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Lubricated transport of heavy viscous oils is a popular technology in the pipelining
industry, where pumping pressures can be reduced significantly by concentrating the strain
rate in a lubricating layer. However, the interface between the lubricating layer and heavy
oil is vulnerable to any perturbations in the system as well as transients due to start up, shut
down, temperature change, etc. We present a method in which we purposefully position an
unyielded skin of a viscoplastic fluid between the oil and the lubricating fluid. The objective
is to reduce the frictional pressure gradient while avoiding interfacial instability. We study
this methodology in both concentric and eccentric configurations and show its feasibility
for a wide range of geometric and flow parameters found in oil pipelining. The eccentric
configuration benefits the transport process via generating lift forces to balance the density
differences among the layers. We use classical lubrication theory to estimate the leading
order pressure distribution in the lubricating layer and calculate the net force on the skin.
We explore the effects of skin shape, viscosity ratio, and geometry on the pressure drop,
the flow rates of skin and lubricant fluids, and the net force on the skin. We show that
the viscosity ratio and the radius of the core fluid are the main parameters that control the
pressure drop and consumptions of outer fluids, respectively. The shape of the skin and
the eccentricity mainly affect the lubrication pressure. These predictions are essential in
designing a stable transport process. Finally, we estimate the yield stress required in order
that the skin remain unyielded and ensure interfacial stability.
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I. INTRODUCTION

The past 20 years have seen a progressive shift towards heavy-oil production as easier light oils
are progressively consumed. Due to significantly increased viscosities, the transportation of heavy
oil in pipelines is an increasingly important problem. Coupled with increased production of waxy
crude oils, which can precipitate gel-like (viscosifying) structures, the management of frictional
pressure losses and ensuring continued flow (flow assurance) have become important areas of
pipeline engineering, operationally and in design stages. This has led to a revival of interest in core-
annular flows, originally proposed 50 years ago as a method of reducing friction [1]. Conceptually,
the lower viscosity of the lubricating fluid reduces friction. However, the viscosity mismatch at
the liquid-liquid interface and significant buoyancy forces between fluids can combine to induce
interfacial instabilities at even modest flow rates, which can compromise transport effectiveness;
see, e.g., Refs. [2–5].

The objective of this paper is to present a method of crude oil transportation via core-annular flow,
and establish its feasibility for some practical classes of pipelining flows. A triple-layer structure is
considered in which a viscoplastic fluid is inserted between transported and lubricating fluid, acting
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as a skin layer. This is combined with the usual low viscosity Newtonian fluid along the pipe wall,
to lubricate transport, and heavy viscous oil is the core fluid.

The idea of the triple-layer structure originates from viscoplastic lubrication (VPL) flows, as
studied by Moyers-Gonzalez et al. [6] and Hormozi et al. [7]. In these flows the yield stress is used
to eliminate the possibility of interfacial instability growth, by remaining rigid. Frigaard [8] studied
the linear stability of a multilayer plane Poiseuille flow of two Bingham fluids, exposing the role
of the yield stress in freezing the interface. Moyers-Gonzalez et al. [6] extended the analysis to
viscoplastically lubricated viscous core-annular pipe flows and derived nonlinear stability bounds.
Huen et al. [9] demonstrated experimentally that these flows can be stably established. The range
of applications was extended by Hormozi and co-workers [7,10,11]. When the interface is formed
by two yielded fluids, the stability is lost and interfaces are vulnerable to the usual range of linear
instabilities, as explored by Sahu et al. [12,13].

The second component contributing to the triple-layer structure comes from our understanding
of core-annular flows. Ooms, Bai, and others initiated the study of how shaped eccentrically
positioned core-annular interfaces generate differential lubrication pressures around the core; see,
e.g., Refs. [14–16]. The generation of lubrication pressures requires that the interface profile varies
in the streamwise direction, whereas the eccentricity of the core focuses the differential pressure
around the core, according to the lubricating fluid layer thickness. The differential pressure can
be used to balance the density mismatch between the fluids (the oil usually being lighter). More
recently, Ooms and co-workers [17,18] have studied eccentric core-annular flow of a very-viscous
core, i.e., a solid, analytically and semianalytically using hydrodynamic lubrication theory.

Our study combines these two component ideas. We proceed in a number of steps: (i) We consider
the lubricating layer to be relatively thin, so that even for significant Reynolds numbers the inertial
terms are negligible at leading order. We then use classical lubrication theory to estimate the leading
order pressure distribution in the lubricating fluid layer. (ii) By integrating over the lubricating fluid
layer we calculate the net force on the skin and core fluids. (iii) By adjusting the shape of the skin
we may make the net force positive or negative. By adjusting the eccentricity of the layer we may
increase or decrease the net force. (iv) By balancing with the buoyancy force acting on the skin and
core fluids, we establish the equilibrium position of the transported core. (v) Finally, on calculating
the stresses within the lubrication layer we can estimate the yield stress required to keep the skin
rigid.

This leaves one final piece in the puzzle, namely, how can we form shapes in the viscoplastic
skin in such a way that they remain rigid when formed, what fluids should be used for the skin,
and can this be done continuously as the fluids are pumped and pipelined. This part of the process
concept is not fully researched, but we believe there is sufficient reason to believe in its feasibility.
We envisage the process sequentially in three parts [Fig. 1(a)]: (a) a concentric inflow manifold
in which the multilayer flow is constructed; (b) a transient length, on leaving the manifold, within
which the core fluid floats to its steady eccentric position; and (c) steady, fully developed flow along
a pipeline. This paper is directed at the mechanics of (c).

