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Elastic wake instabilities in a creeping flow between two obstacles
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It is shown that a channel flow of a dilute polymer solution between two widely spaced
cylinders hindering the flow is an important paradigm of an unbounded flow in the case
in which the channel wall is located sufficiently far from the cylinders. The quantitative
characterization of instabilities in a creeping viscoelastic channel flow between two widely
spaced cylinders reveals two elastically driven transitions, which are associated with the
breaking of time-reversal and mirror symmetries: Hopf and forward bifurcations described
by two order parameters vrms and ω̄, respectively. We suggest that a decrease of the
normalized distance between the obstacles leads to a collapse of the two bifurcations into
a codimension-2 point, a situation general for many nonequilibrium systems. However, the
striking and unexpected result is the discovery of a mechanism of the vorticity growth via
an increase of a vortex length at the preserved streamline curvature in a viscoelastic flow,
which is in sharp contrast to the well-known suppression of the vorticity in a Newtonian
flow by polymer additives.
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I. INTRODUCTION

The addition of a small amount of high-molecular-weight flexible polymer molecules into a fluid
strongly affects a flow in a wide range of spatial and temporal scales. Polymers being stretched by a
velocity gradient particularly in a flow with curvilinear streamlines generate elastic (hoop) stresses,
which react back on the flow and modify it via elastic instabilities and at further stretching lead to
elastic turbulence (ET) discovered at Re � 1 [1,2]. Elastic turbulence is a chaotic flow characterized
by a strong enhancement of a flow resistance, a power-law decay of velocity power spectra with
an exponent |α| > 3, and orders of magnitude enhancement of mixing compared with diffusion
[2–4]. Theory [5] and numerical simulations [6–10] of ET consider unbounded, homogeneous, and
isotropic flow of a dilute solution of polymers with linear elasticity that is strongly distinguished from
bounded, anisotropic, and inhomogeneous flow studied experimentally [3,4,11–15]. There are two
approaches to resolve the evident discrepancy: either to look for flow geometry, where unbounded,
homogeneous, and isotropic flow of ET can be realized experimentally, or to develop ET theory for
a bounded container with a nonzero mean velocity ū.

In our search for the experimental realization of an unbounded, homogeneous, and isotropic
flow of a viscous polymer solution at Re � 1, we consider a flow past an obstacle or array of
obstacles. In spite of the fact that the flow past the obstacle is considered as a paradigmatic problem
of fluid mechanics for both Newtonian and viscoelastic fluids widely investigated in the past both
experimentally and numerically and is highly relevant to many industrial applications, the studies of
highly elastic fluids at Re � 1 in such a flow geometry are rather limited.

In a viscoelastic creeping flow past a cylinder, three nondimensional parameters control the
dynamical behavior of the flow, namely, the Weissenberg number Wi = λū/2R and two geometrical
parameters: the blockage ratio b of the cylinder diameter 2R to the channel width w, b = 2R/w,
and the confinement ratio a of the channel height h to width, a = h/w. Here Wi is the ratio of the
nonlinear elastic stress to its dissipation via relaxation and defines a degree of polymer stretching,
ū is the average flow velocity, and λ is the longest polymer relaxation time [16]. The parameter b

controls the relative strength of shear near the wall and extension near a stagnation region, whereas
a controls the two-dimensional (2D) versus 3D effects. For both small a and b one expects mainly
2D confined flow near an unbounded cylinder with large extensional strains.
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At b � 1, two approaches have been explored in experiments as well as simulations: to study
a friction coefficient f either of a free-falling body (cylinder or sphere) at a terminal velocity or
of a channel flow past a cylinder or an array of cylinders. In the former case, a substantial number
of experimental studies with various polymer solutions have been conducted and controversial
results even on f have been obtained [17]. Reliable experimental data on f are reported in
Ref. [18]; however, the quantitative discrepancy between its value and numerical simulations remains
unresolved [19].

At moderate Wi, a detailed investigation of a viscoelastic creeping flow past a cylinder reveals
a stationary elastic wake instability, which leads to the formation of a 3D regularly spaced cellular
structure [20]. A further increase in Wi results in a subsequent transition to a time-dependent flow
[20]. Subsequent experiments in a microchannel flow past a strongly confined cylinder with various
a and b and in a wide range of Wi and Re were conducted in Ref. [21]. In this work, a downstream
elastic instability is observed only at Wi � 83 and Re � 1, which is not the creeping flow discussed
here. Moreover, an upstream instability at higher Wi and Re was also reported [21].

