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Effect of surfactant on bubble collisions on a free surface
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We report on the coefficient of restitution of bubble collision on a free surface in
the presence of surfactants. In pure fluids, the collision process is well described by
a competition between thin film drainage and interfacial tension. When surfactants are
introduced in pure water, they generate Marangoni stresses on both the bubble interface
and free surface, which provides an additional mechanism affecting the collision process.
We investigate this mechanism for the bubble collision process in surfactant solutions
through a combination of experimental and numerical approaches, with results showing a
reduced rebound velocity during the collision process in surfactant solutions compared with
that in pure water. Furthermore, by varying both bubble size and surfactant concentration,
our experiments show that bubbles experience elastic, partially inelastic, and perfectly
inelastic collisions. We identify the Langmuir number, the ratio between absorption and
desorption rates, as the fundamental parameter that quantifies the Marangoni effect on the
collision process. The effect of Marangoni stress on the bubble’s coefficient of restitution
is nonmonotonic, where the coefficient of restitution first decreases with Langmuir number
and then increases.

DOI: 10.1103/PhysRevFluids.2.043601

I. INTRODUCTION

Surfactants are known to effectively reduce the rate at which bubbles rise in pure fluids [1,2]. The
first physical explanation of this phenomenon was given by Frumkin and Levich [3]. For a translating
bubble, surfactants on the bubble interface are adsorbed from the bulk solution, generating Marangoni
stresses that reduce interfacial mobility and increase the drag acting on the rising bubble. To date,
several papers have discussed the effect of surfactants on a bubble’s drag coefficient [4,5], its lift
force under shear flow [6], and its steady-state velocity [1,7]. For a bubble rising rectilinearly in a
surfactant solution, the reduced steady-state velocity can be simulated using a stagnant cap model,
which assumes a no-slip velocity within the cap region and zero shear condition at the remaining
portion of the bubble interface [1]. Cuenot et al. [4] solved the full Navier-Stokes equations coupled
with the bulk and interfacial surfactant concentration equations. Their numerical study confirmed
the validity of the stagnant-cap model, and furthermore, they studied the transient evolution of the
flow over a spherical bubble in surfactant solutions.

Large bubbles [8] and multiple bubble interactions [2] have been observed in practical systems,
where the effects of nonspherical shape and dynamic interfacial interactions need to be considered.
For an isolated large air bubble (diameter larger than 2 mm) in quiescent water, surfactants change
its path instability [8]. Recent numerical simulations [9–11] have revealed the significance of a
surfactant affecting the transient behavior of a nonspherical bubble. In a bubbly flow, surfactants
could change the flow structure by altering bubble-bubble interactions and inhibiting the coalescence
of small bubbles [2].

Studies on interactions between air bubbles and the free surface are important for both
environmental and industrial applications. The interactions may lead to the coalescence of gas
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FIG. 1. (a) The schematic diagram of the experimental setup. (b) A direct comparison of a raw image of an
ascending bubble (R = 0.66 mm) using experiments and 3D numerical simulation in pure water. The vectors
in the 3D numerical simulation indicate flow velocity.

bubbles in mass transfer equipment such as bubble columns, decreasing overall interfacial area [12].
Despite decades of research studying the collision process in pure liquids [13–17], the relevant bubble
dynamics in surfactant solutions are poorly understood. In this work, we conduct experimental
studies, aided by the numerical simulations, to examine the effect of a surfactant on rising bubbles
colliding on a free surface. Section II describes the experimental setup. We report the mathematical
models and numerical implementations for multiphase flows in surfactant solutions in Sec. III.
In Sec. IV, we first compare the bubble dynamics in both pure water and surfactant solutions.
Subsequently, we examine the effect of surfactants on both the drag acting on the rising bubbles and
their collision processes. Finally, we conclude with our findings of this study in Sec. V.