Regarding (a), concentric manifolds have been used to establish multilayer flows for many years.
Specific to flows in which a yield stress fluid is used, Ref. [9] demonstrated that stable flows of given
design radii can be routinely established. Figure 1(b) illustrates a simple extension of a two-layer flow
design, allowing the controlled initial development of the concentric core-skin interface (essentially
as in Ref. [9]), followed downstream by a region in which the shaped skin-lubricant interface can be
formed. Development lengths within the initial part of the manifold have been studied in Ref. [7],
so that distance to the shaping zone can be quantified.

On entering the shaping zone, the fluid at the skin-lubricant interface is yielded, whereas that at
the core-skin interface is unyielded. Sculpting of the outer interface can therefore take place, up until
the time at which the stresses relax sufficiently for the skin-lubricant interface to become unyielded.
Two principal avenues are available to sculpt a given shape: (i) controlled variation in the flow rates
of the lubricant (and/or skin), and (ii) mechanical variation of the aperture. The first of these is the
subject of our ongoing research and we believe shows some promise.
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FIG. 1. (a) Conceptual zones of triple-layer flow. (b) Flow development within the inflow manifold.

In the limit of a slowly varying interface shape, the mapping from the flow rate to shape is
direct. The sculpting process can also be influenced by fluid rheology, which may control interfacial
deformation before the skin relaxes to a solid shape. In Ref. [19] it was observed experimentally
that unstable interfacial waves would freeze into the unyielded interface as VPL flows developed.
Hormozi et al. [20] used computational and experimental methods to show that variations in the
individual flow rates of the two fluid streams allowed some degree of control over the interface
shape (i.e., wavelength and amplitude). Figure 2 shows an example flow in which a diamond-shaped

FIG. 2. Example of interface shapes sculpted near the inflow pipe and then frozen into a shaped solid
interface advected downstream (for parameters and description, see Fig. 15(a) in Ref. [20]).
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FIG. 3. Cross section of the pipe with triple-layer configuration.

interface is sculpted into the flow near the inflow pipe and then freezes into a shaped solid interface
which is advected downstream. In related work, Maleki et al. [21] showed how liquid droplets could
be encapsulated in a flowing stream of unyielded fluid.

Regarding the transient length, region (b), this is less well understood but appears to be a simpler
problem, which may be estimated reasonably using methods similar to those used here. In conclusion,
to some extent the mechanical feasibility of forming a stable shaped interface is already established,
but the fundamental understanding of how to control the shape needs work.

Our paper starts by introducing the flow setup and notation (Sec. II) and then moves onto a
concentric flow configuration that allows a semianalytical solution. Next, the eccentric case is
examined for various variables, following through the steps (i)–(v) outlined above. The paper closes
with a discussion of the feasibility of the proposed method for lubricated transport.

II. FLOW DESCRIPTION

As explained in Sec. I, our aim in this paper is to study core-annular configurations that allow
the generation of lift via hydrodynamic lubrication, while at the same time resisting interfacial
deformation via the introduction of an unyielded skin layer. Consider therefore a section of the pipe,
periodic in the streamwise ẑ direction and assumed horizontal for simplicity. The entire flow domain
is denoted � and the three individual fluid domains by �1, �2, and �3. Fluid 1 denotes the core
fluid (viscous Newtonian heavy oil), with viscosity μ̂[1] and density ρ̂[1]. The skin layer is fluid
2, modeled simply as a Bingham fluid, with μ̂[2], τ̂ [2]

y , and ρ̂[2] denoting its viscosity, yield stress,
and density, respectively. Fluid 3 is the lubrication layer (assumed to be a low viscosity Newtonian
fluid) with viscosity μ̂[3], and density ρ̂[3]. Figure 3 indicates schematically the positions of the three
fluids, within a cross section of the pipe at fixed ẑ.

The outer radius of the skin may vary with ẑ, r̂ = r̂2 = r̂2,0 + �r̂2�(ẑ), but the inner radius
(r̂ = r̂1) is uniform; see Fig. 4. The skin fluid is assumed to have a sufficiently high yield stress that
it remains rigid (unyielded). Thus, fluids 1 and 3 remain separated. In general, we might assume that
the yield stress required is moderately large (estimated later) and the pipe diameter is >0.1 m, so
that any surface tension effects are negligible in comparison to the other stresses.

The governing equations for the flow are the Navier-Stokes equations, in each fluid domain.
The traction and velocity vectors are continuous across each interface (neglecting surface tension,
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FIG. 4. Schematic of the outer radius variation of skin layer with ẑ, characterized via the mean outer radius
r̂2,0 and streamwise variation �r̂2�(ẑ).

as argued above). The flow is periodic in ẑ and no-slip conditions are satisfied at the pipe wall.
Constitutive equations for the three fluids are

τ̂
[k]
ij = μ̂[k] ˆ̇γij , k = 1,3, (1)

τ̂
[2]
ij =

[
μ̂[2] + τ̂ [2]

y

| ˆ̇γ |

]
ˆ̇γij ⇐⇒ τ̂ [2] > τ̂ [2]

y , (2)

ˆ̇γ = 0 ⇐⇒ τ̂ [2] � τ̂ [2]
y , (3)

where

ˆ̇γij = ∂ûi

∂x̂j

+ ∂ûj

∂x̂i

,

ˆ̇γ =
⎡
⎣1

2

3∑
i,j=1

[ ˆ̇γij ]2

⎤
⎦

1/2

, τ̂ [2] =
⎡
⎣1

2

3∑
i,j=1

[
τ̂

[2]
ij

]2

⎤
⎦

1/2

. (4)

Concentric core-annular flow

We start with a brief analysis of fully developed steady concentric flows, with no buoyancy and a
uniform skin layer. In order to scale the equations, we focus on transport of the core fluid, which is
assumed to have a flow rate Q̂1. We use Q̂1 to define the velocity scale, Ŵ0 = Q̂1/πR̂2, which we
see is the velocity of the heavy oil, if transported alone in the pipe. We scale all lengths with R̂. The
stress scale is μ̂[3]Ŵ0/(R̂ − r̂2,0), used for both the deviatoric stresses and pressure, representing the
shear stress in the lubrication layer,

(r,z) = (r̂ ,ẑ)

R̂
, u = û

Ŵ0
, −Gc = ∂p

∂z
= ∂p̂

∂ẑ

R̂(R̂ − r̂2,0)

μ̂[3]Ŵ0
, τzr = τ̂zr (R̂ − r̂2,0)

μ̂[3]Ŵ0
.

