
PHYSICAL REVIEW FLUIDS 2, 043604 (2017)

Evaporation of liquid droplets on solid substrates. II. Periodic substrates
with moving contact lines

Amirhossein Amini and G. M. Homsy*

Department of Mechanical Engineering, University of Washington, Seattle, Washington 98195, USA
(Received 10 June 2016; published 20 April 2017)

Experiments on evaporating droplets on structured surfaces have shown that the contact
line does not move with constant speed, but rather in a steplike “stick-slip” fashion. As a
first step in understanding such behavior, we study the evaporation of a two-dimensional
volatile liquid droplet on a nonplanar heated solid substrate with a moving contact line and
fixed contact angle. The model for the flat case is adapted to include curved substrates,
numerical solutions are achieved for various periodic and quasiperiodic substrate profiles,
and the dynamics of the contact line and the apparent contact angle are studied. In contrast
with our results for a flat substrate, for which the contact line recedes in a nearly constant
speed, we observe that the contact line speed and position show significant time variation
and that the contact line moves in an approximate steplike fashion on relatively steep
substrates. For the simplest case of a periodic substrate, we find that the apparent contact
angle is periodic in time. For doubly periodic substrates, we find that the apparent contact
angle is periodic and that the problem exhibits a phase-locking behavior. For multimode
quasiperiodic substrates, we find the contact line behavior to be temporally complex and
not only limited to a stick-slip motion. In all cases, we find that the overall evaporation is
increased relative to the flat substrate.

DOI: 10.1103/PhysRevFluids.2.043604

I. INTRODUCTION

We consider the evaporation of a volatile liquid droplet on a nonplanar heated solid substrate for the
case of a moving contact line and constant contact angle. A stick-slip motion of the contact lines, also
referred to as steplike motion, has been reported in many experimental works [1,2] including the one
by McHale et al. [3], in which they consider the evaporation of a small water droplet on structured
polymer surfaces. As illustrated in their Fig. 2, they observe all three modes [4] of evaporation.
(i) Initially the droplet evaporates in the pinned contact line mode. (ii) Once a critical contact angle
is approached, the contact line is depinned and, in contrast with what occurs on a smooth surface,
the contact line moves in a steplike fashion while the contact angle remains approximately constant.
(iii) Finally, in the last and shortest stage of the evaporation, both the wetted radius and the contact
angle decrease simultaneously until the entire droplet is evaporated. In this work we are interested
in the middle stage in which the contact line shows a repetitive steplike behavior.

Most previous theoretical models [4,5] consider only mathematically smooth substrates. However,
recent work has considered the dynamic contact line motion over a variety of nonplanar substrates
driven by either capillary pressure or gravity. Savva and Kalliadasis [6] consider the spreading
on horizontal nonplanar substrates of a two-dimensional droplet that has an initial shape different
from the equilibrium profile. They consider different single-mode sinusoidal substrates, a trench,
and a ridge, with the single-mode sinusoid being most relevant here. In similar work, Savva and
Kalliadasis [7] consider gravity-driven motion of a drop on an inclined rough surface. The results
in both of these papers demonstrate that in the case of a sinusoidal single-mode substrate, the
contact line exhibits an apparent stick-slip behavior wherein it spends considerable time moving
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FIG. 1. Schematic of a droplet, evaporating on a symmetric nonplanar substrate, addressed in a Cartesian
coordinate system.

very slowly, giving the appearance of being pinned. Savva et al. [8] generalized these observations
by considering spreading over a random rough surface that is constructed from periodic waveforms
with random Fourier coefficients. They find that the contact line response is also random and that
spreading is inhibited by roughness. Espín and Kumar [9] provided a model of a spreading droplet
on a single curved bump and commented on the potential for structured surfaces to produce apparent
stick-slip behavior. By adopting the word “apparent” they emphasize that the pinning stage during
the stick-slip motion needs to be interpreted as an apparent pinning since the contact line may still
move very slowly. Here we will use the apparent stick-slip or apparent steplike terminology for the
same reason described by these authors: The contact line may still move very slowly during the
apparent pinning stage.