II. EXPERIMENTAL SECTION

The experimental setup is shown in Fig. 1(a). Air bubbles were generated by either a borosilicate
glass capillary or a stainless-steel needle that was installed at the center of the three-dimensional (3D)
printed base and was connected with a precision syringe pump (PHD Ultra) from Harvard Apparatus.
Generated bubble radii ranged from 0.44 to 0.84 mm. The test container (size: 1 in. × 1 in. × 4 in.)
was made of borosilicate glass. Before conducting each experiment, we eliminated the container’s
contaminations using an ultrasonic bath with ultrapure water. The ultrapure water was supplied by
a purification system (Barnstead MicroPure UF/UV, Thermo Scientific). Its electric resistivity was
18.2 M� cm (18.18 M� cm for ultrapure water [18]). The conductivity and total organic carbon
in the water were 0.055 μS cm−1 and 5 ppb, respectively. We chose 1-pentanol as our surfactant
model due to its well-known kinematics of dynamic adsorption [19,20]. The concentration of the
1-pentanol solution ranged from 0 to 200 mM [0% to 8% of critical micellar concentration (CMC)].
The surface tension value between the air and 1-pentanol solution was measured using a pendant
droplet tensiometer (Ramé-Hart 500) and was found to be in good agreement with the Szyszkowski
equation [21] (see Appendix A). A complementary metal-oxide semiconductor (CMOS) camera
(Phantom Miro M340, Vision Research) mounted on a microstage recorded images at 1600–3000
frames/s. The images were preprocessed by taking the inverse intensity and a subsequent local
minimum background subtraction to eliminate background noise. The bubble center was determined
by calculating the geometric center of the generated binary image with a preselected intensity
threshold. The instantaneous bubble velocity was obtained by taking the central difference of the
bubble’s vertical position with respect to time. The temporal evolution of the translational velocity
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FIG. 2. (a) The bubble’s vertical velocity during the collision process for 0 and 5 mM 1-pentanol
solutions obtained using (E) experimental, (N) numerical, and (T) theoretical studies. (b) In pure water, the
temporal evolution of the bubble’s deformation χ and dimensionless surface change S∗ are recorded through
numerical simulations and experiments. Error bars indicate the uncertainty of experimental measurements (see
Appendix B). The bubble’s size is R = (6Vb/π )1/3/2 = 0.66 mm, where Vb is the bubble volume. In the
theoretical model, the collision process is modeled as an underdamped mass-spring system (see Appendix C).

of a 0.66-mm bubble in both pure water (black solid triangles) and a 5 mM 1-pentanol solution (red
solid circles) is shown in Fig. 2(a). We should note that there is a period during which the bubble
collides on and is in contact with the free surface, and position and centroid measurements contain
large error. Consequently, measurement uncertainties for the bubble centroid are large. Therefore,
we exclude all experimental data for this period in Fig. 2.

III. MATHEMATICAL MODEL AND NUMERICAL IMPLEMENTATION

A. Mathematical model

In this section, we describe the mathematical model for both the rising motion of gas bubbles and
their collisions on a free surface [see Fig. 1(b)]. Both gas and liquid phases are homogenous fluids.
The equations of motion for viscous, incompressible fluids in the entire computational domain are

∇ · u = 0, (1)

ρ
Du
Dt

= −∇p + μ∇2u + ρg + f, (2)

where t is time, u is the flow velocity, p is the hydrodynamic pressure, g is the gravitational
acceleration, μ is the dynamic viscosity of the fluid, and ρ is the fluid density. D(·)/Dt is the
material derivative. Since fluid properties remain constant within each phase, Dρ

Dt
= 0 and Dμ

Dt
= 0.

The density ρ and viscosity μ can be written as ρ = ρi + φ(ρo − ρi) and μ = μi + φ(μo − μi),
where subscripts i and o refer to gas phase and liquid phase, respectively; the indicator function
φ separates two phases, with φ = 1 for the bulk liquid and φ = 0 for the gas phase. The surface
tension force f in the momentum equation, Eq. (2), acts on the interfaces (free surface and bubble
interface),

f = 2
∫

A

σκnδ(x − xf )dA, (3)

where σ is the surface tension coefficient, dA is the surface differential element, κ is the mean
curvature of the interface, and n is the unit vector normal to the interface. The interface can be

043601-3



WANG, GUO, DABIRI, VLACHOS, AND ARDEKANI

TABLE I. Parameters for the 5 mM 1-pentanol solution.