This leads to a problem governed by two dimensionless radii, r1 and r2,0, and two further
dimensionless groups,

m = μ̂[3]

μ̂[1]
, B = τ̂ [2]

y (R̂ − r̂2,0)

μ̂[3]Ŵ0
.

Here, m is the viscosity ratio and B is the Bingham number. Provided that the skin layer remains
unyielded, the second viscosity ratio μ̂[2]/μ̂[1] plays no role in the flow. Steady unidirectional flow
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is governed by the z-momentum equation,

−Gc = 1

r

∂

∂r

[
rτ [k]

zr

]
, (5)

where k = 1,2,3 represent the three fluid layers. The shear stresses and velocities are constant at
each interface; Gc is constant, representing the modified axial pressure gradient for the concentric
flow. In the main case of interest, when the skin layer is completely unyielded, the axial velocity is

W (r) =

⎧⎪⎪⎨
⎪⎪⎩

Wp

[
1 + m

r2
1 −r2

1−r2
2,0

]
, 0 � r < r1,

Wp, r1 � r < r2,0,

Wp
1−r2

1−r2
2,0

, r2,0 � r < 1,

(6)

where

Wp = Gc(1 + r2,0)

4

is the plug velocity. The pressure gradient Gc is found by ensuring a unit flow rate through �1 (due
to the chosen scaling),

Gc = 8π
m
δ
r4

1 + 2r2
1 π (1 + r2,0)

, (7)

where δ = (R̂ − r̂2,0)/πR̂, which is the aspect ratio of the thin lubricant layer thickness to the
circumferential length scale. Finally, by calculating the shear stresses we will estimate the yield
stress required in order to have an unyielded skin layer,

B >
Gcr2,0

2
= 4πr2,0

m
δ
r4

1 + 2r2
1 π (1 + r2,0)

. (8)

In other words, for a given geometry this type of flow becomes feasible for a sufficiently large
yield stress. Note also that Gc ∼ O(1), indicating that the viscous stress in the lubrication layer is
the relevant scale, and since typically m/δ � 1, the constraint on B is not severe, i.e.,

τ̂ [2]
y ∼ μ̂[3]Ŵ0

R̂(1 − r2,0)
.

Assuming (8) to hold, the viability of the lubrication process depends on the consumption of the
skin and lubricant fluids, plus whether or not the frictional pressure has been reduced.

The scaled flow rates (Q2,Q3) are

Q2 = 2
∫ r2,0

r1

W (r)rdr = [
r2

2,0 − r2
1

]
Wp, (9)

Q3 = 2
∫ 1

r2,0

W (r)rdr =
[

1 − r2
2,0

2

]
Wp. (10)

Note that due to the scaling, we have Q1 = 1. Figure 5 plots Gc for representative m/δ and r1. Over
the range plotted, the pressure gradient is significantly less than the pressure gradient Go required
for the heavy oil to flow alone in the pipe (Go = 4π/m

δ
). Also, for small m/δ, we observe that Gc is

quite independent from m/δ, as expected from (7).
The flow rate of the skin layer is given by (9) and provided that m � 1 and both the skin and

lubricant layers are thin, we can expect that Wp ≈ 1. Thus, Q2 scales primarily with [r2
2,0 − r2

1 ] in
any lubrication regime that is effective. Figure 6 plots the intensity of the flow rate of the lubrication
layer [Q3/(1 − r2

2,0) = Wp/2]. We observe that we are able to achieve relatively small flow rates
of both the lubricant and skin fluids by varying r2,0 and r1. For typical heavy crude viscosity ratios
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FIG. 5. Scaled pressure gradient (Gc) for representative m/δ and r1, r2,0 = 0.95.

(m � 1) the flow rate change with m is negligible both for the skin and lubricant. Finally, we show
variations in the criterion (8) for different r1 and r2,0; see Fig. 7. We see that the minimal B increases
as r2,0 approaches the wall, as is expected.

To summarize, this simple one-dimensional (1D) model suggests that there are parameter regimes
in which the triple-layer flows can provide a viable transportation method, depending of course on
fluid costs and on the difficult question of establishing the triple-layer flow, in a development stage
somewhere upstream. However, the concentric solution is not feasible as a core-annular flow as no
lift force is generated to balance the density differences.

III. ECCENTRIC CORE-ANNULAR FLOW

Note that the concentric solution of the previous section has a pressure gradient only in the
axial direction. In a typical case where the oil density differs from that of the lubricant and skin
fluid, there is a net transverse buoyancy force, so that the underlying configuration is unlikely to
be concentric. A uniform eccentric annular flow also generates only axial pressure gradients and,
although different from the concentric considered above, cannot support density differences. As

10
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0.85

0.9

m/δ

r 1

0.6 0.7 0.8 0.9 1

FIG. 6. Intensity of flow rate of lubricating fluid [Q3/(1 − r2
2,0) = Wp/2] for representative m/δ and r1

(with m = 0.0001).
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FIG. 7. Variations in the minimal B from (8), for representative r2,0 and r1 (with m = 0.0001).

recognized in Ref. [17], it is necessary to have both eccentricity and axial variation in the lubrication
layer in order to generate transverse lift forces via viscous lubrication. As with any transport process,
there is an underlying constant pressure drop along the pipeline. Superimposed on this is a periodic
(in z) variation in the pressure, which is governed by the local thickness of the lubricant. In this
way, differential lubrication pressures are generated that are able to counter the transverse buoyancy
force.