As far as we are aware, the problem of evaporating droplets on curved substrates is yet to be
analyzed. Therefore, we have adapted our model in the preceding paper [10] to include surfaces with
topography. Our model may be used to study curved substrate profiles for both modes of evaporation
studied in the preceding paper: a pinned and a moving contact line with constant contact angle.
However, since the results for the former were found to be very similar to the flat case, only the
moving contact line case is considered here.

Accordingly, we include nonflat solid profiles in the evolution equation, boundary conditions,
and numerical method provided in the preceding paper. We consider a single-mode harmonic solid
as the simplest case of a periodic substrate and provide numerical solutions for the droplet shape and
evaporative flux; we study the dynamics of the contact line and the apparent contact angle and show
that an apparent stick-slip motion is captured by our model. We compare these results to the flat case
and establish the characteristics of the contact line motion. We then create more complex substrate
profiles by adding more modes, including quasiperiodic waveforms, and compare the results with
the simpler cases.

II. PROBLEM DEFINITION

We consider a liquid layer evaporating on a symmetric nonplanar heated solid substrate and adopt
the assumptions discussed in the preceding paper. As shown in Fig. 1, h(x,t) denotes the local
thickness of the liquid, s(x) denotes the solid substrate profile, and r(t) denotes the wetted radius.
The contact angle, i.e., the angle between the solid and the interface at the contact line, is denoted by
θ0. The apparent contact angle, i.e., the angle that the liquid appears to make with the solid surface
when viewed at such a coarse resolution that the substrate appears flat (the angle between the horizon
and the interface at the contact line), is denoted by α(t). We represent the vertical distance between
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the interface and the horizon at the contact line by an intermediate variable hf (x,t). Accordingly,
α(t) and θ0 are respectively defined by the slopes h

f
x and h

f
x − sx at x = r(t). At any instance,

hf (x,t) and the droplet thickness h(x,t) are geometrically related as follows:

h(x,t) = hf (x,t) + s(r(t)) − s(x). (1)

The first derivative of (1) with respect to x at r(t) implies that α(t) and θ0 may be determined,
respectively, by the slopes hx + sx and hx at the contact line. Hence, although defining hf is
essential to understand the geometry, the problem may be analyzed without its direct use.

The governing equations are modified for curved substrates and the problem is made
dimensionless based on the same scaling as in the preceding paper. The equations are solved in
the lubrication limit and as a result, the local evaporative mass flux remains

J = Tw − 1

M + h(x,t)
(2)

and the evolution equation [Eq. (7) of the preceding paper] becomes

ht = −1

3

∂

∂x
((h + s)xxxh

3) − Tw − 1

M + h
. (3)

The evaporative mass flux is identical to that for the flat case, but as a result of the normal stress
balance p − pv = −(h + s)xx , the capillary flux term in the evolution equation is modified; for a
comprehensive explanation of this see Ref. [11].

We take the initial condition that the liquid-vapor interface is part of a circle. Granted that hf (x,t)
is symmetric and assuming that the first and third derivatives sx(0) and sxxx(0) of the solid-liquid
profile at the location of symmetry line vanish, the symmetry boundary conditions remain

hx(0,t) = 0, hxxx(0,t) = 0. (4)

As in the preceding paper, at the contact line the droplet thickness is zero and the liquid pressure p

is assumed to be in equilibrium with the vapor pressure pv such that there is no pressure-driven flow
into the contact line. These conditions, expressed for a curved substrate, are

h(r(t),t) = 0, hxx(r(t),t) + sxx(r(t)) = 0. (5)

The additional condition required to close this moving boundary problem is provided by assuming
the contact angle to be constant during the evaporation, i.e.,

hx(r(t),t) = �0. (6)

Here �0 is the scaled contact angle (�0 = θ0/ε); for a comprehensive explanation of the scaled
contact angle see Ref. [12]. As the contact line moves over the solid, α(t) adapts itself to the local
slope sx(r(t)) of the solid-liquid profile in such a way that the contact angle θ0 remains fixed.