Parameter Value

Temperature (◦C) 2.1 × 101

Surface tension of pure water (dyn/cm) 7.2 × 101

Surface tension of 5 mM 1-pentanol (dyn/cm) 6.8 × 101

Maximum interfacial surfactant concentration 
∞ (mol/cm2) 5.9 × 10−10

Adsorption kinematic coefficient ka (cm/s) 3.0 × 10−3

Desorption kinematic coefficient kd (s−1) 1.1 × 102

Bubble size R (mm) 6.6 × 10−1

described by a collection of distributed points xf . The three-dimensional delta function δ is used to
calculate interfacial force, which is nonzero only on the interface.

Surfactants are soluble, and mass transfer occurs between the bulk fluid and the interface. We
write the convection-diffusion equations for both bulk concentration C and interfacial concentration

, respectively,

∂C

∂t
+ ∇ · (uC) = ∇ · (Dc∇C) + Ṡc, (4)

∂


∂t
+ ∇s · (
Us) = Ds∇2

s 
 + Ṡ
, (5)

where Us is the tangential velocity on the interface. The surfactant is impermeable to the gas phase;
therefore, Dc = Doφ, where Do is the molecular diffusion coefficient of the surfactant in the bulk
liquid. ∇s = ∇ − n(n · ∇) is the surface gradient defined at the interface; Ds is the interfacial
diffusion coefficient of the surfactant. The dynamic adsorption of the surfactant on the interface is
given by

Ṡ
 = kaCs(1 − 
/
∞) − kd
, (6)

and this source term is related to the bulk concentration via the following relationship:

Ṡ
 = −Dc(n · ∇C|C=Cs
), (7)

where ka and kd are the adsorption and desorption rate constants, respectively; Cs is the surfactant
bulk concentration evaluated adjacent to the interface; and 
∞ is the maximum interfacial surfactant
concentration. The value of the surface tension coefficient is directly affected by the interfacial
surfactant concentration 
, and it is written as σ/σ0 = 1 + β ln (1 − 
/
∞), where β = RT 
∞/σ0

characterizes the sensitivity of the surface tension σ to the interfacial surfactant concentration 
, R
is the ideal gas constant, and σ0 is the surface tension of a clean interface at room temperature T .
For our experiments, the room temperature is kept at 21◦C, and σ0 is about 72.2 mN/m, which is
consistent with previous literature [19,20]. Therefore, for the 1-pentanol solution, β = 0.20. The time
scale [8] for achieving the equilibrium interfacial surfactant concentration can be estimated as τe ∼
(kaC∞/
∞ + kd )−1, where C∞ is the initial surfactant bulk concentration. Therefore, a surfactant
solution with a high bulk concentration quickly reaches equilibrium. For the 1-pentanol solution, 
∞,
ka , and kd are invariant under different bulk concentrations [19,20]: 
∞ = 5.90 × 10−10 mol cm−2,
ka = 3.00 × 10−3 cm s−1, and kd = 1.10 × 102 s−1. For a 0.66-mm-radius bubble in a 1 mM

1-pentanol solution, the dimensionless distance xe/R for reaching the equilibrium state can be
estimated as xe/R ∼ ρgRτe/(9μ) = 6.25. In both experiments and numerical simulations, domain
sizes are large enough that the interfacial surfactant concentration reaches the equilibrium state,
and the bubble reaches steady-state velocity Ut before colliding on the free surface. Parameters
corresponding to a 5 mM 1-pentanol solution are listed in Table I.
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TABLE II. Dimensionless parameters for a 5 mM 1-pentanol
solution.

Parameter Value

Reynolds number, ReU = 2ρUR/μ 6.3 × 102

Capillary number, CaU = μU/σ 6.6 × 10−3

Bulk Péclet number, Pe = 2UR/Dc 6.3 × 101

Interfacial Péclet number, PeS = 2UR/DS 6.3 × 101

Density ratio, ρi/ρo 8.2 × 102

Viscosity ratio, μi/μo 5.5 × 102

Adsorption kinematics, k = kaC∞/kd
∞ 2.3 × 10−1

Biot number, Bi = 2kdR/U 3.1 × 10−1

Damkohler number, Da = 
∞/2RC∞ 8.9 × 10−4

Elasticity number, βS = RT 
∞/σ 2.0 × 10−1

The list of dimensionless parameters is summarized in Table II. The characteristic velocity of
the bubble U = ρgR2/9μ is used to evaluate dimensionless parameters. Note that there is no fitting
parameter in the numerical simulations.