Anticipating the above scenario, we use a classical lubrication scaling of the equations. As shown
in Fig. 3, we position our cylindrical coordinates at the center of �1, which has a uniform radius r̂1.
The skin layer outer radius is r̂2(ẑ), which has a mean position r̂2,0 and axial variation as in Fig. 4. The
pipe wall is denoted r̂ = r̂3(θ ), with variation due to the eccentricity. We assume the mean thickness
of the outer lubricant layer to be thin, relative to the circumferential and axial length scales πR̂ and l̂,
respectively. In other words, δ = (R̂ − r̂2,0)/(πR̂) � 1 and assume that λ = l̂/(πR̂) ∼ O(1). Below,
we calculate the leading order in δ shear stresses and pressure in the lubricant layer. However, in
typical scenarios considered, m � 1 also (even m � δ), and the parameter m/δ occurs in the leading
order expressions. Therefore, the practical limit we consider here is the distinguished limit δ → 0,
with m/δ = finite.

Our solution below is parametrized by three dimensionless scalars: the mean frictional pressure
gradient along the pipe (G), the plug velocity (Wp), and the eccentricity (e) of the core. These three
scalars are determined by satisfying three integral constraints. First, the flow rate of fluid 1 has been
specified in the adopted formulation,

Q̂1 = Ŵpπr̂2
1 + πr̂4

1

8μ̂[1]
Ĝ. (11)

Second, the pressure drop along the pipe is balanced by the wall shear stresses,

0 =
∫ 2π

0

∫ r̂3

0
r̂([−P̂ + τ̂zz]ẑ=l̂ − [−P̂ + τ̂zz]ẑ=0)dr̂dθ +

∫ 2π

0

∫ l̂

0
r̂3τ̂zr |r̂=r̂3

dθdẑ. (12)

Third, the static pressure and viscous shear forces acting on the skin in the vertical direction balance
the weight of the liquid,

0 = (ρ̂[3] − ρ̂[2])ĝV̂ [2] + (ρ̂[3] − ρ̂[1])ĝV̂ [1] −
∫ 2π

0

∫ l̂

0
r̂2(P̂ |r̂=r̂2 cos θ + τ̂rθ |r̂=r̂2 sin θ )dθdẑ, (13)

where V̂ [1] and V̂ [2] are the volume of the core and skin fluids, respectively.
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The flow rate and pressure drop constraints vary linearly with the frictional pressure gradient and
the plug velocity, which are easily incorporated into the solution, whereas (13) varies nonlinearly
with e. To begin our analysis, we fix the eccentricity e and compute the frictional pressure gradient
and plug velocity, using the flow rate and pressure drop conditions. Later in the paper we include
the vertical force balance (13) to determine e.

A. Lubricating layer

We assume symmetry about a central vertical plane through the pipe, define z = ẑ/l̂, define the
scaled azimuthal coordinate y = θ/π with y ∈ [0,1], extending from the top to the bottom of the
lubricant annulus, and define x,

r̂ = r̂2,0 + πR̂δx.

Velocity components in the axial and azimuthal directions are scaled with Ŵ0 and that in the radial
direction with δŴ0. We break the pressure into three parts: a constant axial pressure gradient,
a periodic lubrication pressure (coming from the variation in layer thickness), and a hydrostatic
pressure component,

P̂ = −P̂ ∗
GGz + P̂ ∗

l Pl(x,y,z) + πδρ̂[3]ĝR̂x cos(πy). (14)

The lubrication pressure scale (P̂ ∗
l ) is chosen to balance the leading order shear stress gradients,

P̂ ∗
l = πR̂μ̂[3]Ŵ0

(R̂ − r̂2,0)2
. (15)

The axial pressure gradient scale (P̂ ∗
G) is similar to that is used in the concentric solution (Sec. II),

P̂ ∗
G = πλμ̂[3]Ŵ0

(R̂ − r̂2,0)
. (16)

Note we use Ŵ0 in the pressure scale P̂ ∗ instead of the dimensional plug speed Ŵp because these
are similar for small m, and since Ŵ0 is readily accessible. The leading order shear stresses scale
with δP̂ ∗

l .
With the above scaling, the leading order momentum equations are

0 = ∂Pl

∂x
, (17)

0 = −∂Pl

∂y
+ ∂2v

∂x2
, (18)

0 = −1

λ

∂Pl

∂z
+ ∂2w

∂x2
, (19)

0 = ∂u

∂x
+ ∂v

∂y
+ 1

λ

∂w

∂z
. (20)

We can see that Pl is only a function of (y,z). For the present study we assume that the skin layer
moves only axially, with speed Wp to be determined. The boundary conditions for the lubricant
are (u,v,w) = (0,0,0) at x = x3(y) and (u,v,w) = (0,0,Wp) at x = x2(z). The functions x3(y) and
x2(z) are derived from the wall and outer skin positions, to leading order in δ. The thickness of the
lubricant layer is denoted h(y,z) = x3(y) − x2(z), which is given to leading order by

h(y,z) = 1 − e cos πy − a�(z) + O(δ), (21)

where the eccentricity is e = d̂/(R̂ − r̂2,0) and the amplitude a = �r̂2/πR̂δ. d̂ is the radial distance
between the pipe and core centers; see Fig. 3. Note that the dimensionless axial skin thickness
variation �(z) has zero mean and maximal amplitude 1.
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We treat the system (17)–(20) and boundary conditions in the usual way, eliminating the averaged
(y,z)-velocity components with a stream function and then deriving the following Reynolds equation
for the pressure,

∂

∂y

[
h3 ∂Pl

∂y

]
+ 1

λ2

∂

∂z

[
h3 ∂Pl

∂z

]
= −6

Wp

λ

∂h

∂z
. (22)

