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Flow around a square cylinder controlled using plasma actuators (PAs) is numerically
investigated by direct numerical simulation in order to clarify the most effective location
of actuator installation and to elucidate the mechanism of control effect. The Reynolds
number based on the cylinder diameter and the free-stream velocity is set to be 100
to study the fundamental effect of PAs on two-dimensional vortex shedding, and three
different locations of PAs are considered. The mean drag and the root-mean-square of lift
fluctuations are found to be reduced by 51% and 99% in the case where two opposing PAs
are aligned vertically on the rear surface. In that case, a jet flow similar to a base jet is
generated by the collision of the streaming flows induced by the two opposing PAs, and the
vortex shedding is completely suppressed. The simulation results are ultimately revisited in
the frame of linear sensitivity analysis, whose computational cost is much lower than that
of performing the full simulation. A good agreement is reported for low control amplitudes,
which allows further discussion of the linear optimal arrangement for any number of PAs.
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I. INTRODUCTION

Flow separation occurring around a bluff body causes a pressure drop on the rear surface and
vortex shedding in the wake, which eventually cause drag increase, acoustic emissions, and structural
vibrations. In order to mitigate such detrimental effects, various control methods have been proposed
and examined [1]. In particular, active control scenarios assuming surface blowing and suction
of flows around a circular cylinder [2–8] and a sphere [9–12] have been extensively studied as
fundamental examples of flows around bluff bodies. In these examples, the vortex shedding is
suppressed typically by delaying the separation. Another well-studied flow configuration is a flow
around a body having a blunt trailing edge, of which separation point is fixed at the trailing edge. In
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this case, use of a distributed forcing that three-dimensionalizes the vortex shedding has been shown
to work well for drag reduction [13].

Recently, a dielectric barrier discharge (DBD) plasma actuator (PA) has attracted increasing
attention as an active control device due to its merits such as its thin and light structure as well as
its fast response [14]. For example, Thomas et al. [15] experimentally investigated a flow around
a circular cylinder at the Reynolds number of Re = U ∗D∗/ν∗ = 30 000 (where U ∗, D∗, and ν∗
denote the free-stream velocity, the cylinder diameter, and the kinematic viscosity, respectively, and
the superscript ∗ denotes dimensional quantities) controlled by two-dimensional forcing using PAs,
and succeeded in completely eliminating the vortex shedding. Rizzetta and Visbal [16] performed a
large eddy simulation of a similar flow at Re = 10 000 and clarified the details of flow modification.
More recently, Igarashi et al. [17] performed a direct numerical simulation (DNS) of a similar
flow at Re = 1 000, and demonstrated that the three-dimensional forcing works better than the
two-dimensional forcing for the suppression of lift fluctuations.

In the present study, we consider the flow around a square cylinder as another fundamental
example, as the knowledge of unsteady flow around cylinders having such noncircular cross sections
remains rather limited, even though many engineering structures have square or near-square cross
sections (e.g., beams, fences, and other building construction details). The circular and square
cylinders share some similarities, including the onset of two-dimensional vortex shedding at Re � 50,
followed by a transition to three-dimensional vortex shedding at Re ∼ 200. There are, however,
important differences that may affect the efficiency of control strategies insofar as the circular
cylinder has free separation points, while the square cylinder has separation points pinned either at
the trailing or the leading edges, depending on the Reynolds number.

Regarding the use of classical control techniques, Bruneau et al. [18] performed two-dimensional
numerical simulation of a flow around a square cylinder having a porous surface at Re = 300,
3 000, and 30 000 and achieved about 30% reduction in the drag force. Zhou et al. [19] numerically
investigated the effect a control plate located in front of the cylinder at Re = 250 and found the
appropriate height and location of the control plate for drag reduction. As for the active control,
blowing and suction from the cylinder wall are considered in most of the numerical [20–22] and
experimental [23,24] studies. In particular, Kim et al. [20] and Saha and Shrivastava [22] studied
the effect of base jet and found that the vortex shedding can be completely suppressed when the
jet velocity is comparable to the free-stream velocity. Regarding the use of PAs, Gejima et al. [25]
have recently conducted a wind-tunnel experiment using PAs to suppress vortex shedding from a
pantograph head, whose shape is close to a square cylinder.

To the best of authors’ knowledge, there has been no numerical study on the control of flow around
a square cylinder assuming the use of PAs. The first objective of the present study is, therefore, to
investigate the flow around a square cylinder controlled by PAs by means of flow simulation. In
order to investigate the fundamental effect of PAs on two-dimensional vortex shedding, we limit
our attention to a very low Reynolds number, i.e., Re = 100, and we examine three different
arrangements (i.e., locations) of PAs. The second objective is to examine whether the control
effect can be reasonably predicted from a linear sensitivity analysis of the uncontrolled flow [26] and
whether such an analysis can serve to quickly map the best PAs location without using trial and error.

The paper is organized as follows. The numerical methods are described in Sec. II. Effects of
PAs in three different arrangements are discussed in Sec. III with some detailed results on the case
similar to the base jet. Prediction by the linear sensitivity analysis is presented in Sec. IV. Finally,
conclusions are drawn in Sec. V. In the Appendix, verification and validation of the present numerical
simulation are presented.