More extensive studies of a purely elastic instability were conducted both experimentally and
numerically in a creeping flow in a wall-bounded channel with a periodic array of cylinders. For
closely spaced cylinders, a pair of vortices between cylinders was observed for both Newtonian and
viscoelastic fluids at Wi below an instability at Wic � 1.1 [22,23]. Above Wic, a sharp increase
in f related to the onset of noisy oscillations of a cross-stream velocity due to breaking of time-
reversal symmetry was found. The coupling between the hoop stress arising from curved streamlines
and the velocity perturbations plays a key role in triggering the instability [23]. It resembles an
oscillatory instability in an extensional viscoelastic flow realized in T-junction geometry with a
long recirculating cavity [24]. Two-dimensional numerical simulations of the viscoelastic flow for
closely spaced cylinders reveal an instability associated with the cross-stream velocity fluctuations at
Wic ≈ 1.1 resulting from a time-dependent instability of the vortex pairs, generated at Wi < Wic, in
agreement with the experiments [25]. Moreover, both the growth of f and root-mean-square (rms)
fluctuations of the cross-stream velocity with Wi at Wi > Wic reveal a square-root dependence
on Wi characterized by the forward bifurcation [26]. Three-dimensional simulations in Ref. [10]
reproduce the f growth with Wi at Wi > Wic, the same as in a 2D flow, pointing out the 2D nature
of perturbations causing the instability.

In this Rapid Communication we present experimental results of a viscoelastic creeping channel
flow instability between two widely spaced cylinders, which provide a quantitative answer to the
following questions. How is a velocity field modified by elasticity in an unbounded (b � 1) flow
between two cylinders and what is the corresponding order parameter of the elastic instability? How
do polymers alter the flow resistance as a result of the instability? What are the flow velocity field
and its spectral properties and what is the flow structure between the cylinders?

II. EXPERIMENTAL SETUP

A dilute polymer solution of high-molecular-weight polyacrylamide (Mw = 18 MDa, Poly-
sciences) at a concentration c = 100 ppm (c/c∗ � 0.5, where c∗ = 200 ppm for the polymer used
[27] is the overlap concentration) is prepared in a viscous solvent of 62% sucrose and 1% NaCl by
weight. The solvent viscosity ηs at 20 ◦C is measured to be 0.13 Pa s in a commercial rheometer
(AR-1000, TA instruments). The addition of the polymer to the solvent increases the solution
viscosity η up to 0.15 Pa s. The stress-relaxation method [27] is employed to obtain λ = 10 ± 0.5 s.
The fluid is driven by nitrogen gas at a pressure up to ∼5 psi and is injected via the inlet into a
linear channel of dimension L × w × h = 45 × 2.5 × 1 mm3, shown schematically in Fig. 1(a).
The fluid flow is hindered by the two widely spaced cylindrical obstacles of 2R = 0.30 mm made of
stainless steel separated by a distance of e = 1 mm and embedded at the center of the channel. Thus
the geometrical parameters of the channel are b = 0.12 and a = 0.4 and the normalized distance
between the cylinders E = e/2R = 3.3.
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FIG. 1. (a) Experimental setup. The two black dots 1 mm apart are obstacles. Particle streaks of the flow
around and between the obstacles at (b) Wi = 25.4 and Re = 0.002 and (c) Wi = 60.3 and Re = 0.0046. White
arrows indicate the flow direction.