We are mainly interested in the effect of the solid-liquid profile on the droplet shape and contact
line dynamics and less interested in their dependence on the dimensionless numbers Tw, M , and θ0.
Hence, we solve (3) for a variety of periodic and quasiperiodic substrates for fixed set of parameters:
Tw = 1.2, M = 2, and θ0 = 5◦. However, in work not reported here, we observed qualitatively
similar results for Tw in the range of 1.1–1.4, M in the range of 1–5, and θ (0) in the range
of 5◦–15◦.

III. NUMERICS

Identical to the flat case, the method of lines is used to transform the partial differential equation
into a system of ordinary differential equations and finite-difference schemes are employed to
discretize the evolution equation at any given time level. However, due to the form of the capillary
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FIG. 2. Schematic of the computational domain at a given time step.

flux term, the discrete evolution equation is modified as

dhi

dt
= − 1

3�x

(
fi+1/2

gi+2 − 3gi+1 + 3gi − gi−1

�x3 − fi−1/2
gi+1 − 3gi + 3gi−1 − gi−2

�x3

)
− Tw−1

M+hi

.

(7)

As shown in Fig. 2, subscript i specifies the spatial node, �x denotes the spatial mesh size, hi and si

denote the local thickness of the droplet and the solid profile, respectively, gi denotes the liquid-vapor
interface such that gi = hi + si , and fi±1/2 represent averages of h3

i over adjacent nodes, i.e.,

fi±1/2 = h3
i + h3

i±1

2
. (8)

The symmetry conditions (4) and the contact line conditions (5) and (6) are employed to evaluate (7)
near the boundaries. To simultaneously evaluate the droplet shape and the position of the contact
line, an operator splitting technique, similar to the flat case, is used. In the first stage, the evolution
equation is solved over a time step assuming that the contact line is fixed. This produces an interface,
shown in yellow in Fig. 3, which violates the constant contact angle condition (6). In the second
stage, the contact line is moved a horizontal distance x∗ such that at the new position the angle
between the interface and the solid is equal to the prescribed contact angle θ0. As discussed for
the flat case, a Lagrange interpolating polynomial with three points is employed. However, since
the contact angle is dependent on the slope sx of the solid at the contact line and sx varies with x,
an iteration scheme is necessary to determine x∗. (This is in contrast to the flat case, in which the
new position of the contact line is found analytically.) Once the contact line is moved, a new set of
equally spaced spatial nodes is defined and the values of h are interpolated onto the new mesh.

The number of nodes at each time step and consequently the spatial mesh size �x are chosen
such that the distance x∗ that the contact line moves is smaller than �x/2. Also, an iterative method
is employed to choose the size of the time step in the first stage such that all boundary conditions
are satisfied to a specified accuracy at the end of the second stage. Once h(x,t) and r(t) are known,
the evaporative mass flux J (x,t) and the apparent contact angle α(t) are computed as secondary
quantities.

The initial spatial mesh size is chosen to be on the order of 0.01 and the size of time step, which
may change depending on the solid profile, is taken to be small enough such that with a 50% change
in the spatial step size the solution changes no more than 0.1% and the contact angle equals the
specified value with less than 5% error. We found a stiff solver to be necessary; hence, we use the
MATLAB stiff solver ode15s.
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FIG. 3. Schematic of the liquid-vapor interface at different stages of the operator splitting method.

IV. SINGLE-MODE PERIODIC SUBSTRATES

Consider the single-mode periodic substrate of wavelength λ shown in Fig. 4. Since the first and
third derivatives of the solid-liquid interface vanish at the center, the droplet symmetry line must
meet the solid-liquid interface at either a peak or a trough. Since we do not expect fundamentally
different behaviors between these cases, only the latter configuration is considered in this work.
Accordingly, the height s(x) of the solid-liquid interface is described by

s(x) = −a cos(kx), (9)

where a is the amplitude and k is the wave number, i.e., k = 2π/λ.
As a result of choosing hf (0,0) and r(0) as the length scales in x and y directions, the solid-liquid

interface in dimensionless form is

s(x) = −A cos(
x), (10)
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FIG. 4. Schematic of a 2D drop on a periodic solid substrate.
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FIG. 5. Droplet profile while evaporating on the single-mode periodic solid substrate, for the reference
case. (Profiles are plotted over equal time increments.)