II. NUMERICAL METHODS

A. Flow simulation

We consider a two-dimensional square cylinder in a uniform air flow. The cylinder diameter and
the free-stream velocity are assumed to be D∗ = 10 mm and U ∗

∞ = 0.15 m/s, respectively. Assuming

043901-2



NUMERICAL SIMULATION AND SENSITIVITY ANALYSIS . . .

FIG. 1. Flow configuration.

25 ◦C air at 1 atm, the Reynolds number is Re = U ∗
∞D∗/ν∗ = 100, where ν∗ = 1.5 × 10−5 m2/s is

the kinematic viscosity. The flow is assumed to be incompressible and two dimensional.
The governing equations are the continuity equation and the Navier-Stokes equation, i.e.,

∂ui

∂xi

= 0, (1)

∂ui

∂t
= −∂ujui

∂xj

− ∂p

∂xi

+ 1

Re

∂2ui

∂xj ∂xj

+ fi, (2)

where ui and p are the velocity components and the pressure, respectively. All quantities without
the superscript ∗ are made dimensionless using U ∗

∞, D∗, and the fluid density, ρ∗. The Einstein
summation convention applies to the dummy indices. The last term in Eq. (2), fi , accounts for the
body force induced by PAs (detailed in Sec. II B). For notational convenience, x1, x2, u1, and u2 are
also denoted by x, y, u, and v, respectively.

The flow configuration is shown in Fig. 1. The size of computational domain is Lx × Ly =
25.6 × 41.3 in x and y directions, respectively, and the distance between the front surface of the
square cylinder and the inlet is 8.5. The uniform velocity is imposed at the inflow boundary. At the
outflow boundary, the convective velocity condition, i.e.,

∂ui

∂t
+ U∞

∂ui

∂x
= 0, (3)

is adopted. At the upper and lower boundaries, the free-slip conditions are imposed:

∂u

∂y
= 0, v = 0,

∂p

∂y
= 0. (4)

The no-slip condition is imposed on the cylinder surface using an immersed boundary method of
discrete forcing type similar to that of Kim et al. [27], although interpolation is not required in the
present study since the computational grid is set to always match the cylinder surface.

The present numerical simulation code is based on the DNS code for turbulent channel flow of
Fukagata et al. [28] extended to a flow with inflow-outflow condition [29]. The equations are spatially
discretized using the energy-conservative second-order-accurate finite difference scheme [30,31].
The temporal integration is done using the low-storage, third-order-accurate Runge-Kutta–Crank-
Nicolson scheme with velocity-pressure coupling similar to the simplified marker and cell (SMAC)
method [32]. The pressure Poisson equation is solved by means of the fast Fourier transform (FFT) in
the streamwise (x) direction with the mirroring technique [33] and the tridiagonal matrix algorithm
(TDMA) in the transverse (y) direction.
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FIG. 2. A schematic of Shyy’s model (redrawn based on Shyy et al. [35]).

The computational grid is uniform in x direction (�x = 0.025). In the y direction, the grid is
uniform (�y = 0.0125) only in the region near the square cylinder, i.e., −Ly,c/2 � y � Ly,c/2,
where Ly,c denotes the transverse length of the uniform grid region and it is set to be Ly,c = 1.5. In
the outer region, the grid is stretched using geometric series with a growth rate of 1.1. For the choice
of these numerical parameters, readers are referred to the validation and verification presented in the
Appendix.

B. Body force by plasma actuator

Strictly speaking, the body force induced by a PA results from very complex unsteady ion-transport
phenomena. However, if one is interested in the effect of body force on a relatively low-speed fluid
flow, such as the one considered in the present study, it is more efficient to use a time-averaged
body force model because the frequency of the imposed AC voltage signal is much higher than that
of flow. According to a previous study on the effect of the ratio of these two frequencies on the velocity
field [34], a time-averaged body force field can be reasonably used when the typical frequency of
flow is less than 30 times of that of the voltage signal. In fact, the vortex shedding frequency under
the present flow condition can be estimated as about 2 Hz, and the frequency of the voltage signal is
on the order of 10 kHz—hence the aforementioned condition required for the use of time-averaged
body force is satisfied.

We use one of the simplest models proposed by Shyy et al. [35], as illustrated in Fig. 2. This model
assumes a linear decay of the electric field, E∗(x∗,y∗), in a triangular region whose dimensions of
sides are a∗ and b∗, i.e.,

E∗(x∗,y∗) = max(E∗
0 − k∗

1x
∗ − k∗

2y
∗,0), (5)

where E∗
0 is the maximum electric field strength, and k∗

1 and k∗
2 are positive constants. We adopt

the value of E∗
0 proposed by Shyy et al. [35], i.e., E∗

0 = 2.2627 × 107 V/m, while k∗
1 = 4.4782 ×

109 V/m2 and k∗
2 = 8.9564 × 109 V/m2 are determined so as to be consistent with the dimensions

of plasma we assume in the present study, i.e., a∗ = 2.5 mm and b∗ = 5.0 mm. Note that b∗ = 5 mm
is a reasonable value concerning the typical plasma progress distance [36]. The electric field vector
is assumed to be unidirectional and its components, E∗

1 (x component) and E∗
2 (y component), are

modeled as

E∗
1 = k∗

2√
k∗2

1 + k∗2
2

E∗, E∗
2 = − k∗

1√
k∗2

1 + k∗2
2

E∗. (6)