Two piezoresistive pressure sensors (ABP series, Honeywell) measure the fluid pressure at two
locations: before the channel inlet and after the obstacles, marked with P1 and P2, respectively, in
Fig. 1(a). The fluid exiting the channel outlet is weighed instantaneously W (t) as a function of time
t by a PC-interfaced balance (BA210S, Sartorius) with a sampling rate of 5 Hz and a resolution of
0.1 mg. The time-averaged fluid discharge rate Q̄ is estimated as �W/�t . For flow visualization,
the solution is seeded with fluorescent particles of diameter 1 μm (Fluoro-Max green fluorescent,
Thermo Scientific). The region between the obstacles is imaged in the midplane directly via a
microscope (Olympus IX70), illuminated uniformly with a light-emitting diode (Luxeon Rebel) at
447.5 nm wavelength, and a CCD camera (GX1920; Prosilica) attached to the microscope records
about 5000 images of resolution 1936 × 1456 pixels at a rate of 65 frames/s. We use particle
image velocimetry (PIV) to obtain the spatially resolved velocity �U = (u,v) in the region between
the cylinders [28]. An interrogation window of 8 × 8 pixels2 (24 × 24 μm2) with 50% overlap is
chosen to procure �U.

III. RESULTS

Figures 1(b) and 1(c) display two streak flow images at two Wi. At lower Wi = 25.4, the flow
between the obstacles is close to a potential one and similar to the potential flow of a Newtonian
fluid at Re < 1, whereas at Wi = 60.3 the streaks of the inner flow velocity are much shorter than
those of an outside flow and vortices are clearly identified (see also movies 1 and 3 in Ref. [29]).
These images qualitatively illustrate the difference of the flow field between the obstacles below and
above the instability onset.

A quantitative characterization of the elastic wake instability through the dependence of the
pressure drop in the channel �P = P2 − P1 − �Ppipe on the average flow speed ū is presented in
Fig. 2(a). The transition is identified by the deviation of �P from a linear dependence of �P on
ū characteristic of a potential flow past obstacles in a Newtonian solvent and the polymer solution
at low Wi, as shown in Fig. 2(a) together with the linear fit. Moreover, the rms normalized pressure
fluctuations P rms

2 /P rms
1 grow with ū for polymer solution above the transition, as shown in the inset

in Fig. 2(a), whereas for the Newtonian solvent P rms
2 /P rms

1 remains constant. Here ū = Q̄/ρwh

and the pressure drop along the small pipe connected to the inlet of the channel is estimated [30]

from �Ppipe = ( 64
Rep

)( ρLpQ̄2

2π2r5
p

), where Rep = ( 2rpρ

η
)( Q̄

πr2
p
) is the Reynolds number for the pipe flow,

the fluid density ρ = 1286 kg/m3, and rp = 0.26 mm and Lp = 72 mm are the radius and length
of the pipe, respectively. To highlight more clearly the transition region, the data are shown in
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FIG. 2. (a) Pressure drop in the channel �P versus ū for Newtonian (gray circles) and polymer (black
circles) fluids. The inset shows P rms

2 /P rms
1 versus ū. (b) Friction factor f versus Re with the fit for potential

flow (dashed line). The top inset shows f versus Wi. The bottom inset shows (�P/�Plam) − 1 versus Wi with
a fit (solid line) (see the text).

Fig. 2(b) on a high-resolution plot via the dependence of the friction factor f = 2Dh�P/ρū2Lc on
the Reynolds number Re = 2Rūρ/η, where the hydraulic radius is Dh = 2wh/(w + h) = 1.43 mm
and Lc = 25 mm is the distance between the inlet and the location of pressure measurement in the
channel P2 [marked in Fig. 1(a)]. In the main plot the data for the Newtonian solvent in the whole
range of Re are described by the fit f ∼ 88/Re with a large scatter before the elastic instability. In
the top inset in Fig. 2(b), the same data are plotted as f versus Wi and the transition at Wic ≈ 40 is
identified as well so the scatter in the vicinity and before Wic is rather large.

Figure 1SM in Ref. [29] illustrates the time-averaged streamwise velocity profile obtained in the
horizontal midplane by PIV as a function of y/R for several x/R locations in the region between the
obstacles at four Wi below and above the transition. Here x and y are longitudinal and transverse
coordinates of the channel, respectively, with (x,y)=(0,0) located at the center of the upstream
cylinder. At Wi < Wic, the flow is in the forward direction everywhere between the obstacles, while
at Wi > Wic a reverse flow is developed that is demonstrated in the insets by negative values of u
between the obstacles (see Fig. 1SM in Ref. [29]). A further magnified negative velocity profile is
presented in Fig. 3(a) at x/R = 5.2 for two Wi, where strong velocity gradients are developed that
lead to a significant polymer stretching. It is reminiscent of sharp radial velocity gradients observed
in the core of a solitary vortex pair resulting from a pure elastic instability in a viscoelastic Couette
flow [31].

