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Shock-driven transition to turbulence: Emergence of power-law scaling
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We consider two cases of interaction between a planar shock and a cylindrical density
interface. In the first case (planar normal shock), the axis of the gas cylinder is parallel
to the shock front and baroclinic vorticity deposited by the shock is predominantly two
dimensional (directed along the axis of the cylinder). In the second case, the cylinder is
tilted, resulting in an oblique shock interaction and a fully-three-dimensional shock-induced
vorticity field. The statistical properties of the flow for both cases are analyzed based on
images from two orthogonal visualization planes, using structure functions of the intensity
maps of fluorescent tracer premixed with heavy gas. At later times, these structure functions
exhibit power-law-like behavior over a considerable range of scales. Manifestation of this
behavior is remarkably consistent in terms of dimensionless time τ defined based on
Richtmyer’s linear theory within the range of Mach numbers from 1.1 to 2.0 and the range
of gas cylinder tilt angles with respect to the plane of the shock front (0–30◦).
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Richtmyer-Meshkov instability (RMI) [1,2] develops on an impulsively accelerated density
interface, often manifesting in shock-accelerated gases with density gradients. Richtmyer-Meshkov
instability is responsible for vortex formation in a number of problems, from astrophysical [3] and
geophysical [4] to engineering applications such as inertial confinement fusion [5] and supersonic
combustion [6]. In laboratory experiments and modeling, RMI-driven transition to turbulence also
possesses features that make it an attractive test case for the more general problem of turbulent
transition, namely, well-characterized and highly repeatable initial conditions combined with a finite
and clearly defined energy input driving the flow.

The growth of RMI is usually described in a sequence of stages [7,8]. During the initial (linear)
stage, the growth is to some extent consistent with Richtmyer’s original theory [1] and is well
described with compressible linear theory [9]. As initial vorticity deposition due to the misalignment
of pressure and density gradients leads to roll-up of vortices, the second stage of nonlinear vorticity-
dominated deterministic growth follows [10,11]. At the same time, secondary instabilities due to
shear and secondary baroclinic effects emerge, leading to the next stage, where deterministic and
disordered flow features coexist, and eventually to turbulence.

Consider an interfacial perturbation with a wavelength λ (with the corresponding wave number
κ = 2π/λ) and amplitude a0. Let the interface initially separate gases of densities ρ1 and ρ2 and be
accelerated with a shock of Mach number M . The perturbation growth will depend in a nontrivial
way on M , the Atwood number A = (ρ2 − ρ1)/(ρ2 + ρ1), initial interfacial geometry, the extent of
diffusion at the interface, etc. In the simplest case (Richtmyer’s linear theory for a sharp periodically
perturbed interface), the perturbation growth rate can be described as

|vimp| = κa0A�V, (1)

where �V is the piston velocity of the shocked flow, dependent on the Mach number. Unlike the
related Rayleigh-Taylor instability, which is gravity driven and thus has a constant supply of energy,
the energy provided to produce the growth of RMI is finite and thus the growth generally slows with
time. Several models exist to describe the RMI growth rate, from well-considered theories [11] to
semiempirical equations [12].
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FIG. 1. Experimental setup: side view and view from downstream showing the centerline and vertical
visualization planes.

During the subsequent stage of evolution, the RMI-driven mixing flow is known to develop
features consistent with transition to turbulence: greatly enhanced mixing (mixing transition [12])
and power-law scalings of structure functions of scalar tracer advected by the flow [13] and of velocity
[14] consistent with classical predictions for fully developed turbulence [15–17]. Until recently,
experimental studies of RMI-driven transition to turbulence were largely confined to a situation
when the initial conditions are nominally two dimensional, leading to formation of large-scale
vortices with vorticity initially confined to one direction. Here we present a comparative study of
shock-driven transition to turbulence evolving from such nominally two-dimensional conditions and
from conditions when initial vorticity deposition is inherently three dimensional and find that the
scalings of emerging turbulence are remarkably consistent for the geometries we investigate.

The experiments described here were conducted at the University of New Mexico (UNM) shock
tube [18,19] (Fig. 1). Gravity-driven flow through a cylindrical nozzle produced the initial conditions,
with a diffuse interface forming between a heavy gas (mixture of 89% SF6 and 11% of acetone tracer
by volume) injected through the nozzle into a test section of the shock tube, the latter being filled
with quiescent air at ambient pressure. The measured Atwood number characterizing this diffuse
interface is 0.6. Planar laser-induced fluorescence (PLIF) is induced in acetone tracer by illuminating
a planar section of the flow with a pulsed UV laser sheet at a wavelength 266 nm. A distinctive
feature of the UNM shock tube is that it can be tilted with respect to the horizontal by an angle θ ,
making it possible to create initial conditions both for planar normal (quasi-two-dimensional) and
oblique shock interaction with density interfaces.