The time-averaged body force is computed by f ∗
i = αϑ∗δt∗ρ∗

c e∗
c , where e∗

c = 1.60 × 10−19 C is the
elementary charge; ϑ∗ (the frequency of the applied voltage signal), δt∗ (the discharge time), and ρ∗

c

(the charge number density) are the parameters depending on the operating condition; α (collision
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TABLE I. Relationship between the amplitude parameter, q∗
eff , and the

maximum velocity of the induced flow in a quiescent fluid, uPA = u∗
PA/U ∗

∞,
under the flow condition assumed in the study (D∗ = 10 mm and U ∗

∞ =
0.15 m/s).

q∗
eff (C/m3) uPA

4.223 × 10−8 0.01
8.447 × 10−8 0.02
1.689 × 10−7 0.04
3.379 × 10−7 0.1
6.758 × 10−7 0.3
1.352 × 10−6 0.5

frequency) is assumed unity; and δ is assumed unity if E∗ > E∗
b = 2.09 × 105 V/m, otherwise

zero [35].
By putting these model constants altogether into a single parameter, q∗

eff = ϑ∗δt∗αρ∗
c e∗

c , the
effective body force is simply represented as

f ∗
i = q∗

effE
∗
i . (7)

In the flow simulation, this body force is used with the nondimensionalization mentioned above.
The amplitude parameter, q∗

eff , is adjusted for the desired induced flow velocity according to the
relationship between q∗

eff and the maximum induced velocity, uPA, shown in Table I, which was
obtained in advance by simulations in a quiescent field.

C. Locations of plasma actuators

Three different locations of PAs, i.e., cases 1, 2, and 3 shown in Fig. 3, are investigated. Case 1
aims at direct separation delay similarly to the case of circular cylinder. Case 2 is expected to have
an effect similar to the base jet. Case 3 is expected to promote the leading edge separation to reduce
the trailing edge separation and hasten the reattachment in the wake. As shown in the figure, the four
corners of the square cylinder are referred hereafter referred to as A, B, C, and D.

U∞

x

y Plasma-induced flow

Square cylinder

Case 1 Case 3Case 2
(uncontroled)

A

B C

D
Case NC

Plasma actuator

FIG. 3. Arrangements of plasma actuators.
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FIG. 4. Instantaneous vorticity distribution: (a) case NC; (b) case 1; (c) case 2; and (d) case 3.

III. RESULTS AND DISCUSSION

A. Effects of plasma actuator arrangements

The effects of three different arrangements of PAs are investigated. Similarly to Sec. II, all
quantities are made dimensionless using the fluid density, ρ∗, the free-stream velocity, U ∗

∞, and
the cylinder diameter, D∗. The maximum induced flow velocity is fixed at uPA = 0.5, and the
PAs are operated in the continuous mode (i.e., steady forcing). In the following, the time instant for
instantaneous field and the time-averaged statistics are taken after the flow has reached its statistically
steady state. The mean quantities are denoted by an overbar (·) and the root-mean-square (rms) values
of the fluctuations are denoted by subscripts (·rms). The integration time for statistics accumulation
is 100 dimensionless time, under which the statistical uncertainty is found to be much smaller than
the uncertainty due to the grid size presented in the Appendix.

Instantaneous vorticity distributions in the uncontrolled case (case NC) and the controlled cases
(cases 1–3) are shown in Fig. 4. As can be clearly seen, the vortex shedding is completely suppressed
in case 2, while it remains basically similar in cases 1 and 3, although the width of the vortex street
looks slightly decreased in case 1.

Figure 5 shows the time-averaged velocity statistics. In cases NC, 1, and 3, a recirculation region
(u < 0) is observed right downstream of the square cylinder. The recirculation region is slightly
shorter in case 1 than that in cases NC and 3. In case 2, u increases near the rear stagnation point
and the wake is observed to be significantly elongated as compared to the other cases. The rms
streamwise velocity fluctuations, urms, and the rms transverse velocity fluctuations, vrms, take large
values along with the vortex streets; these quantities slightly reduce in case 1 and completely vanish
in case 2.

The observations above are quantitatively supported by the mean pressure coefficient, Cp, and
the mean velocity, u/U∞, on the wake centerline (y = 0) as shown in Fig. 6. Here, the pressure
coefficient, Cp, is defined as

Cp = p − p∞
1
2ρU∞2 , (8)

where p∞ is the free-stream pressure. In case NC, the base pressure (i.e., Cp at x = 0.5) is negative
due to flow separation, which is also obvious from the mean velocity vectors in Fig. 7(a) showing
a recirculation region in the wake. As compared to case NC, the base pressure is slightly increased
in case 1 and slightly reduced in case 3. The modification observed in case 1 is a typical effect of
two-dimensional forcing observed also in the case of circular cylinder [16]. Due to this slight increase
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(a)

(b)

(c)

(d)

FIG. 5. Time-averaged velocity field: (a) case NC; (b) case 1; (c) case 2; (d) case 3. Left, mean
streamwise velocity, u/U∞; middle, rms streamwise velocity fluctuations, urms/U∞; right, rms transverse
velocity fluctuations, vrms/U∞.

of the base pressure, the recirculation region is also slightly shortened. In case 2, the base pressure
is drastically increased up to Cp � 0; the minimum pressure is also increased from Cp = −0.8
in case NC to Cp = −0.4. As illustrated in Fig. 7(b), this increase of base pressure is due to the
impingement of two wall jets induced by two opposing PAs. As a result, a streamwise jet similar to
the base jet is produced as initially expected. It is worth noting that the recirculating flows generated
near the corners [Fig. 7(b)] and the streamwise variation of the mean centerline velocity [Fig. 6(b)]
are also very similar to those observed in the case of base jet [22].