where A is the scaled amplitude

A = a

hf (0,0)
(11)

and 
 is the dimensionless wave number


 = r(0)k. (12)

Accordingly, 
/2π is the number of wavelengths (on each side of the symmetry line) that are covered
initially by the droplet. To apply the lubrication approximation, the droplet aspect ratio ε = Ly/Lx ,
determined by the specified contact angle θ0, must obey ε � 1. Additionally, to ensure that the
substrate profile also follows the lubrication approximation, the dimensionless slope ξ , defined as

ξ = ak, (13)

must obey ξ � 1. The three dimensionless numbers A, 
, and ξ are not independent, i.e.,

ξ = εA
, (14)

hence assigning values to any two of them is sufficient to describe the substrate.
As a reference case, we take a droplet that initially covers 10.5 wavelengths of the solid on each side

of the symmetry line (i.e., 
/2π = 10.5), a prescribed contact angle θ0 = 5◦, and a solid slope ratio
ξ = 2π × 0.006. Such a configuration has ε = 0.0437 and A = 0.0131. Additionally, numerical
solutions were obtained for 
/2π in the range of 6–15.5 and ξ/2π in the range of 0.003–0.006, but
will not be presented since they are qualitatively similar to those for the reference case.

Figure 5 illustrates the droplet shape evolution for the reference case. As anticipated, the droplet
thickness decreases on average; however, due to the global effect of the contact line motion over
peaks and troughs, h shows nonmonotonic variation near the centerline. Since the droplet adapts its
shape to the local slope of the solid such that the contact angle remains fixed, the droplet profile
varies from its initial shape and thus simpler models, which assume that the droplet cross section
remains circular along the evaporation, are not valid. For the reference case presented, the mean
square error of the departure of the profile from a static shape is on the order of 5%.

Results for J (x,t) are presented in Fig. 6. Consistent with Eq. (2), the evaporative flux increases
similarly to the flat case: Its maximum is located at the contact line and the maximum value is
constant over time. However, on a periodic substrate, (i) J is oscillatory along the x axis since the
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FIG. 6. Evaporative mass flux of an evaporating droplet on the single-mode periodic solid substrate, for the
reference case.

substrate is sinusoidal and (ii) some minor temporal variation is observed near the centerline as a
consequence of the discussed temporal variation in h.

The wetted radius r(t) is plotted for both the reference case and the corresponding flat substrate in
Fig. 7. In contrast to what we found for the flat case, r(t) exhibits a periodic time variation superposed
on a linear decrease, indicating that the speed ucl of the contact line in the x direction is no longer
constant. Figure 7 also shows that the slope of a linear fit to r(t) (neglecting the initial transient),
i.e., the average velocity ū of the contact line, is approximately 25% larger than the constant contact
line speed uf observed for the flat case. Interestingly, for all the cases we studied, we found that ū

is larger than uf and that while it is only weakly dependent on 
, it increases with increasing slope

FIG. 7. Wetted radius r(t) on the single-mode periodic solid substrate, for the reference case. The black
dashed line represents the fitted line to r(t), neglecting the initial transient, and the red dashed line represents
the results for the flat case. The slopes of the black and red dashed lines are 0.081 and 0.065, respectively.
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FIG. 8. Contact line speed ucl as a function of the wetted radius r(t), for the reference case. The red and
blue dashed lines represent the location of peaks and troughs, respectively. The thick region corresponds to the
motion over the second period of the solid.

ratio ξ . The fact that ū �= uf is consistent with the nonlinearity of the problem, but to investigate why
nonlinearities lead to faster average evaporation, further analysis is required regarding the contact
line motion.