In the experiments presented here, the initial geometry of the density interface was cylindrical,
with the axis of the heavy-gas cylinder inclined at an angle θ with respect to the plane of the shock.
This density interface was produced by vertical injection of SF6 with acetone tracer into the test
section of the shock tube through a cylindrical nozzle (diameter DIC = 6.35 mm). The gravity-driven
heavy gas flow was stabilized by concentric coflow of air, resulting in a highly repeatable laminar
diffuse interface. As the flow of the heavy gas was always directed straight down, to produce a desired
angle θ , the shock tube itself was inclined at angles θ = 0, 20◦, and 30◦ with the horizontal (Fig. 1).
The evolution of the flow was visualized in two planes. The first (vertical) plane is also labeled as the
field of view in Fig. 1. The second (centerline) plane is oriented at 90◦ to the vertical plane, parallel
to the flow direction, and is equidistant from the upper and lower boundaries of the test section of
the shock tube. Thus we refer to it as the centerline plane. At θ = 0 the centerline plane would be
horizontal; at other angles, it is inclined with the shock tube. Images in the visualization planes were
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FIG. 2. Shock-accelerated gas cylinder evolution at M = 2 and A = 0.6 for tilt angles θ = 0 and 20◦.
Images in the centerline (top) and vertical (bottom) planes are paired. Dimensionless time τ is labeled. The
color is artificial and the streamwise image extent is 44 mm.

captured with a 4-megapixel backward-oriented and cooled CCD camera with 16 grayscale bits per
pixel and a quantum efficiency of about 90%.

Figure 2 shows a comparison of flows evolving from quasi-two-dimensional initial conditions
at θ = 0 and from three-dimensional initial conditions at θ = 20◦. The dimensionless time used to
label the images is τ = kA�V (t − t0), where k and �V are the wave number and the piston velocity
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introduced earlier. For a cylinder of diameter D, k = 2π/D. Time t = t0 corresponds to the shock
traversing the center of the initial column. In terms of timing τ , the initial linear growth rates (1)
would remain the same for the same geometry of the initial conditions, not changing with A or M

(or, to be more exact, �V ).
In both cases (θ = 0 and θ = 20◦), for a substantial amount of time, the flow in the centerline

plane is dominated by a pair of counterrotating vortex columns well known from earlier studies.
However, flow evolution in the vertical plane is different: For oblique shock interaction, vorticity of
the same sign is deposited along the oblique density interfaces, leading to the formation of shear
layerlike structures, emerging at τ = 10 and clearly apparent at τ = 20. Late-time images appear
disordered, with multiple interacting vortices on multiple scales, and apparently increased mixing.
Histogram analysis of the data sets [20] indeed strongly suggests that the flow shown in Fig. 2
undergoes a mixing transition [21] by time τ ∼ 100.

How can we quantify the apparent transition to turbulence here? Statistically, turbulence has long
been associated with the power-law behavior of spectra within the inertial range. It is important
to note that, while the spectral representation of Kolmogorov theory (the five-thirds law [22]) is
perhaps better known, the original paper [17] actually dealt with real-space properties of turbulence
based on two-point velocity correlations and the statistics of velocity structure functions based on
real-space point-to-point distance r rather than wave number κ .

Velocity structure function evolution in a shock-accelerated heavy-gas cylinder flow was studied
for small (M = 1.2) Mach numbers [14] with particle image velocimetry (PIV). The late-time results
were roughly consistent with Kolmogorov’s prediction of 2/3 power-law scaling for the second-order
longitudinal velocity structure function. Sadly, at higher Mach numbers, tracer particles used for
PIV present an increasing problem because they do not follow the gas flow [23] and interfere with
flow physics in nontrivial ways [18]. Here we use a cleaner diagnostic (PLIF); however, it does
not easily yield results in terms of velocity, because it effectively shows cross sections of a scalar
field (fluorescence intensity is related to tracer concentration and thus to local volume fraction of
injected gas mixture) advected by the flow. In turbulent flow, such scalar fields are long known to
develop power-law statistics as well. Corrsin [16] famously derived the equation for the spectrum of
temperature fluctuations in isotropic fully developed turbulent flow with k−5/3 exponent. This result
can be generalized to the spectrum of any diffusive passive scalar and even of a reacting component
in the flow [24] and moreover has an equivalent representation in terms of the second-order structure
function of the scalar (under the same conditions that ensure the equivalence of the −5/3 and 2/3
laws for velocity spectra and structure functions [24]). The second-order structure function of the
scalar in fully developed turbulent flow should thus also scale as r2/3. Power-law scaling emergence
for a Mie scattering intensity field from submicron-sized particles premixed with a varicose curtain
of heavy gas was reported [13] for a low-Mach-number (1.2) shock-driven flow over a range of more
than one order of magnitude, with a 0.73 exponent. Again, it is important to caution that the addition
of even a modest volume fraction of particles or droplets modifies the structure of turbulence, leading
to changes in energy transfer rate and in flow anisotropy [25], so one must be careful in interpreting
results of experiments with and without particle tracers: The flow statistics may not be the same.