In order to quantitatively investigate the interaction between the upper and lower shear layers, a
two-point correlation of velocity fluctuations is computed. The raw two-point correlation function,

FIG. 6. Statistics on the wake centerline: (a) mean pressure coefficient, Cp , and (b) mean streamwise
velocity, u/U∞.
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FIG. 7. Mean streamwise velocity (color) and mean velocity vectors near the rear surface: (a) case NC and
(b) case 2.

Rraw, is defined here as

Rraw(x) = u′+(x,t)u′−(x,t). (9)

Here, u′
+ and u′

− are the streamwise velocity fluctuations at y = 0.5 and y = −0.5, respectively,
where significant suppression of urms was observed, and the overbar denotes time average. Figure 8
shows the raw correlation Rraw and the normalized correlation Rnorm = Rraw/(u+,rms u−,rms) in each
case, where u+,rms and u−,rms denote the rms values of u′

+ and u′
−, respectively. In cases NC, 1,

and 3, Rraw is negative in the entire region and has the maximum absolute value in the near wake,
indicating that the vortex shedding alternately takes place from the upper and the lower surfaces.
The maximum absolute value of Rraw is decreased in case 1 and increased in case 3. In case 2, Rraw

is nearly zero because the velocity fluctuations are nearly zero. In this case, however, the normalized
correlation Rnorm indicates that u′

+ and u′
− are nearly perfectly out-of-phase, implying existence of

a small amplitude wavy motion.
The force acting on the square cylinder is computed directly using the velocity and pressure field.

The pressure and friction forces, FP and FF , are computed as

FP =
∫

S

p(−n)dS, FF =
∫

S

τ · ndS, (10)

FIG. 8. Two-point velocity correlation of the streamwise velocity fluctuations in the upper and lower shear
layers: (a) raw correlation Rraw (i.e., the correlation function); (b) normalized correlation Rnorm (i.e., the
correlation coefficient).
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FIG. 9. Mean drag coefficient CD and rms lift coefficient fluctuations CL rms: (a) relationship between CL rms

and CD; (b) decomposition of CD into the friction drag component, CDF , and the pressure drag component,
CDP .

where n denotes the unit vector normal to the cylinder surface, S, and τ = [∇u + (∇u)T ]/Re is the
viscous stress tensor. The drag and lift coefficients, CD and CL, are defined as

CD = CDP + CDF , CL = CLP + CLF , (11)

where CDP and CDF are the pressure and friction drag coefficients,

CDP = ex · FP

1
2ρU∞2 , CDF = ex · FF

1
2ρU∞2 , (12)

and CLP and CLF are the pressure and friction lift coefficients,

CLP = ey · FP

1
2ρU∞2 , CLF = ey · FF

1
2ρU∞2 , (13)

respectively.
Figure 9(a) shows the relationship between the mean drag coefficient, CD , and the rms of lift

coefficient fluctuations, CL rms. As compared to the uncontrolled case (case NC), the mean drag CD

is found to reduce by 51% in case 2, while it increases by 26% and 28% in cases 1 and 3, respectively.
The rms of lift fluctuations, CL rms, is found to reduce in cases 1 and 2. In particular, the reduction
in case 2 amounts to 99% due to the complete suppression of vortex shedding. Figure 9(b) shows
the decomposition of CD into the friction drag CDF and the pressure drag CDP . In case 1, CD is
increased due to the friction drag, while the pressure drag is decreased. In contrast, the pressure drag
is increased in case 3. In case 2, both the pressure drag and the friction drag are reduced. A similar
decomposition of CL rms (not shown) indicates that the pressure lift is dominant over the friction lift
in all cases and that the change in CL rms is mainly due to the change in the pressure lift.

The changes in the mean drag and the lift fluctuations observed above are explained by the
changes in the pressure and the friction coefficients on the cylinder surface. As shown in Fig. 10(a),
the mean pressure coefficient, Cp, is around unity on the front stagnation point (i.e., the midpoint
between A and B) and about −0.7 on the rear stagnation point (i.e., the midpoint between C and
D) in the uncontrolled case (case NC). Due to the collision of flows induced by PAs, the rear
stagnation pressure increases in case 2, resulting in the decrease of pressure drag; in contrast, the
front stagnation pressure increases in case 3, leading to the increase of pressure drag as observed
in Fig. 9(b). Figure 10(b) shows that the pressure fluctuations, Cp rms, on the upper (B–C) and
lower (D–A) surfaces slightly increase in case 3, slightly decrease in case 1, and nearly vanish in

043901-9



ANZAI, FUKAGATA, MELIGA, BOUJO, AND GALLAIRE

FIG. 10. Pressure and friction coefficients on the cylinder surface: (a) mean pressure coefficient, Cp;
(b) rms of pressure coefficient fluctuations, Cp rms; and (c) mean friction coefficient, Cf , on the upper surface.

case 2, leading to the changes observed in Fig. 9(b). Finally, the increase of friction drag in case 1
is explained by the mean friction coefficient Cf on the upper surface, defined as

Cf = ex · τ · n
1
2ρU∞2 , (14)

As shown in Fig. 10(c), Cf significantly increases in case 1 due to the flows induced tangentially to
the surface.