As we see, apart from depending on the lubrication layer geometry h, (22) is driven linearly by Wp,
which is determined from the flow rate constraint and horizontal force balance. The velocity in the
core fluid is easily found as a superposition of a parabolic Poiseuille profile and the plug velocity.
Integrating across �1, the dimensionless form of (11) is

1 = Wpr2
1 + m

δ

r4
1

8π
G. (23)

For the horizontal force balance, note that only the constant pressure gradient contributes to the
pressure drop term (the other terms being periodic in z). The nondimensional version of (12) is

0 = G + 2
∫ 1

0

∫ 1

0
r3

∂w

∂x
(x3,y,z)dydz, (24)

where r3 = r2,0 + πδx3.
Finally, to determine the vertical displacement or eccentricity e, we scale the vertical force

balance. The constant axial pressure gradient makes no contribution. To leading order in δ the
balance is ∫ 1

0

∫ 1

0
r2Pl(y,z) cos πydydz − Fl

(
1 − 

[
1 − r2

1

r2
2,0

])
= 0. (25)

In the above equation,

Fl = (ρ̂[3] − ρ̂[1])ĝR̂

2P̂ ∗
l

r2
2,0 = δ

(ρ̂[3] − ρ̂[1])ĝπR̂2r2
2,0

2πR̂
[

μ̂[3]Ŵ0

(R̂−r̂2,0)

] ,

which we easily identify as the ratio of buoyancy forces to lubrication pressure forces (the viscous
scale amplified by δ−1). The parameter  arises if there is a density difference between the skin and
core fluids,

 = ρ̂[1] − ρ̂[2]

ρ̂[3] − ρ̂[1]
.

For simplicity, we shall assume that  = 0 in this study, so that Fl must balance with the lubrication
force generated through Pl .

B. Solution method

Note that the Reynolds equation describes flow in a symmetric geometry h(y,z) and we thus seek a
symmetric solution by imposing symmetry conditions at y = 0 and y = 1, together with periodicity
in z. As the lubricant is Newtonian, (22) is linear and is symmetric due to h(y,z). Consequently, we
may find the solution as Pl = WpP

[0]
l , driven by plug velocity Wp. For fixed geometry the solution

P
[0]
l corresponds to the pressure fields generated at the unit plug velocity. To find P

[0]
l we have used

a second-order central finite difference approximation to discretize (22) and then solve the linear
algebraic system with MATLAB.

Substitution of the velocity into (24) leads to

G = 2
∫ 1

0

∫ 1

0

[
Wp

h
− h

2λ

(
∂Pl

∂z

)]
dydz (26)
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FIG. 8. Axial pressure gradient for the current study (solid line) and from Ooms et al. [15].

[r3 ∼ 1 + O(δ)], and G is eliminated by

G = (
1 − Wpr2

1

)8π

r4
1

δ

m
. (27)

Now, Wp can be found by solving (26) and (27) simultaneously,

Wp =
1
r2

1

1 + m
δ

r2
1

4π

∫ 1
0

∫ 1
0

[
1
h

− h
2λ

∂P
[0]
l

∂z

]
dydz

. (28)

We verify the solution by comparison with that of Ooms et al. [15], who consider a two-layer
eccentric core-annular flow with a wavy profile in the axial direction and infinite relative viscosity
between the core and lubricant. Figure 8 shows the comparison of the axial pressure gradient. The
results match well, with the very small discrepancy attributable to a numerical error. In Ref. [15] the
core viscosity is infinite so it has rigid body motion and the core wall is wavy. A second comparison
is shown in Fig. 9, this time comparing the pressure variations between the current model and the
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z

P
l(
0,
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FIG. 9. Periodic pressure variation along z for the current study (solid line) and from Ooms et al. [17].
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FIG. 10. Sawtooth outer skin profile �(z).

results of Ref. [17]. The small differences are probably because of different solution methods: Ooms
et al. use an asymptotic approximation to solve the Reynolds equation.

IV. RESULTS

For all the results below, we assume a sawtooth profile for the skin shape function �(z), as
illustrated in Fig. 10. The parameter l′ is referred to as the break point of the wave. This configuration
is chosen as it is relatively simple and the asymmetry in z is necessary to generate lubrication pressures
that can support the buoyancy forces of the core and skin fluids; see Ref. [17].

A. Example flow

The flows are parametrized by six dimensionless parameters (r1,e,m/δ,l′,λ,a) if e is specified
and Fl calculated. Alternatively, Fl may be specified and e calculated. We discuss typical parameters
in more detail and explore the parametric variations below in Sec. IV B. As an illustration of an
example flow, we solve with (r1,e,m/δ,l′,λ,a) = (0.87,0.6,0.1,0.7,1,0.3), assuming a sufficiently
large Bingham number to prevent yielding of the skin. Here, e is set relatively large, to emphasize
eccentricity effects.

The lubrication layer thickness and associated periodic pressure are indicated in Fig. 11, at
different azimuthal positions y. As expected, it can be seen that for the narrower gaps (near the top
of the pipe) the amplitude of the pressure variation increases, generating significant pressures within
the lubricant. In this case we have l′ = 0.7, which results in a net upwards lubrication force (that
might be used to balance buoyancy in a case where the core fluids are heavier that the lubricant).
Note that in general we would have l′ < 0.5 to generate a net downwards force.

Figure 12 shows the variation of the layer-averaged velocity in the lubrication layer. Here, we
have unwrapped the annulus into the (y,z) plane. We observe a small secondary azimuthal flow
relative to the main axial flow, i.e., the fluid is squeezed in and out of the narrower parts of the
annulus near the top of the pipe (y = 0).