To analyze further the velocity field �U, we compute time-averaged vorticity ω as ∇ × �U. Figure 4
shows the vorticity map between the obstacles for Wi � Wic. A small vortex pair appears first at
Wi = 34.1 (see movie 2 in Ref. [29]) in the vicinity of the downstream cylinder and expands in size
with Wi, as shown in Fig. 4. The quantitative dependence of the spatially averaged, either positive or
negative, vorticity ω̄ on Wi is presented in Fig. 5 together with the fit based on the Landau equation
for the order parameter of the continuous transition [(Wi/Wic) − 1]ω̄ − cω̄3 + d = 0 [26], which
yields Wic = 41.6 ± 0.9 as the fit parameter. A similar fit is used to characterize the transition of
the dependence of (�P/�Plam) − 1 on Wi, as shown in the bottom inset in Fig. 2(b), where a
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FIG. 3. (a) Negative u(y/R) profiles at x/R = 5.2 for two Wi. (b) Root-mean-square values of cross-stream
velocity fluctuations vrms as a function of y/R for three Wi obtained at x/R = 4.2.

close value of Wic = 43.3 ± 2.4 but with significantly larger scatter is obtained. Here �Plam is the
pressure drop for a potential flow [see Fig. 2(a)]. The top inset in Fig. 5 shows the dependences of
an absolute value of the reverse streamwise flow velocity |u| at (x/R,y/R) = (4.84,−0.4) and the
rms cross-stream velocity fluctuations vrms at four locations close to the downstream cylinder on Wi
that are time averaged for about 70 s. A similar fit by the Landau equation used for |u| provides
Wic = 42.8 ± 0.9, in accord with the value obtained for ω̄, since the vorticity and the reverse flow
velocity between the obstacles are directly related to each other. On the other hand, a fit to the
data vrms versus Wi by vrms ∼ (Wi/Wic − 1)0.5 provides Wi1c = 34.3 ± 0.8 significantly lower than
the values obtained above. It should be emphasized that the vrms values above the transition are an
order of magnitude smaller than |u|, which should correspond to their contributions to the friction
factor f . Indeed, as one can see from the bottom inset in Fig. 2(b), the whole range of change of
�P/�Plam − 1 is about 0.5. Then a value, about 10 times smaller, corresponding to the ratio vrms/|u|
is inside the scatter and cannot be identified in f . Though from the dependence of P rms

2 /P rms
1 versus

Wi in the bottom inset in Fig. 5 the early transition is clearly characterized by the fit (Wi/Wic − 1)0.5

with Wi1c � 30 ± 2, close to the above value.
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FIG. 5. Spatially averaged vorticity ω̄ versus Wi. Solid line is a fit (see the text). The top inset shows vrms

(left ordinate) and the absolute value of the time-averaged reverse flow velocity u (right ordinate) versus Wi at
(x/R,y/R) = (4.9,−0.4). Solid lines are fits (see the text). The bottom inset shows P rms
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1 versus Wi with

a fit (solid line) (see the text).

To further understand the nature of the instability associated with vrms, we compute the frequency
power spectra S(v) of the cross-stream velocity v for five Wi, as shown on a linear scale in Fig. 6(a).
The peaks in S(v) are distinctly evident at Wi > Wi1c with a characteristic frequency νp varying
linearly with Wi and approaching zero at Wi1c ≈ 31 [see Fig. 6(b)], whereas S(v) at Wi < Wi1c is
rather smooth. Thus, the first transition at Wi1c ≈ 32, taken as the average of values obtained from
vrms and P rms