B. Numerical implementation

A front-tracking and finite-volume method [22,23] is applied to solve Eqs. (2) and (4) on fixed
uniform Cartesian staggered grids. The time discretization is obtained using the first-order Euler
method. Diffusion terms in Eqs. (2) and (4) are solved using central-difference schemes. In Eqs. (2)
and (4), the convection terms are solved using a quadratic upstream interpolation for convective
kinetics (QUICK) [24] and a fifth-order weighted essentially nonoscillatory (WENO-Z) scheme [25],
respectively. The projection method is utilized to enforce the continuity condition in Eq. (1), and the
resultant Poisson equation for the pressure is solved using the HYPRE library [26]. Both the bubble
interface and free surface are represented by unstructured Lagrangian triangular grids. Equation (5),
which governs the evolution of interfacial surfactant concentration, is solved on these Lagrangian
grids. On each triangular element �e, Eq. (5) is written in an integral form,

d

dt

∫
�e


dA = Ds

∫
�e

∇2
s 
dA +

∫
�e

Ṡ
dA. (8)

The term on the left hand side of Eq. (8) is solved using a first order explicit Euler method; the
surface Laplacian term in Eq. (8) is solved in an identical way used for the calculation of curvature
κ in Eq. (2). More details on the numerical implementation can be found in Refs. [11,22,23].

In the simulation, a spherical bubble of radius R is initially placed at the center of the x-y plane
and rises from location zo, which is 2R away from the bottom. The size of the computational domain
is 9R × 9R × 36R in the x, y, and z directions, respectively. The free surface is located 3R away
from the top of the computational domain. Flow field u, pressure p, and surfactant bulk concentration
C satisfy the periodic condition at side boundaries of the rectangular computational domain while
both top and bottom boundaries satisfy no-slip wall boundary conditions.

IV. RESULTS AND DISCUSSION

A. Collision process in pure water and the 1-pentanol solution

In Fig. 2, experimental observations indicate that the presence of a surfactant significantly modifies
the collision process compared with pure water (also see Movie 1 in the Supplemental Material [27]).
Here we focus on the first collision of a 0.66-mm bubble with the free surface. In order to characterize
the collision process, three distinct time instants are identified in Fig. 2(b). T1, T2, and T3 correspond
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to the instants when the free surface starts affecting the bubble velocity (U |T=T1 = 0.95Ut ), when
the bubble velocity becomes zero after colliding on the free surface, and when the bubble reaches a
maximum velocity after reversing its direction of motion, respectively. Therefore, the precollision
stage is defined as the period of time from T1 to T2, and the postcollision stage is from T2 to T3.

A comparison of total energy transfer during the collision between pure water and the surfactant
solution can facilitate the interpretation of the collision dynamics. We compare the total energy trans-
fer of the collision process. The instantaneous total energy consists of surface energy due to the de-
formation of the bubble, surface energy due to the deformation of the free surface, and kinetic energy
associated with the translation of the bubble. At time T1, the normalized total energy E∗

T1 is written as

E∗
T1 = �E|T=T1

Er

=
(

Ek

Er

+ S∗
b + S∗

p

)∣∣∣∣
T=T1

, (9)

where �E = E − Er , E is the total energy of the bubble and free surface, Er = 4πσR2 is the
energy of a spherical bubble with the equivalent radius R at rest [13], Ek = CM (χ )ρVbU

2/2 is the
kinetic energy associated with the bubble motion, χ is the deformation of the bubble, and CM is
the added mass coefficient by assuming the bubble’s shape to be an oblate spheroid [28,29],

CM = (χ2 − 1)1/2 − cos−1 χ−1

cos−1 χ−1 − (χ2 − 1)1/2χ−2
. (10)

Changes in the surface area of the bubble interface and the free surface in dimensionless form are
represented as S∗

b = �Sb/(4πR2) and S∗
p = �Sp/(4πR2), respectively. Even though the surface

tension values for pure water and the surfactant solution are comparable (72.2 and 67.9 dyn/cm
measured at T = 21◦C, respectively), the estimated energy E∗