B. Parametric variations

To develop intuition about the effect of the geometric parameters and fluid properties on
the main process variables (G,Q2,Q3,Fl), we now systematically explore variations over
representative ranges of variables. The dimensional parameters relevant to these flows are extracted
from the literature and summarized in Table I; see, e.g., Refs. [22–29] and many others. Based on
Table I, we can find the ranges over which the nondimensional numbers typically vary (see Table II).
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FIG. 11. Variations with z at fixed y. (a) lubricant layer thickness h(y,z) and (b) lubrication pressure Pl(y,z).

In terms of our study and the proposed method, the variables r1 and r2,0 should remain close to 1
to minimize consumption of the lubricant and skin fluids. This is essentially an economic constraint:
Typical lubricant fractions used vary in the range 5%–20%. Although δ � 1, typically also m < δ

and to some extent one could vary m/δ < 1 in designing the flow. The wave form �(z) should be
regarded as being designable, i.e., amplitude a, break point l′, and wavelength λ. However, we might
expect λ = O(1) and note that a + e < 1 to avoid contact. The eccentricity e will eventually be
determined below to balance the lubrication force.

1. Varying skin profile

Here, we fix a moderate eccentricity and explore the effects of wave shape on the flow, for
(r1,e,m/δ,λ) = (0.87,0.3,0.1,1). The wave shape �(z) is governed by its amplitude (a), the
break point of the wave (l′), and its wavelength (λ). Figure 13 shows the normalized pressure
gradient required, G/Go. It can be seen that the effect of l′ is negligible, whereas increasing a

044302-13



PARISA SARMADI, SARAH HORMOZI, AND IAN A. FRIGAARD

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

z

y

 

 

−0.2 −0.1 0 0.1 0.2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

z

y

 

 

0 0.2 0.4 0.6 0.8 1 1.2

FIG. 12. Layer-averaged velocity in the lubricant layer, for the same parameters as in Fig. 11. (a) Layer-
averaged azimuthal velocity and (b) Layer-averaged axial velocity.

significantly decreases the pressure gradient. This arises because the pressure gradient is determined
disproportionately by the narrowest parts of the lubrication layer.

The required flow rate of the lubricating fluid (Q3) is presented in Fig. 14. As with the pressure
gradient (Fig. 13), the variation of the flow rate does not change significantly with l′. It seems that
Q3 increases as a increases. This may seem at odds with the pressure gradient variation in Fig. 13,
which decreases. Note, however, that the flow rate of the lubricating layer includes two components:
a pressure driven flow rate and plug velocity flow rate, say, Q3,Wp

. The inset of Fig. 14 shows Q3

TABLE I. Dimensional parameter ranges found in heavy crude oil pipelining.

Variable Symbol Range

Crude oil viscosity μ̂[1] 0.1–100 Pa s
Crude oil density ρ̂[1] 770–980 kg/m3

Pipe radius R̂ 0.05–0.61 m
Crude oil velocity Ŵ0 0.5–5 m/s
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TABLE II. Ranges of key dimensionless numbers expected in typical pipelining operations.

Dimensionless number Symbol Range

Aspect ratio δ 0.01–0.03
Viscosity ratio m 0.000 01–0.01
Density ratio ρ̂[3]/ρ̂[1] 1.02–1.3
Buoyancy to lubrication force ratio Fl 0.014–2

and Q3,Wp
. The latter is the dominant contribution to Q3 and increases with a: The pressure driven

component decreases (see the difference between the two curves in the inset). Variations in Q2 are
not shown, but are negligible.

The effect of l′ thus far seems insignificant, but this only considers (G,Q2,Q3). If instead we
compute the leading order net lubrication force from (25), i.e.,

∫ 1

0

∫ 1

0
Pl(y,z) cos πydydz,

this gives the value of the dimensionless Fl that can be supported. As we recall, Fl represents the
dimensionless ratio of buoyancy force to the scaling for the net lubrication force. Figure 15 plots the
variation of the net lubrication force with l′ and a. The main point to note is that the net lubrication
force changes sign along a critical curve, say, ac(l′). In a balanced system, satisfying (25), this figure
shows Fl . Thus for a significant positive Fl , in this example we need l′ < 0.45 and a sufficiently
large a. In this example, we have fixed the eccentricity at a modest e = 0.3, and the supported Fl

is modest. As we have remarked in the previous section, Fl < 0 is generated for l′ > 0.5. Although
we can support a denser core fluid in this way, note that, practically speaking, the eccentricity would
no longer be positive.

We now explore the effects of the wavelength (λ). The normalized pressure gradient (G/Go)
is shown in Fig. 16. Although there is a modest variation with a, λ has an insignificant effect on
the pressure drop. Similarly, the effect of λ on the flow rates Q2 and Q3 is found to be negligible.
Figure 17 shows the effect of λ on the computed net lubrication force. Although there is a variation,
it is not significant.
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0.2

0.4

0.6

0.8

a

 

 

0.01 0.015 0.02

FIG. 13. Normalized pressure gradient (G/Go) for different a and l′; fixed parameters (r1,e,m/δ,λ) =
(0.87,0.3,0.1,1).
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FIG. 14. Flow rate of lubricating fluid (Q3) for different a and l′; fixed parameters (r1,e,m/δ,λ) =
(0.87,0.3,0.1,1). The inset shows the total flow rate and partial flow rate due to Wp of the lubricating layer
when l′ = 0.2.

In conclusion, we fix (λ,l′) = (1,0.2) for the remainder of the study: Varying λ has little effect
and l′ in this range ensures a buoyancy balance for positive e. The amplitude a remains as a control
parameter, but is also limited by e.

2. Varying viscosity ratio and geometry

We now study variations in (r1,m/δ). We first fix (e,l′,λ,a) = (0.3,0.2,1,0.5) and vary (r1,m/δ)
within admissible ranges. Figure 18 shows the variation of the normalized pressure gradient G/Go.
As expected, this increases with m/δ, and also decreases with r1. To aid visualization, we have
superimposed the contour G/Go = 0.1, and see that even for m/δ ≈ 0.7 we have a pressure gradient
of less than 10% of the crude oil pressure gradient (and indeed normally we would expect to be far
below that). Note, however, that this is with a relatively thin lubricating layer.

