.

In conclusion, we have used an efficient algorithm for the SO(3) decomposition, to study
anisotropy in high-Reynolds-number Kolmogorov flows. We have found that the RKF develops
a two-state attractor characterized by very different anisotropic large-scale contents. We have shown
that the scaling exponents in RKF are immune to different large-scale effects and hence are universal.
The magnitude of the anisotropic exponents indicates that isotropy is recovered at a faster rate than
previously thought. Nevertheless, projection on the SO(3) is mandatory to detect a clean scaling,
since power laws exist only sector by sector. We do not observe saturation of exponents at the higher
j sectors, indicating that intense anisotropic fluctuations are dominated by more than one singular
structure. Differently from previous observations, we demonstrate that it is mandatory to resolve at
least up to sector j = 4 to have clean scaling properties, sector by sector. We hope our study will
stimulate further theoretical or phenomenological efforts to predict the scaling properties for all j

sectors. It will be important to extend this analysis to other turbulent flows, such as those in the
presence of rotation, mean shear, and magnetic field, in order to establish, on a firmer basis, the
degree of universality. The improvement provided by the fast SO(3) solver opens the possibility to
perform such studies.

We thank Susan Kurien for useful discussions. We acknowledge funding from the European
Research Council under the European Community’s Seventh Framework Program, ERC Grant
Agreement No. 339032. The computations were performed using resources provided through the
PRACE initiative Pra11 2870 at the CINECA Consortium. We acknowledge the European COST
Action MP1305 “Flowing Matter”.
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