B. Effects of control amplitude in the case of plasma actuators installed on the rear surface

In this subsection, the effect of the control amplitude, uPA, in case 2 (where the PAs installed on
the rear surface) is discussed in more details.

Instantaneous vorticity distributions at different control amplitudes are shown in Fig. 11. The
vorticity distribution is nearly unchanged up to uPA = 0.1. The starting point of vortex shedding
slightly moves downstream at uPA = 0.3; then the vortex shedding is completely suppressed at
uPA = 0.5.

The dependence of CL rms and CD on uPA/U∞ is presented in Fig. 12. Both CL rms and CD are
decreased monotonically as uPA/U∞ increases, and the reduction of CL rms takes place faster than
that of CD . At uPA/U∞ = 0.5, CL rms decreases by 99% and CD decreases by 51% as stated above.

Figure 13 shows the mean streamwise velocity, u, on the centerline of the wake. The velocity
right downstream of the cylinder increases due to the jet flow induced by PAs as observed above.
The clear difference between the vortex shedding case (uPA = 0.1) and the case without vortex
shedding (uPA = 0.5) is the presence of a recirculation region. At uPA = 0.5, the induced jet flow is
so strong that the region of negative velocity disappears. The maximum jet velocity in this case is
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FIG. 11. Instantaneous vorticity distribution in case 2 at different control amplitudes: (a) uPA/U∞ = 0 (i.e.,
case NC); (b) uPA/U∞ = 0.1; (c) uPA/U∞ = 0.3; (d) uPA/U∞ = 0.5.

about u = 0.6, which is exactly the same as the blowing velocity required for complete suppression
of vortex shedding in the case of base jet [22].

Finally, Fig. 14 shows Cp and Cp rms on the cylinder surfaces under different control amplitudes.
The base pressure increases as uPA increases while the pressure on other surfaces is nearly unchanged.
Thus, it is confirmed that the reduction of CD in case 2 is almost solely due to the streamwise jet
induced by the opposing PAs. In contrast, Cp rms decreases on all surfaces. Even at uPA = 0.1, the
reduction of Cp rms is about 70%, which is much larger than the change in the base pressure. This
difference explains why the lift fluctuations are suppressed faster than the mean drag as observed in
Fig. 12.

0   0.05 0.1 0.15 0.2 0.6

0.8

1.0

1.2

1.4

1.6

CL rms

C
D

uPA/U∞ = 0
uPA/U∞ = 0.01
uPA/U∞ = 0.02
uPA/U∞ = 0.04
uPA/U∞ = 0.1
uPA/U∞ = 0.3
uPA/U∞ = 0.5

FIG. 12. Relationship between the RMS lift fluctuations, CL rms, and the mean drag, CD , in case 2 at different
control amplitudes.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
−0.2

0   

0.2 

0.4 

0.6 

0.8 

1.0 

x/D

u
/
U

∞

FIG. 13. Mean streamwise velocity, u/U∞, on y/D = 0.

IV. INTERPRETATION IN TERMS OF SENSITIVITY AND LINEAR OPTIMAL PLASMA SETUP

In this section, we look afresh at the obtained results using the framework of linear sensitivity
analysis. In the limit of small control amplitudes, the drag and lift variations extracted from the DNS
can indeed be expressed as the inner product between the plasma force and sensitivity functions
representing the variational derivative of the aerodynamic forces to sources of momentum in the
flow (which amounts to invoking the first-order Taylor expansion around zero of CD and CL rms

viewed as functions of the plasma force). Such sensitivity frameworks are meant to assess, within
one single calculation, the effect of a given control body force (here the plasma force) upon the
aerodynamic efforts without having to perform the DNS of the actual controlled state. Unlike
bottleneck trial-and-error procedures requiring systematical numerical simulations to be performed
over large ranges of parameter spaces, they allow exhaustive coverage of large parameter spaces at
very low computational costs, and can therefore serve to map quickly the best arrangements and
positions for placement of the PAs, as discussed in the following.

As an inner product, we use here the average over time of the L2 spatial inner product over the
computational domain, given that the sensitivity depends on the choice of the inner product structure,

FIG. 14. Pressure distribution on the cylinder surface in case 2 at different control amplitudes: (a) mean
pressure coefficient, Cp; (b) RMS of pressure coefficient fluctuations, Cp rms.
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but that the variation computed from the inner product does not. Using a variational technique based
on the computation of Lagrange multipliers, Meliga et al. [26] have shown recently that the change
in the mean drag induced by the plasma force can be expressed in the limit of infinitesimal control
amplitude as

δCD = 1

τ

∫ τ

0

∫
S

u
†
i fi dSdt, (15)

where τ is an averaging time span assumed appropriately large enough to achieve convergence to
statistical equilibrium and u

†
i and p† denote adjoint velocities and pressure. The solution to the

time-dependent equations

∂u
†
i

∂xi

= 0 , (16)