Regarding the flow rates, the scaled skin fluid flow rate is Wp(r2
2,0 − r2

1 ). As discussed previously,
variations in Wp are small for small m/δ. Figure 19 plots the flow rate of the lubricant (Q3), which is
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FIG. 15. Computed net lubrication force able to balance Fl for different a and l′; fixed parameters
(r1,e,m/δ,λ) = (0.87,0.3,0.1,1). The solid black line is where no density difference can be supported (Fl = 0).
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FIG. 16. Normalized pressure gradient (G/Go) for different a and λ; fixed parameters (r1,e,m/δ,l′) =
(0.87,0.3,0.1,0.2).

practically invariant with small m/δ, but decreases with r1 for larger m/δ � 1. Thus, to acceptably
control G/Go, we adjust m/δ, either via m or r2,0 (δ). The flow rates (consumption) of the skin and
lubricant fluids may then be partially controlled by varying r1.

The computed net lubrication force that is able to balance Fl is shown for the same parameters
in Fig. 20. It can be seen that m/δ has a relatively small effect on the lubrication force, which
varies mostly with r1. Having said this, the variations here are relatively modest due to the small
eccentricity e.

The final geometric parameter is the eccentricity e. The flow rates are not significantly affected
by e, so we focus on the pressure gradient and lubrication force. Figure 21 shows the scaled pressure
gradient for different eccentricities and core radii, where (m/δ,l′,λ,a) = (0.1,0.2,1,0.5). We can
see the pressure gradient mostly varies with r1, except when e + a ≈ 1, where we see a significant
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FIG. 17. Computed net lubrication force able to balance Fl for different a and λ; fixed parameters
(r1,e,m/δ,l′) = (0.87,0.3,0.1,0.2). The solid black line is where no density difference can be supported
(Fl = 0).
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FIG. 18. Normalized pressure gradient (G/Go) for different m/δ and r1; fixed parameters (e,l′,λ,a) =
(0.3,0.2,1,0.5). The solid white contour marks G/Go = 0.1.
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FIG. 19. Flow rate of lubricating fluid (Q3) for different m/δ and r1; fixed parameters (e,l′,λ,a) =
(0.3,0.2,1,0.5).
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FIG. 20. Computed net lubrication force able to balance Fl for different m/δ and r1; fixed parameters
(e,l′,λ,a) = (0.3,0.2,1,0.5).
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FIG. 21. Normalized pressure gradient (G/Go) for different r1 and e; fixed parameters (m/δ,l′,λ,a) =
(0.1,0.2,1,0.5).

decrease with e. Thus, in total we see that varying e does not have any detrimental effect on the
pressure gradient.

The net lubrication force which is able to balance the density difference is shown in Fig. 22 for
different r1 and e. Here, by contrast, we see that the net lubrication force varies strongly with e and
weakly with r1. As might be expected, more eccentric flow configurations are able to support larger
density differences with the core fluid. The mechanism is straightforward: The lubricant layer at the
top of the pipe thins and contributes larger pressures to the net lubrication force.

C. Balance position

In general, for fixed (r1,m/δ,l′,λ,a), as we increase the eccentricity, the net lubrication force
increases; see Fig. 22, for example. Eventually, according to the value of a, the skin contacts the
wall, which is to be avoided. However, before this eccentricity is attained, a certain range of Fl can
be supported.

For a fixed specified Fl we iteratively solve (25) for e. For fixed (r1,m/δ,l′,λ,a), Eq. (25) appears to
be a monotonically increasing function of e, with a single root that represents the balance eccentricity.
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FIG. 22. Computed net lubrication force able to balance Fl for different r1 and e; fixed parameters
(m/δ,l′,λ,a) = (0.1,0.2,1,0.5). The solid white line shows Fl = 0.1.
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FIG. 23. Variation of the eccentricity (e) required to balance Fl , for different a and Fl . Fixed parameters
are (m/δ,l′,λ,r1) = (0.1,0.2,1,0.87). The solid white line is a guide to the eye, showing e = 0.3.

This is straightforwardly found using a bisection method. Figure 23 shows the eccentricity needed
to generate buoyancy forces for different values of Fl . It should be noted that in this figure at each
Fl , e is adjusting with respect to a to ensure a sufficiently narrow gap on the top of the pipe, i.e.,
the narrowest gap is h(y,z) = hmin = 1 − e − a, and it is in the vicinity of the narrowest gap that
we generate the largest lubrication pressures. However, there is in fact a significant variation in hmin

as (a,Fl) vary, as illustrated in Fig. 24, i.e., a combination of a and e results in the distribution of
h(y,z) about hmin. As we see, the largest hmin appear to arise in the range a ≈ 0.55–0.65 for these
parameters and, as we expected, for smaller Fl , hmin is larger.

The relative pressure gradient is presented in Fig. 25 for different a and Fl . The larger values of
a give rise to smaller equilibrium e and reduced frictional pressures. However, in all cases (even
though m/δ = 0.1), the relative pressure gradient is relatively small.

The flow rate of the skin fluid is largely unaffected by the balance position of the core fluid (i.e.,
finding e). As expected, it varies with the wave amplitude and as the skin layer gets narrower, the
flow rate of the skin fluid decreases. The flow rate of the lubricant is shown in Fig. 26. The required
flow rate increases when the wave amplitude a increases.
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FIG. 24. Variation of the minimal layer thickness hmin = 1 − e − a for the balance eccentricity. Fixed
parameters are (m/δ,l′,λ,r1) = (0.1,0.2,1,0.87).
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FIG. 25. Normalized pressure gradient (G/Go) in the balance state, for different a and Fl ; fixed parameters
(m/δ,l′,λ,r1) = (0.1,0.2,1,0.87).