To relate the dynamics of the contact line to the solid profile, the (negative) values of ucl are
plotted as a function of r(t) and presented in Fig. 8. The red and blue dashed lines represent the
location of peaks and troughs respectively, so that at any instant, one can identify the contact line
speed and position, simultaneously. Focusing on one cycle (shown as a black solid curve in Fig. 8),
the contact line slows from the peak to the first inflection point; it accelerates between the first and
second inflection points such that its maximum is achieved near the second, after which it slows
down until it reaches the second peak. The contact line dynamics during the subsequent periods
is similar, except that both the maximum speed of contact line and the speed at which it moves
over the peaks decrease. To analyze this behavior, each term on the right-hand side of the evolution
equation (3) was evaluated and monitored separately over time. The results indicate that the capillary
flux term dominates the evaporative flux near the contact line and therefore the motion is governed
mainly by the shape of the solid. At any time, the distance required for the contact line to move
such that the specified contact angle is maintained, and consequently the instantaneous speed of the
contact line, is highly dependent on the substrate profile. As shown in Fig. 8, the contact line loses
speed where the solid curvature is negative and gains speed otherwise.

Rather than plotting the contact line speed as a function of location (Fig. 8), it is plotted as a
function of time in Fig. 9. As can be seen, for each period of the solid, the motion may be divided into
a low-speed phase, in which ucl < uf , and a high-speed phase, which includes a spike. The dashed
box, which zooms in on one of these low-speed and high-speed regions, indicates that (i) during
a low-speed period the speed is near zero and (ii) the duration of a low-speed region is relatively
long. Accordingly, one who monitors the location of the contact line with limited accuracy might
assume that it is pinned for a range of time mimicking a steplike motion. Thus, a steplike motion is
captured by our lubrication model. This steplike motion is qualitatively similar to the experimentally
observed stick-slip behavior of the contact line and is consistent with the apparent stick-slip behavior
described by Espín and Kumar [9] and Savva and Kalliadasis [6], discussed in the Introduction.

The apparent contact angle α(t) is plotted as a function time in Fig. 10(a). Recall that α(t) adjusts
its value to the local slope of the solid sx(r(t)) such that the contact angle remains constant. As a
result, the points at which α = θ0 correspond to peaks (shown with cyan circles) and troughs and
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FIG. 9. Contact line speed ucl(t) on the periodic solid substrate, for the reference case. The dashed box
represents the results for one low-speed region shown in red followed by a high-speed spike illustrated in green.
The black horizontal line represent the average speed ū, neglecting the initial transition. The red line denotes
uf , the speed for the flat case. For the data presented, ū and uf are equal to 0.081 and 0.065, respectively.

the points at which α reaches its maximum or minimum values correspond to the inflection points
of the solid profile. Except for an initial transient, the distance between two adjacent cyan circles
is constant over the entire process, meaning that the time tλ that it takes for the contact line to
move from one peak to another is constant, i.e., α(t) is a periodic function. Although this may be
discovered from plots like those in Figs. 7 and 9, focusing on α(t) allows a convenient analysis of
the dynamics by Fourier decomposition.

Figure 10(b) shows the power spectrum of α(t) in blue. We see that all the major peaks are located
at the frequencies that are harmonics of a single primary frequency fp = 1/tλ. As mentioned earlier,

(a) (b)

FIG. 10. Apparent contact angle α on a single-mode periodic substrate, for the reference case. (a) α as
a function of time. The cyan circles represent the time at which the contact line is located on a peak; the
distance between each pair of adjacent circles denotes the time tλ that it takes for the contact line to move
over one wavelength of the solid. (b) Normalized power spectrum of α(t) (shown in blue) and r(t) (shown in
red), neglecting the initial transient. All the major peaks are located at harmonics of fp = 0.84, indicating that
tλ = 1.19.
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the contribution of these harmonics to the mean speed is such that the nonlinearity of the solid leads
to faster evaporation. As expected, we found that once the linear signal is subtracted from r(t),
the peaks in the power spectrum of the resulting values are also located exactly at harmonics of
fp = 1/tλ. This is illustrated with red dashed lines in Fig. 10(b).