−∂u
†
i

∂t
− ∂u

†
i

∂xj

uj + ∂u
†
j

∂xi

uj − ∂p†

∂xi

− 1

ReD

∂2u
†
i

∂xj ∂xj

= 0, (17)

with boundary condition at the bluff body surface

u† = 2 , v† = 0, (18)

is meant to nullify the boundary term,

1

τ

∫ τ

0

∫
S

δσijnj (2δ1i − u
†
i )dSdt, (19)

that shows up during the derivation of the adjoint equations by integration by parts, where δσij

denotes the control-induced perturbation of the stress tensor (that needs not be known explicitly).
The change in the rms lift fluctuations can be expressed similarly as

δCL rms = 1

τ

∫ τ

0

∫
S

u
†
i fi dSdt, (20)

where (u†,p†) now denotes the solution to the same adjoint equations (16) and (17), but with
boundary condition at the bluff body surface

u† = 0 , v† = 2
CL − CL

CL rms
. (21)

We compute here all sensitivities using the finite-elements solver presented in Meliga et al. [26],
to which the reader is referred for further details (including specifics about the numerical procedure
yielding the computation of the adjoint fields and systematical validation tests assessing their
accuracy). Suffice it to say here that time discretization is achieved using the second-order accurate
Crank-Nicholson scheme with time step �t = 5 × 10−2, that the computational domain is extended
to Lx × Ly = 90 × 50, and that the distance between the front surface of the square cylinder and
the inlet is increased to 29.5 to account for the fact that the non-normality of the Navier-Stokes
equations [37] reverses the directionality of advection by the cylinder flow in Eq. (17). To Eqs. (16)
and (17), we append classical adjoint open flow conditions on the boundary of the computational
domain, that consist of homogeneous conditions at the inflow, symmetric conditions at the transverse
boundaries, and an adjoint stress-free condition at the outflow [38]. As explained in Meliga
et al. [26], the adjoint equations must be solved backwards in time starting from the initial condition
u†(τ ) = v†(τ ) = 0 because the temporal propagation of information also is being reversed. In
practice, this requires knowledge of the entire history of the uncontrolled (NC) cylinder flow solution
over the time span of interest, which is achieved here performing a dedicated DNS and storing to
disk all time steps over 600 time units. The adjoint equations are solved over the same duration. The
first and last 100 time units correspond to transient regimes in the direct and adjoint simulations,
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FIG. 15. Effect of the plasma actuator, as assessed from a linear sensitivity analysis. The sensitivity results
are indicated by the colored lines. Open symbols denote the finite difference DNS results discussed in Sec. III.
Filled symbols denote dedicated finite elements DNS results obtained at low control amplitudes.

respectively, and are discarded when evaluating changes in mean drag [Eq. (15)] and rms lift
fluctuations [Eq. (20)].

We show in Fig. 15 the effect of the plasma actuator reported in the δCL rms − δCD plane. The
DNS results obtained with the finite-difference code and documented in the previous sections are
reported as the colored open symbols, while sensitivity predictions are shown as the solid lines. For
case 2, both sets of results superposed for the smallest control amplitudes, including an additional run
at q∗

eff = 2.112 × 10−8 C/m3 (uPA � 0.005) performed with the finite elements solver reported as the
smaller filled symbol. This is consistent with the fact that the effect of the control is then linear, yet
such an agreement is actually remarkable because the nonlinear and linear results have been obtained
using two different codes. The agreement remains satisfying up to moderate control amplitudes
of order q∗

eff = 1.689 × 10−7 C/m3 (uPA � 0.04), whereupon nonlinearities come into play. This
results in increasing discrepancies, the effect of the control being systematically overestimated by
the sensitivity analysis. Note the sensitivity of the mean drag is actually larger than that of the rms lift
fluctuations, meaning that the fact that the reduction rate δCL rms being larger than that of δCD is an
artifact of the uncontrolled rms lift fluctuations being smaller. For cases 1 and 3, only large control
amplitudes are available from the finite-difference calculations (shown here are the red and blue open
symbols), hence the observed dissemblance. Nonetheless, additional, dedicated finite elements DNS
performed at small control amplitudes (q∗

eff = 2.112 × 10−8 C/m3 up to q∗
eff = 8.447 × 10−8 C/m3)

and reported as the smaller filled symbols in Fig. 15 match perfectly the linear sensitivity predictions.
These results provide good evidence that the sensitivity approach carries valuable information in view
of guiding efficient control strategy, besides reducing tremendously the numerical effort. Indeed,
even though the agreement is only qualitative for large actuation amplitudes, the analysis predicts
well the fact that the case 2 arrangement is the only one to reduce both the mean drag and the rms
lift fluctuations, while case 1 increases the mean drag and case 3 increases both the mean drag and
the rms lift fluctuations.