D. Estimating the minimal yield stress in the skin

The final important design parameter is the yield stress required to keep the skin layer completely
unyielded. In practice, the stresses generated in the lubrication layer are quite localized. As
an illustration, for (m/δ,l′,λ) = (0.1,0.2,1), we fix (a,r1,Fl) = (0.5,0.87,0.1) and compute the
equilibrium eccentricity e = 0.313 585 8. For this solution we plot the shear stress at the interface
with the skin layer (r = r2) in Fig. 27. The shear stress is continuous at the interface and therefore
this represents one measure of the deviatoric stresses within the skin layer. We can see that this is
not extreme.

Second, if we consider the x-momentum equation in the skin layer,

∂τ [2]
xy

∂y
+ 1

λ

∂τ [2]
xz

∂z
= ∂P

∂x
+ O(δ2), (29)

we see that the shear stresses in the skin also adjust to accommodate normal stress gradients. The
axial pressure gradient −Gz transmits across the skin, driving the flow. The lubrication pressure,
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FIG. 26. Flow rate of lubricating fluid (Q3) in a balance state, for different a and Fl ; fixed parameters
(m/δ,l′,λ,r1) = (0.1,0.2,1,0.87).
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FIG. 27. Shear stress at r = r2, for (m/δ,l′,λ,a,r1,e) = (0.1,0.2,1,0.5,0.87,0.3136).

however, vanishes on the inner radius r = r1. Therefore, we estimate

∂P

∂x
≈ Pl

x2 − x1

for the right-hand side of (29). We then integrate the shear stressed throughout the skin, in (y,z), to
give a rough estimate for τ [2],

τ [2] ≈ |Pl|
x2 − x1

.

The normal stresses are typically one order larger than the shear stresses in lubrication problems
and here we again amplify by insisting that the normal stresses vanish at r = r1. Thus, the above
estimate is generally much larger than that based on the shear stresses alone. Figure 28 shows the
variation in |Pl|/(x2 − x1) for the same parameters as in Fig. 27. The maximum normal stress is in
the narrowest part of the lubricating layer, but this is modulated slightly by having larger x2 − x1.
The stresses are clearly much larger than in Fig. 27.

FIG. 28. Variation of |Pl |/(x2 − x1), for (m/δ,l′,λ,a,r1,e) = (0.1,0.2,1,0.5,0.87,0.3136).
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FIG. 29. Computed minimal dimensionless yield stress Bmin needed to keep the skin layer completely
unyielded in a balance state, for different a and Fl ; fixed parameters (m/δ,l′,λ,r1) = (0.1,0.2,1,0.87). The
solid white contour marks Bmin = π .

Now we simply consider as an estimate of the shear stress the maximum of |Pl|/(x2 − x1), i.e.,
we require the minimal yield stress to satisfy

B > Bmin = max
(y,z)

( |Pl|
x2 − x1

)
. (30)

We believe that this should give a reasonable estimate of the maximal skin shear stresses, which we
note are generally indeterminate for a yield stress fluid. To summarize, for fixed (m/δ,l′,λ,a,r1,Fl),
we first compute the equilibrium value of e, and then the minimal Bmin from (30). Figure 29 plots
Bmin for the same parameters as in the previous section. It can be seen that Bmin is O(1) and adopts
moderate values within a wide range of (a,Fl).

V. DISCUSSION

We have developed a lubrication model of a three-layer lubrication flow aimed at heavy-oil
transport. We have then systematically explored the parametric variations of the solutions, with the
aim of establishing the feasibility of this methodology.

An attractive feature of our results is that many dimensionless parameter variations do not appear
to cause significant variations in the critical parameters (G,Q2,Q3) that would be considered as
process costs. For example, (λ,l′) have a very limited effect, and m/δ affects primarily G. The flow
rates of the skin and lubricant are only marginally affected by any parameters other than r1, a, and
r2,0, but anyway remain within ranges that are economic compared to current practices in lubricated
pipelining.

The feasibility therefore rests with the range of Fl that is supported. Although we may find Fl ≈ 2,
these relate to larger pipelines and larger density differences. A great many situations are covered
by Fl � 0.3, as explored above. Note also that smaller Fl are straightforwardly accommodated with
smaller e. Nevertheless, we consider our methodology to be targeted at modest diameter pipelines.

To recover the meaning of Fl , we simply insert dimensional parameters into the definition of Fl ,

Fl = πδ2

2m

(ρ̂[3] − ρ̂[1])ĝr̂2
2,0

μ̂[1]Ŵ0
.

For example, if a 150 kg/m3 density difference needs to be supported for a geomet-
rical configuration, (r1,m/δ,l′,λ) = (0.87,0.1,0.2,1), we find Fl ≈ 0.1 for (m,R̂,Ŵ0,μ̂

[1]) =
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(0.005,0.1 m,1 m/s,10 Pa s). For these same parameters the solid white contour in Fig. 29
corresponds to a yield stress of τ̂ [2]

y ≈ 10 Pa.
Yield stress values in the range 1–102 Pa are easily found in polymer gels, even at relatively

low concentrations, and/or in various emulsions. Therefore, it would appear that the design of a
suitable skin system is feasible, e.g., using an emulsion of the transported oil and water. For extreme
viscosities of oil, using viscosified lubricants (i.e., relative to water) can still provide a reasonable
reduction of G/Go while allowing for a designed variation of m/δ. Decreasing the density of the
lubricant is less practical if water-based fluids are used.

In conclusion, it appears that the proposed method is suitable for stable lubricated pipelining of
a range of heavy crude oils in moderately sized pipelines, e.g., R̂ � 20 cm. The next steps in this
research will focus on the stability of the steady flows derived here and the development lengths
needed to attain the balance position.
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