Advances in image acquisition and experimental techniques now make it possible to resolve the
entire range of physically relevant scales in laboratory shock-driven flow, from the energy injection
scale (centimeter-sized baroclinically produced vortices) down to the Kolmogorov length scale
(order of microns). With fluorescent gas as the tracer, flow tracking fidelity also ceases to be a
problem at higher Mach numbers. Figure 3 shows plots of the second-order structure function I2(r)
of fluorescence intensity I of the tracer after M = 2 shock acceleration, which should map the local
concentration of the injected gas cylinder material (SF6 with acetone): I2(r) = 〈[I (x) − I (x + r)]2〉.
Here 〈·〉 denotes ensemble averaging over all pairs of points in the image separated by a distance
r = |r|. On the time scale of the experiments, differential diffusion of acetone and SF6 plays no role.

Significant differences are apparent in the flow morphology at θ = 0 and θ = 20◦, especially in
the vertical plane. These differences and the presence of notable anisotropy notwithstanding, the
late-time (τ ∼ 100) behaviors of I2(r) are remarkably similar and close to a power law. What is also
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FIG. 3. Second-order structure functions of fluorescence intensity I2(r) in images shown in Fig. 2. The
values of the structure functions are normalized by their maxima and r is scaled by the injection nozzle
diameter DIC . The plots are color coded by dimensionless times τ . Power-law scalings with exponents 2, 1,
and 2/3 are shown as guides for the eye.

noteworthy is that the exponent of the best power-law fit to late-time I2(r) is appreciably higher than
the fully developed turbulence prediction (2/3); in fact, it is close to unity. Moreover, this late-time
behavior is quite prominent in the parameter space we investigated: M = 1.13, 1.4, 1.7, and 2.0 and
θ = 0, 20◦, and 30◦, manifesting over at least a decade in 17 out of 24 plots in Fig. 4.

In the context of the transition to turbulence, the formation of a cascade with power-law scaling
of the structure functions is expected. In a sense, similar behavior across a range of different initial
geometries and Mach numbers is also consistent with the notion of a transition to turbulence, when
the flow “forgets” its initial conditions. A question that arises, however, is why I2(r) scales as r1

rather than as r2/3. Some of the likely answers are that the scaling emerges in flow that does not
fit the definition of fully developed turbulence; it is transitional, driven by a finite energy input,
and significantly anisotropic even at late times. Scalar spectra are well known to deviate from
the Obukhov-Corrsin value [26] and this applies even to flows where the velocity field scaling is
consistent with Kolmogorov theory predictions [27,28]. The latter reference is of specific interest
because it deals with the transformation of a blob of scalar initially injected in the flow, which is not
very far from our visualization scheme.
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FIG. 4. Late-time (τ � 100) structure functions of fluorescence intensity I2(r) normalized by their average
values for each image. Mach numbers are color coded: red, 1.1; orange, 1.4; yellow, 1.7; and green, 2.0. Solid
lines denote θ = 0, long-dashed lines θ = 20◦, and short-dashed lines θ = 30◦. Thin black lines show slopes
of 2/3 (top) and 1 (bottom).

Velocity-field isotropy is very important for the Obukhov-Corrsin scalar scaling to manifest [27],
because in most estimates of scalar dissipation, the assumption of local isotropy is used. Accordingly,
significant deviation of scalar scaling from the 2/3 value is notable for shear flows [26,27]. In the flow
under consideration here, shear plays a major role both in the formation of secondary instabilities
in the centerline plane and in the apparent Kelvin-Helmholtz vortex formation in the vertical plane.
While the scalar structure function scaling we observe is not totally physically unexpected, it is quite
interesting and deserves further study.

This work was supported by the US Department of Energy Grant No. DE-NA-0002913.
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