T1 for water is about 7.45 times larger
than that in the 5 mM 1-pentanol solution. This is due to the large bubble velocity in pure water
(Re = 2ρUtR/μ = 438) compared with that in the 5 mM 1-pentanol solution (Re = 195), shown in
Fig. 2(a). At time T2, E∗

T2 = (S∗
b + S∗

p)|
T=T2

. During the precollision stage, the bubble kinetic energy
is transferred to the surface energy of both the bubble interface and free surface. The computation
of E∗

T2/E
∗
T1 is only available using the numerical simulations, and we find this ratio to be 88.7% for

pure water and 74.4% for the 5 mM 1-pentanol solution. The second phase of the collision process
corresponds to the postcollision stage. From Fig. 2, at time T3, the total surface change (S∗

b + S∗
p)

is close to zero, and the kinetic energy associated with the bubble motion reaches its maximum.
During the entire bubble collision process, the total energy loss can be quantified by the coefficient

of restitution, ε = −UT3/UT1. There is no energy loss when ε = 1. In the pure water experiment, the
coefficient of restitution is 0.73. The large value of the coefficient of restitution (ε � 0.7) indicates
an elastic collision. However, in the 5 mM 1-pentanol solution, we find this coefficient to be 0.32,
and the bubble eventually detaches from the free surface. This reduced coefficient of restitution
indicates a significant energy loss during the collision process, leading to a surfactant-induced
partially inelastic collision.

The reduced rebound velocity in the surfactant solution can be explained by exploring the flow
structure around a bubble in both pure water and the 5 mM 1-pentanol solution during the collision
process (see Movie 2 [27]). At time T1, a thin wake structure is formed in pure water due to the slip
condition at the bubble interface [Fig. 3(c)]. However, the bubble’s wake in the 5 mM 1-pentanol
solution [Fig. 3(b)] is distinct from that of a clean bubble. By visualizing the interfacial surfactant
concentrations 
 on the bubble interface [see Fig. 3(b) at T1], we observe that surfactant molecules
migrate toward the rear of the bubble, where 
 reaches its maximum. At the rear of the bubble,
the local gradient of the interfacial tension leads to the Marangoni stress, immobilizing the bubble
interface. Consequently, a distinct wake structure is formed in the surfactant solution compared to
that in pure water. At time T2 when the bubble comes in contact with the free surface, both the bubble
and free surface show significant deformations in pure water [see Fig. 3(c)], where the morphology
of the free surface is represented by solid black lines. However, the deformations of both bubble and
free surface are small in the presence of surfactant. At time T2, surfactants on the bubble interface
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FIG. 3. Color maps show computational results for (a) the interfacial surfactant concentration on the free
surface, (b) the velocity magnitude of the flow and the interfacial surfactant concentration on the bubble
interface in a 5 mM 1-pentanol solution, and (c) the velocity magnitude of pure water at times T1, T2, and
T3. Contours of vorticity magnitude |�| in (b) and (c) are shown at 0.05 : 0.05 : 1.0. At time T3, the locations
of the stagnation points in both pure water and the surfactant solution are visualized in the insets. The bubble
radius in both pure water and the surfactant solution is 0.66 mm. The flow velocity in (b) and (c) is normalized
by the bubble velocity in the Stokes flow, Ue = ρgR2/(9μ). The flow vorticity in (b) and (c) is normalized by
�e = Ue/R.

[Fig. 3(b)] start migrating away from the rear of the bubble, indicating a change in the direction of
the interfacial convection on the bubble interface. In the meantime, surfactants on the free surface
[Fig. 3(a)] migrate away from the contact region. At time T3, the locations of the stagnation points
(|u| = 0 in the wake region) for pure water and the surfactant solution are different. In the surfactant
solution, the stagnation point is at the bubble interface, and the bubble has a small coefficient of
restitution. However, the stagnation point is farther away from the bubble interface for the pure
water, and the bubble exhibits large coefficient of restitution.

043601-7



WANG, GUO, DABIRI, VLACHOS, AND ARDEKANI

T(ms)

φ*

-2 0 2 4 6 8
0

0.5

1

1.5

2

2.5

3

3.5

4

T(ms)

K
E

*

-2 0 2 4 6 8
0

0.5

1

1.5
(a) (b)

FIG. 4. The evolution of (a) the viscous dissipation rate and (b) kinetic energy are recorded during the
collision process in both 0 and 5 mM 1-pentanol solutions, corresponding to subscripts H and S, respectively.
Solid circles, triangles, and squares indicate times T1, T2, and T3, respectively.