We generated similar results for different values of ξ and 
 and found that while fp increases with
increasing ξ and 
, the behavior of the contact line is qualitatively similar for all cases. Therefore,
we conclude that for any given single-mode periodic substrate, the time tλ that it takes for the contact
line to travel one wavelength is independent of how far the corresponding wavelength is from the
centerline, i.e., α(t) is a periodic function. Such a conclusion may be validated by showing that
the total average speed ū is equal to the average speed for each wavelength λ/tλ. This equality is
found to be satisfied for all cases we studied, including the case presented for which ū = 0.081 and
λ/tλ = 0.08.

In summary, for contact line motion on a single-mode periodic substrate, we found that (i) the
apparent stick-slip behavior is captured by our lubrication model; (ii) the nonlinearity of the problem
leads to faster evaporation such that the average speed ū of the contact line is larger than the constant
speed uf observed for the flat case; (iii) the apparent contact angle α(t) is periodic, i.e., the average
speed λ/tλ for each period is constant over different wavelengths and therefore is the same as the
global average speed ū; and (iv) as expected of a nonlinear system with periodic coefficients, the
power spectrum of α shows a typical single-mode with harmonics behavior.

V. TWO-MODE PERIODIC SUBSTRATES

Having established what happens in the simplest case of a periodic substrate, the question is what
happens with a more complex substrate variation. One way to approach this question is to build up
complexity by adding more modes.

We generated a two-mode periodic substrate s2(x) by a linear combination of a high-frequency
sH (x) and a low-frequency sL(x) harmonic function, i.e.,

s2(x) = −1

2

⎡
⎣

−sH (x)︷ ︸︸ ︷
aH cos(kHx + φH ) +

−sL(x)︷ ︸︸ ︷
aL cos(kLx + φL)

⎤
⎦. (15)

To ensure that the droplet center is over a trough we choose φH = φL = 0, for simplicity we take
aH = aL = a, and to scale the problem in x and y directions we choose r(0) and hf (0,0). As a
result, the dimensionless form of s2(x) is

s2(x) = −
2∑

i=1

A

2
cos(
ix), (16)

where

A = a

hf (0,0)
, 
 = r(0)kL, 1 = kH

kL

, 2 = 1. (17)

The slope of such a substrate is bounded by a dimensionless number ξ2, defined as

ξ2 = a(kH + kL), (18)

and hence ξ2 � 1 serves as a sufficient condition for the lubrication approximation to be valid. This
slope ratio is dependent on the the other dimensionless numbers via

ξ2 = εA


2∑
i=1

i. (19)

Thus, assigning values to 1, A, and 
 and choosing a contact angle θ0 is sufficient to describe the
problem.
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(a) (b)

FIG. 11. Apparent contact angle as the droplet evaporates on the two-mode periodic solid substrate, for the
reference case. (a) α2 as a function of time. The dashed line represents the average of αL and αH , which are the
contact angles produced as a result of separately solving the problem on sL and sH , respectively. (b) Normalized
power spectrum of α2(t), neglecting the initial transient. All the major peaks are located at either harmonics or
subharmonics of fp . The primary frequencies for this case are fp2 = 1.0272, fpH

= 1.207, and fpL
= 0.229.

As a reference case, a two-mode substrate s2 with 1 = 3, A = 0.0076, and 
/2π = 4.5 and a
droplet with contact angle θ0 = 5◦ were considered. In order to probe nonlinearities and to test for
superposition, the problem is solved for s2, sL, and sH , separately. For each substrate, the numerical
solution is achieved over 10.5 units of dimensionless time, which is enough for the contact line to
move over three wavelengths on s2 and sL and nine wavelengths on sH .