The analysis can be taken further by using the sensitivity as a systematic guideline on where
and how to position the plasma actuators in the attempt to reduce the aerodynamic efforts. Indeed,
because the sensitivity framework is linear in essence, the effect of any arrangement of PAs is
obtained as the sum of the effects of each individual actuator. For a given number of PAs, this means
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FIG. 16. Effect of one single plasma actuator on the (a) mean drag coefficient and (b) rms of lift coefficient,
as assessed from a linear sensitivity analysis. All results reported in terms of the distance dPA between the
(upper-left) corner B and the midpoint of the lower electrode. The gray-shaded areas correspond to regions of
the cylinder where no actuator can be placed because the length of the plasma triangular domain exceeds the
distance to the nearest edge.

that the (linear) optimal arrangement can be determined easily, provided the effect of one single
actuator has been characterized exhaustively, both in terms of position and of orientation with respect
to the upstream flow. As an illustration, we show in Fig. 16(a) the change in the mean drag induced
by a single PA, taken to be the case 1 upper actuator, initially positioned at the (upper-left) corner
B of the square cylinder and translated clockwise along the cylinder surface. Results are reported
in terms of the distance dPA between B and the midpoint of the lower electrode. The gray-shaded
areas correspond to regions of the cylinder where no actuator can be placed because the length of the
plasma triangular domain exceeds the distance to the nearest edge. The maximum drag reduction is
achieved positioning the actuator at dPA = 1.25 (in which case it is virtually identical to the case 2
upper PA), and drag is reduced if the actuator is either anywhere on the base (C–D), or on the lower
surface (D–A), close enough to corner A (where it finds itself at the same position as the case 1 lower
actuator, but with the plasma induced flow pointing upstream, not downstream). The change in the
rms lift fluctuations is reported in Fig. 16(b). It shows that the rms lift fluctuations are now reduced
if the actuator is either on the base (C–D) or the upper surface (B–C), close enough to corner C,
the maximum reduction being also achieved at dPA = 1.25 for a configuration corresponding to the
case 2 upper actuator.

B C

A D

B

A D

C B C

(a) (b) (c)

A                                   D

FIG. 17. (a) Optimal arrangement of two PAs in view of reducing the mean drag and the rms lift, as deduced
from a linear sensitivity analysis. (b), (c) Optimal arrangement of four PAs in view of reducing the (b) mean
drag and (c) rms lift fluctuations.
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The change in the mean drag and rms lift fluctuations induced by the symmetric actuator, i.e.,
the case 1 lower actuator, similarly translated clockwise along the surface from the lower-left edge,
is not reported here because the results are identical to those reported in Fig. 16 provided dPA is
redefined as the distance between the lower-left edge A and the midpoint of the lower electrode.
This is because the shape of the cylinder considered here is symmetric; however, both sets of
calculations must be performed in the most general case for the effect of one single actuator to
be completely characterized. From these results, we conclude that case 2 is actually the (linear)
optimal arrangement of two plasma actuators in view of reducing the mean drag and the rms lift
fluctuations; see Fig. 17(a). In contrast, for four actuators, the optimal arrangement depends on the
target objective: For the mean drag, it is obtained by adding two PAs on the upper and lower surfaces,
close to the upstream edges A and B, whose plasma-induced flows point upstream, as illustrated on
Fig. 17(b). For the rms lift fluctuations, it is rather obtained placing two PAs close to the downstream
edges C and D, whose plasma-induced flows point downstream, as illustrated in Fig. 17(c).

V. CONCLUSIONS

Flow around a square cylinder controlled using plasma actuators (PAs) is numerically investigated
at the Reynolds number based on the cylinder diameter and the freestream velocity of Re = 100.

Investigation on the effects of three different arrangements of PAs reveals that the total drag is
not reduced with the classical arrangement, where the actuators are installed on the top and bottom
surfaces, due to the increase of friction drag. In contrast, the drag and the lift fluctuations can be
reduced simultaneously when the plasma actuators are installed on the rear surface to induce opposing
inward flows (case 2). In this case, the pressure differences between the front and rear surfaces are
significantly reduced as compared to the uncontrolled case to result in 51% drag reduction. Moreover,
the pressure fluctuations vanish due to a complete suppression of vortex shedding to result in 99%
reduction in the lift fluctuations. A more detailed investigation in case 2 under different control
amplitudes reveals that the jet velocity required to the complete suppression of vortex shedding, i.e.,
about 50%, is comparable to that in the case using a base jet. Beyond the operating costs (the cost of
actuating the PA can actually be higher than that of producing a base jet because a large majority of the
electrical energy input dissipates as heat without being converted into kinetic energy), the main advan-
tage of the PA lies in its unique ease of use, as it can be installed on any existing body with little effort.

The simulation results have been successfully compared to theoretical predictions obtained from
linear sensitivity analysis to a steady force, used as a valuable tool to assess rapidly the effect of any
arrangement of PAs. By doing so, case 2 turns to be the optimal linear arrangement to reduce both
the mean drag and the rms lift fluctuations. In contrast, for four actuators, the optimal arrangement
depends on the control objective, although it features systematically two actuators at the base and two
actuators on the lateral sides. All sensitivity results are obtained beforehand, i.e., without performing
the simulations of the controlled states, which suggests that the approach can serve as a relevant tool
to predict optimal arrangements of PAs at a low computational cost.