The small coefficient of restitution in the surfactant solution can be explained by the generation
of the vorticity (� = ∇ × u) during the collision process. In the surfactant solution, the vorticity
is generated near the free surface before the bubble approaches the free surface [see Fig. 3(b)]. As
the bubble rises towards the free surface, the associated fluid flow creates a nonuniform spatial
distribution of the interfacial surfactant concentration along the free surface. The nonuniform
distribution of surfactant molecules creates Marangoni stresses, leading to the generation of
additional vorticity near the free surface [Fig. 3(b)], which is absent in the pure water [Fig. 3(c)].
The vortical structure near the free surface persists during the entire collision process (see Fig. 3).
Following the work of Stone [30], who expressed the viscous energy dissipation rate in terms of
vorticity field, we have 2

πRe

∫
V

φdV = 2
πRe

∫
V

�2dV + 4
πRe

∫
S
κU 2

s dS, where φ is the viscous energy
dissipation rate and V and S represent the fluid domain and bubble surface, respectively. Therefore,
the occurrence of additional vorticity near the free surface in the surfactant solution enhances the
viscous dissipation rate and leads to a reduced coefficient of restitution.

Here we quantify the temporal evolution of the viscous dissipation rate (φ = ∫
2μE : EdV )

and kinetic energy (EK = ∫
1
2ρu2dV ) from our computational results, where E is the strain rate

tensor. In Fig. 4(a), the normalized viscous dissipation rate is defined as φ∗ = φ/φT1
H , where φT1

H

is the viscous dissipation rate in pure water at time T1. The viscous dissipation rate in pure water
decreases in the beginning of the collision process. On the other hand, the viscous dissipation rate
in the surfactant solution increases. Although the bubble’s velocity decreases in the presence of a
surfactant, the additional vortical structure induced by the Marangoni stress at the free surface [see
Fig. 3(b)] enhances the overall viscous dissipation rate. The kinetic energy in the entire domain is
shown in Fig. 4(b), where E∗

K = EK/ET1
K,H is the normalized kinetic energy. The kinetic energy

in pure water increases after collision, which is associated with the bubble’s bouncing motion. On
the other hand, the kinetic energy in the surfactant solution monotonically decreases during the
collision process. To sum up, the enhanced viscous dissipation rate during the collision process
in the surfactant solution compared to that in pure water leads to a reduction of the coefficient of
restitution.

B. Effect of surfactant concentration

Depending on surfactant concentration, the bubble’s collisions exhibit elastic, partially inelastic,
and perfectly inelastic behaviors. We first categorize the collision process using a phase diagram.
Next, we examine the effect of surfactant concentration on the drag acting on the bubble and the
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(b) The phase diagram depicts bubble behavior ranging from elastic (E) to inelastic (Partial-IE) to perfectly
inelastic (Perfect-IE) collision, shown in terms of La and Ca/St. (c) The coefficient of restitution is plotted as
a function of the St number. (d) The effect of surfactant concentration (La) on the bubble’s St number.

coefficient of restitution. In addition, the dynamics of the collision process in the surfactant solution
is compared with rigid particles colliding on a rigid wall.

In pure water, the bubble’s collision behavior on a free surface is dominated by the viscous
drainage process [14–17], and our results follow εH = exp(−17

√
Ca/St) (see Appendix C), where

Ca = Utμ/σ and St = 2ρCMRUt/(9μ) [29]. The Capillary number Ca represents the ratio of the
viscous force to the surface tension, and the Stokes number St characterizes the relative effect
of the inertial force associated with the bubble’s added mass to the viscous drag. For surfactant
solutions, both mean interfacial surfactant concentration and surface tension solely depend on the
Langmuir number La at the equilibrium state. The Langmuir number, La = kaC∞