The black line in Fig. 11(a) gives the apparent contact angle α2(t) for evaporation on s2. As
shown, α2(t) is a more complex waveform compared to the single-mode case but is still periodic.
One may interpret α2(t) as a periodic waveform with fundamental frequency fp2 that is modulated
by a subharmonic carrier signal of frequency fp2/3. Figure 11(b) quantitatively confirms such an
interpretation by showing that all the peaks of the power spectrum are located at frequencies that are
either subharmonics or superharmonics of a single primary frequency fp2 . As a result, the time tλ2

that it takes for the contact line to move over one wavelength of s2 is constant during the evaporation.
Accordingly, similar to what we found for the single-mode substrate, the average speed λ2/tλ2 of
each period is the same for all wavelengths of s2 and is equal to the global average speed ū2. (Note
that λ2 = 2π/
 and for this case tλ2 = 3/fp2 .)

We found that a linear superposition of the results for single modes fails to predict the solution
on s2; this is expected since the problem is nonlinear. Figure 11(a) confirms this by showing the
disparity between the average solution (αL + αH )/2 and the two-mode solution α2. Additionally,
we investigated the dependence of the primary frequency fp2 of the two-mode substrate on the
single-mode frequencies fpH

and fpL
and thus calculated each separately. Interestingly, we found

that regular sums and differences of fpH
and fpL

or simple relations involving 1 fail to predict fp2

and thus we conclude that the problem exhibits a phase-locking behavior for this case.
The (negative) values of the contact line speed ucl2 are presented in Fig. 12. As can be seen, the

results are more complex than those for the single-mode substrates, but follow the same overall
apparent stick-slip behavior: The maxima decrease while the width of the high-speed regions
increases such that the global average speed ū2 is the same as the average speed λ2fp2/3 for
each period. This is verified for the reference case since the average speed ū2, shown with the
horizontal line in Fig. 12, is in good agreement with λ2fp2/3.

We generated many two-mode periodic substrates with different rational values of 1 and solved
the problem separately for the two-mode substrate and each of its corresponding single-mode
profiles. We found that (i) similar to the single-mode profiles, the contact line exhibits an apparent
stick-slip behavior; (ii) the apparent contact angle is still periodic but the peaks of its power spectrum
are located at the subharmonics and harmonics of a single primary frequency fp2 ; (iii) the overall
evaporation is faster compared to the flat case; (iv) due to the strong nonlinearity of the problem, the
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FIG. 12. Contact line speed ucl2 (t) as the droplet evaporates on the two-mode periodic solid substrate, for
the reference case. The horizontal line represents the global average speed ū2, neglecting the initial transient.
For the data presented, ū2 = 0.0760.

solution for two-mode substrates may not be obtained by the linear superposition of the single-mode
results; and (v) sums and differences of single-mode frequencies fpL

and fpH
fail to produce the

primary frequency fp2 of the two-mode case and there is no simple relation between fp2 , fpL
, and

fpH
that holds for all values of 1. We conclude that the interesting phase-locking behavior is a

general result over the range of parameters studied.

VI. MULTIMODE QUASIPERIODIC SUBSTRATES

Our model is not limited to the periodic substrates and is therefore capable of solving the problem
for any 2D symmetric solid profile. Hence we studied shapes that are closer to a random configuration.
The number of modes was increased to add complexity and irrational values were assigned to the
wavelength ratios i to create quasiperiodic shapes. Here we consider the reference case in which
three modes are combined as

s3(x) = −
3∑

i=1

A

3
cos(
ix), (20)

FIG. 13. Three-mode substrate produced by irrational wavelength ratios 1 = 2π/3, 2 = √
π , and

3 = 1.
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(a) (b)

FIG. 14. Results for three-mode substrate produced by irrational wavelength ratios 1 = 2π/3, 2 = √
π ,

and 3 = 1 and the specified contact angle θ0 = 5◦. (a) Apparent contact angle α3 over time. (b) Normalized
power spectrum of α3(t), neglecting the initial transient. In contrast with periodic substrates, the peaks are not
located at harmonics (or subharmonics) of a single primary frequency.

with the wavelength ratios chosen as

1 = 2π

3
, 2 = √

π, 3 = 1, (21)


/2π ≈ 1.85 and A = 0.0024. Figure 13 shows the corresponding quasiperiodic solid-liquid
interface, which is no longer periodic and appears fairly random.