The present numerical simulation and sensitivity analysis were performed assuming that the flow
at Re = 100 remains two-dimensional even under the forcing by PAs. This is likely true for the cases
where the instability was suppressed (i.e., cases 1 and 2) but not always obvious for the case where
the instability was enhanced (i.e., case 3). Investigation on the modification of two-dimensional
to three-dimensional transition under various forcing by PAs is therefore left as a future work. In
addition, the present study assumed the simplest model to represent the body force induced by PAs.
For the design of actual systems, a body force field estimated from the actually measured velocity
field [39,40] may alternatively be used because the detailed body force field is highly dependent on
various conditions, e.g., ambient humidity, voltage waveform, electrical impedance of the circuit,
deterioration of electrodes. As implied by Eqs. (15) and (20), however, the global flow modification
should be relatively insensitive to the minute difference in the local body force field if the integrated
amount of momentum introduced by PA is the same.
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FIG. 18. Dependence of the rms lift fluctuations, CL rms, and the mean drag, CD , on numerical parameters:
(a) dependence on the transverse computational domain size, Ly ; (b) dependence on the streamwise grid
spacing, �x; (c) dependence on the transverse grid spacing, �y.
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TABLE II. Streamwise grid spacing, �x, the transverse grid spacing
in the vicinity of the cylinder, �y, and the number of grid points, Nx × Ny ,
used for verification.

�x �y Nx × Ny

0.025 0.1 1024 × 74
0.025 0.05 1024 × 100
0.025 0.025 1024 × 134
0.025 0.0125 1024 × 190
0.1 0.0125 256 × 190
0.05 0.0125 512 × 190
0.025 0.0125 1024 × 190
0.0125 0.0125 2048 × 190
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TABLE III. Comparison of CD and CL rms obtained using different
time steps, �t .

�t CD CL rms

2.5 × 10−3 1.5101 0.1943
1.25 × 10−3 1.5107 0.1923

APPENDIX: VERIFICATION AND VALIDATION OF UNCONTROLLED FLOW

The computational domain size has three parameters: the distance from the computational inlet
to the cylinder, Lx,u, the distance from cylinder to the the computational outlet, Lx,d , and the vertical
distance between the upper and the lower boundaries, Ly . According to Sohankar et al. [41] and
Sharma and Eswaran [42], Lx,u = 8.5 is required to obtained results independent of Lx,u. In these
studies, the downstream distance was taken to be Lx,d = 12.5 [41] or Lx,d = 16.5 [42]. Following
these studies, we fixed the streamwise domain size to be Lx,u = 8.5 and Lx,d = 16.1. In order to
determine the vertical size, we performed simulations with different values of Ly . As shown in
Fig. 18(a), the computed CD and CL rms are relatively insensitive to Ly : The maximum differences of
CD and CL rms between Ly = 41.3 and Ly = 62.9 cases are 0.03% and 0.05%. Therefore, Ly = 41.3
is used in this study. As a result, the size of computational domain used in the present study is fixed
as Lx × Ly = 25.6 × 41.3, as has been shown in Fig. 1.

Franke et al. [43] and Sohankar et al. [44] have suggested that the distance from the cylinder
surface to the nearest grid point significantly affects CD and CL rms. In addition, Sharma and
Eswaran [42] have suggested that CL rms has the greatest sensitivity to the grid resolution. Therefore,
in this study, four different grid refinements given in Table II are used, and the dependency of the
CD and CL rms on the grid resolution is investigated in order to determine the appropriate grid size.

Figure 18(b) shows CL rms and CD computed using different streamwise grid sizes �x. As can
be found in the figure, CL rms and CD tend to converge with the grid refinement. The differences of
CD and CL rms between �x = 0.025 and �x = 0.0125 cases are 0.44% and 1.5%, respectively.

Figure 18(c) shows CL rms and CD computed using different vertical grid sizes �y in the vicinity
of the cylinder. The mean drag coefficient CD tends to converge with the grid refinement. The
differences CD between �y = 0.025 and �y = 0.0125 cases is 0.48%. In contrast, CL rms does not
seem to converge likewise. This is likely due to the singularity on the corners, which significantly
affect the separation at the leading edge. By extrapolation, however, the uncertainty for CL rms can
be estimated to be about 5%.

Based on the information above, �x = 0.025 and �y = 0.0125 are used in this study, while
allowing about 0.5% and 5% of uncertainties in CD and CL rms, respectively.

TABLE IV. Comparison of CD , CL rms, and St at Re = 100.

Studies CD CL rms St

Present 1.51 0.194 0.149
Robichaux et al. [45] 1.53 0.154
Saha [46] 1.50 0.153
Sahu et al. [47] 1.49 0.188 0.149
Sen et al. [48] 1.53 0.193 0.145
Sharma and Eswaran [42] 1.49 0.192 0.149
Singh et al. [49] 1.51 0.160 0.148
Sohankar et al. [44] 1.48 0.156 0.146
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Table III shows the values of CD and CL rms obtained with different time steps, �t = 2.5 × 10−3

and �t = 1.25 × 10−3. The differences of CD and CL rms between �t = 2.5 × 10−3 and �y =
1.25 × 10−3 cases are 0.04% and 0.19%. Thus, �t = 2.5 × 10−3 is judged to be small enough not
to affect the results.

The validity of the present simulation of the uncontrolled flow around a square cylinder is
investigated by comparison with literature. Table IV compares the values of CD , CL rms, and the
Strouhal number of vortex shedding, St, at Re = 100 obtained in the present and previous numerical
studies. The maximum differences among all studies are 3.5%, 20%, and 5.2% for CD , CL rms,
respectively. In particular, the present result is in good agreement with the result of Sharma and
Eswaran [42], who adopted the similar domain size and grid spacings; the differences between these
two results are 1.1%, 1.1%, and 0.3% for CD , CL rms, and St, respectively.
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