kd
∞
, is defined as the

ratio between the surfactant adsorption and desorption rates happening on the gas-liquid interfaces.
For a given β, 
o/
∞ = 1/(1 + La−1), and σ/σ0 = 1 − β ln(1 + La), where γo is the equilibrium
surface concentration when there is no mass transfer between the bulk and surface. Therefore, a
large La results in a high interfacial surfactant concentration, reducing the surface tension force and
modifying the Marangoni stress. In this work, we use La to characterize the extent of Marangoni
stress. In Fig. 5(b), we quantify the coefficient of restitution in terms of La and Ca/St, where La and
Ca/St characterize the extent of Marangoni stress and viscous drainage, respectively. When there are
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strong Marangoni and viscous effects (La > 0.5 and Ca/St > 2 × 10−4), bubbles remain attached
to the free surface, exhibiting perfectly inelastic collisions. The collisions are elastic when La ∼ 0
and Ca/St < 1 × 10−4.

The drag acting on the bubble prior to the collision is influenced by the surfactant concentration.
The drag coefficient is defined as CD = 2F/(ρU 2

t πR2), where F is the drag acting on the bubble.
The modified drag due to surfactants can be written as CD/CD,H , where CD,H is the drag acting
on a bubble in pure liquids, CD,H = 48[G(χ )/Re][1 + H (χ )/Re1/2], and coefficients G and H

are given in the article by Moore [31]. Surfactants enhance the drag compared to pure water
[CD/CD,H − 1 > 0; see Fig. 5(a)]. The extent of drag enhancement depends on the value of La:
CD/CD,H increases at low La and decreases at large La. At small La, the enhanced drag is scaled
as CD/CD,H − 1 ∝ La2, which is consistent with the theory in the Stokes regime [32]. At large La
(1 < La < 10), we find it to scale as CD/CD,H − 1 ∝ La−0.37, and a similar trend was found in the
numerical study of Wang et al. [5] at zero Reynolds number.

A normalized coefficient of restitution can be defined as ε/εH to eliminate the contribution from
the viscous drainage. From Fig. 5(a), surfactants reduce the coefficient of restitution (ε/εH < 1).
The effect of a surfactant on ε/εH is nonmonotonic [Fig. 5(a)], and its maximum reduction occurs
at La ∼ 1. In the limit of small La, ε/εH ∼ exp(−5 La); at large La, ε/εH increases with La as
ε/εH ∝ La0.2.

For both the bubble’s drag and its coefficient of restitution, the maximum effect of the surfactant
happens when La ∼ O(1), which can be explained by the following scaling analysis. The magnitude
of Marangoni stress is estimated as |∇σ | [5]. During the equilibrium state, Ṡ
 = 0 in Eq. (6), and
we get

∇σ = σ0β


/
∞ − 1

La

[(1 + La)(C/C∞)]2
∇

(
C

C∞

)
. (11)

From Eqs. (5) and (7), a balance between the convection and mass source terms provides |∇C| ∼

oUt

DCR
, where 
o = La

1+La
∞. The Marangoni stress normalized by the viscous stress is estimated

as |∇Sσ |/(μUt/a) ∼ σ0βka

DCμkd

La
(1+La)2 . Therefore, the scaling analysis suggests that surfactants have a

larger contribution to the collision process compared to the viscous drainage when La = 1.
In Fig. 5(c), our experimental data are compared to previously reported experimental data in pure

liquids [14–16] as well as the limit of solid particles colliding on a rigid wall [33,34]. At a large
Stokes number [St ∼ O(100)] where there is a low surfactant concentration [low La; see Fig. 5(d)],
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FIG. 6. (a) The evolution of the viscous dissipation rate is recorded during the collision process for different
concentrations of 1-pentanol solutions, where solid circles, triangles, and squares indicate times T1, T2, and
T3, respectively. (b) The ratio of the viscous dissipation rate between times T3 and T1 and the coefficient of
restitution are plotted as a function of the La number. For both (a) and (b), bubble radius is R = 0.66 mm.
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the bubble’s collision behavior is close to the clean one. This clean limit can be characterized by
ε = exp(−1.8 St−1/2), which shows a similar scaling as the collision on a rigid wall [29]. However,
the coefficient of restitution deviates from this clean limit as St decreases. When St < 10, the
surfactant immobilizes both the bubble interface and free surface, and our data resemble a rigid
particle colliding into a rigid wall; this behavior can be well predicted by the elastohydrodynamics
theory [34]. The collision behavior between these two limits is governed by the Marangoni stresses,
and the Langmuir number can be used to describe the coefficient of restitution.