The problem is solved numerically with contact angle θ0 = 5◦. The apparent contact angle
α3(t) and its power spectrum α3(f ) are shown in Figs. 14(a) and 14(b), respectively. In contrast
to single-mode and two-mode periodic solids, (i) the apparent contact angle exhibits a complex
nonperiodic waveform and (ii) the peaks of its power spectrum are no longer located at harmonics
or subharmonics of a single primary frequency.

The contact line speed ucl3 is plotted as a function of time in Fig. 15. Similar to the periodic
substrates, as the contact line recedes towards the centerline an overall decrease is observed in the
local maxima of ucl3 and the total evaporation is faster compared to the flat case (for the reference
case presented, the average velocity of the contact line is approximately 5% larger than the constant
contact line speed observed for the flat case). However, for this three-mode quasiperiodic substrate,
the contact line exhibits a more complex and random behavior. Although the apparent stick-slip

FIG. 15. Contact line speed ucl3 (t) for the three-mode substrate produced by irrational wavelength ratios
1 = 2π/3, 2 = √

π , and 3 = 1 and the specified contact angle θ0 = 5◦. Neglecting the initial transient,
the global average speed ū3 for the data presented is equal to 0.068.
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motion is observed in some regions, the dynamics are much more complicated and hence it may
not be interpreted as a pure steplike motion. It is to be expected that as the substrate becomes more
complicated, the spectrum will become broadened and the contact line speed will approximate a
stationary random function.

VII. SUMMARY

The evaporation of a 2D symmetric sessile drop on heated nonplanar solid substrates was studied
for the case in which the contact line is moving and the contact angle is fixed. The evolution equation,
boundary conditions, and numerical method provided for the flat solid in the preceding paper were
modified accordingly. The parameters Tw, M , and θ0 were chosen to be fixed and the problem was
solved for a variety of periodic and quasiperiodic substrates. Qualitatively similar behaviors were
observed over a range of values of the parameters, but were not presented here in the interest of brevity.

In contrast with what we found for the flat substrate, our results for the single-mode periodic
profiles indicate that the droplet cross section varies from the initial circular shape and the wetted
radius r(t) is a nonlinear oscillatory function of time. We found that the overall evaporation is faster
compared to the flat substrates and as the contact line recedes towards the centerline, it exhibits
an apparent stick-slip behavior including two phases: a relatively long apparent-pinning stage, in
which the contact line moves slowly, followed by a shorter high-speed region in which the speed of
the contact line shows a spike. Moreover, the apparent contact angle α(t) was found to be periodic,
meaning that the time tλ that it takes for the contact line to move over one wavelength is constant. As
the maximum speed of the contact line decreases, the duration of the high-speed regions increases
in such a way that tλ remains constant over the entire process. Finally, as expected from a nonlinear
system with periodic coefficients, we found that all the peaks in the power spectrum of α(t) are
located at the harmonics of a single primary frequency fp.

For the two-mode periodic solid profiles, our results show the same apparent stick-slip behavior,
the apparent contact angle is still periodic, all the peaks of the power spectrum of α are located at
the harmonics and subharmonics of a single primary frequency fp2 , and the overall evaporation is
faster compared to the flat case. However, compared to the single-mode solid, the apparent contact
angle is a more complex waveform and more harmonics and subharmonics are observed in its power
spectrum. Additionally, we found that the nonlinearity is strong enough such that the solution of the
two-mode profile may not be achieved from the single-mode results. In other words, the problem
behaves as a phase-locking system and thus combining the corresponding single-mode frequencies
in sums and differences fails to predict the primary frequency fp2 .

Finally, for a multimode quasiperiodic profile that resembles a random configuration, we found
that while the evaporation is still faster compared to the flat case, the contact line behavior is very
complex and not limited to an apparent stick-slip motion. We also found that the apparent contact
angle is no longer periodic and the peaks in the power spectrum of the apparent contact angle are
associated with different primary frequencies, i.e., the peaks are no longer located at the harmonics
or subharmonics of a single primary frequency.
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