2 /P rms
1 , is indicative of the Hopf bifurcation [24,26]. From profiles of vrms(y/R) at

x/R = 4.2 for three Wi one finds that at Wi > Wic the velocity fluctuations are much higher than an
instrumental noise level and two peaks in the profiles indicate the border between the outer and inner
velocity flow regions [see Fig. 3(b)]. According to the peak locations the inner region widens with
Wi. Similar growth of vrms characterizes an elastic instability observed in 2D numerical simulations
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FIG. 6. (a) Cross-stream velocity power spectra S(v) versus frequency ν at (x/R,y/R) = (4.2,−0.24) for
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line is a fit and its extrapolation to νp = 0 yields Wi1c ≈ 31. The right ordinate is the vortex length 
 as a
function of Wi. The solid red line is a fit.
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of a viscoelastic channel flow past a periodic array of closely spaced (E = 1.25) cylinders, where
the velocity power spectra and the vrms ∼ (Wi/Wi1c − 1)0.5 scaling at Wi > Wic are presented in
Figs. 9 and 10 of Ref. [25] and in experiments [22,23]. The second steady forward bifurcation is not
observed in this case probably due to the difference in E = 1.25 versus 3.3 used in our experiment.
Thus, in the current experiment two subsequent transitions, close in Wi values, are found: first at
Wi1c ≈ 32 as the Hopf bifurcation and second at Wi2c ≈ 42 as the forward bifurcation. In the latter
case, Wi2c is taken as the average of values obtained from ω̄ and |u|. The value of Wi2c found from
the dependence of �P/�Plam − 1 on Wi is higher with much larger scatter and a lower resolution
in the Wi2c detection, as pointed out above.

IV. DISCUSSION

What is the physics behind the both elastic instabilities described above? A small vortex pair
appearing due to a breaking of mirror symmetry generates the hoop stress Fh due to a curvature,
which interacts with the cross-stream velocity perturbations. The latter arises due to the breaking
of time-translational invariance. As a result, the Hopf bifurcation appears first at Wi1c ≈ 32 and is
similar to that found by us in T-junction geometry with a long recirculating cavity [24]. A further
increase in the external driving leads via the second instability to an enhancement of the vortex
vorticity and so the elastic stress σel . Indeed, if the vortex preserves its curvature, the hoop stress
grows [16] as Fh ∼ σel/r ∼ ω̄2/r ∼ u2/r3, where r is the vortex radius. Then, above the second
transition one gets Fh ∼ u2 ∼ (Wi/Wi2c) − 1, which finally would cause the vortex collapse due
to the growing hoop stress. So this means that the vortex pair would be suppressed. Indeed, for
example, an inhibition of a von Kármán vortex street in a cylinder wake in a Newtonian fluid by
an injection of a polymer additive is observed [32,33]. The way out from this evident discrepancy
is a growing vortex size with Wi. If for simplicity we introduce a vortex length 
, then the same
estimate leads to Fh ∼ u2/
r2. As found from the experiment, 
 ∼ Wi at Wi � Wi2c [see Fig. 6(b)]
and so Fh ∼ u2/
r2 � const remains intact and thus the vortex remains stable. The question arises
why the second transition was not observed in the previous experiments of a flow past a periodic
array of cylinders. The main reason is the difference in the value of E that is larger in the current
experiment. So if E decreases, both transitions finally may collapse, leading to a codimension-2
point [26,34,35], where two order parameters reach zero simultaneously. A further decrease in E

leads to a complete suppression of the forward bifurcation, which is indeed found at E = 1.25 in
both experiments and numerical simulations [10,21–23,25] (see Fig. 7).
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V. CONCLUSION

To summarize, a channel flow of a dilute polymer solution between two widely spaced cylinders
hindering the flow is an important paradigm of an unbounded flow in the case of a channel wall
being located sufficiently far from the cylinders. The quantitative analysis of the elastic instabilities
in this flow uncovers a rather general sequence of two bifurcations resulting from the breaking of
time-reversal symmetry as the first and the mirror symmetry as the second, which are associated with
two order parameters: vrms and ω̄, respectively. The former experiments and simulations for similar
conditions but for closely spaced cylinders have found only the first transition. So E can be considered
as the second control parameter, which reducing from 3.3 to 1.25 leads to elimination of the second
instability. The latter suggests that the codimension-2 point, where both order parameters approach
zero, exists between these two E values. It is a general case in a large variety of nonequilibrium
systems [26]. However, the striking and unexpected result is the discovery of the mechanism of the
vorticity growth due to an increase of the vortex length at the preserved streamline curvature in a
viscoelastic fluid flow, which is in sharp contrast to the well-known suppression of the vorticity in a
Newtonian fluid flow by polymer additives [32,33].
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