Finally, we quantify the temporal evolution of the viscous dissipation rate in the entire
computational domain for different concentrations of the 1-pentanol solution from our numerical
results [see Fig. 6(a)]. The ratio of the viscous dissipation rate between times T3 and T1 as a function
of Langmuir number in Fig. 6(b) follows a trend similar to that of the coefficient of restitution.

V. CONCLUSION

Collisions between bubbles and a free surface are frequently observed in aquatic environments,
and surfactants effectively modify relevant dynamics compared with that in pure water. In this
study, we examine the Marangoni effect in the context of a dynamic interfacial problem through
both experiments and numerical simulations. In surfactant solutions, we find that the Marangoni
stress induces additional vorticity near the free surface, causing extra dissipation and, consequently,
reducing the rebound velocity. The Marangoni effect, characterized by the Langmuir number,
enhances the bubble’s drag and reduces the coefficient of restitution. Their dependence on the
surfactant concentration is nonmonotonic. The maximum enhancement of the drag and reduction of
the coefficient of restitution occur at La ∼ O(1).
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APPENDIX A: SURFACE TENSION MEASUREMENTS FOR A 1-PENTANOL SOLUTION

Surface tension for an aqueous solution of 1-pentanol at 21◦C is measured as a function of
concentration. Figure 7 compares our measured data to the empirical relationship provided in the
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FIG. 7. Measured surface tensions for the 1-pentanol solution (black solid circles); the solid line is the
Szyszkowski equation [21].
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FIG. 8. (a) Mass-spring-damper model: two springs are connected in series; the dashpot and springs are
connected in parallel. K1 and K2 are the spring stiffness of the free surface and bubble, respectively; the natural
length l1 corresponds to an undeformed free surface, while l2 incorporates the initial deformation of the rising
bubble; m is the added mass of the bubble; ξ is the damping ratio, which incorporates the contribution to the
drag from both the viscous force and Marangoni stress. (b) The derived relationship between the coefficient of
restitution ε and Ca/St is provided based on data from our experiments and the literature.

literature [21]. This empirical relationship is described by the Szyszkowski equation,

σ = σ0 − RT

ω
ln(1 + kC), (A1)

where ω = 1.48 × 105 m2/mol and k = 66 dm3/mol [21].

APPENDIX B: UNCERTAINTY QUANTIFICATION FOR EXPERIMENTS

There are two major uncertainty sources in the experimental postprocessing procedure. They
are the uncertainties of the calibration process, and the variation in the preselected threshold for
bubble image binarization. After each uncertainty is calculated, the total uncertainty is synthesized
by the Taylor series approximation of the elemental uncertainties. The uncertainty of the calibration
process is straightforward, and here we report the methodology for uncertainty due to a preselected
threshold.

The variation of the threshold during image binarization affects the detected bubble profile and
shape, which leads to uncertainty in the estimation of the bubble’s center, radius, deformation,
surface area, volume, and other derived quantities. This uncertainty is quantified by examining the
root mean square of the reported parameters by continuously changing the threshold values.

APPENDIX C: UNDERDAMPED MASS-SPRING SYSTEM

The dynamics of the bubble’s collision process are modeled as an underdamped mass-spring
system [see Fig. 8(a)],

m
d2η

dt
+ Cμ,C

dη

dt
+ Cσ η = 0, (C1)
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where m = 4
3πR3ρCM is the added mass of the bubble, Cμ,C characterizes the drag during the

collision process in a surfactant solution, and Cσ = K1K2/(K1 + K2) = k1k2σ/(k1 + k2) = K σ ,
where Ki(i = 1,2) = σki . Rewriting Eq. (C1) gives

d2η

dt
+ 2ξ (St,Ca,La)ω

dη

dt
+ ω2η = 0, (C2)

where ξ = Cμ,C/(2mω) is the damping ratio and ω = √
K σ/m is the natural frequency. A reduced

bouncing velocity occurs due to the viscous drag (low St) and Marangoni stress (large La). During
the collision process, the normalized bubble velocity is expressed as

U/Ut = η̇(t)/Ut = e−ξωt cos(ωt
√

1 − ξ 2). (C3)

In our experiments, the damping ratio ξ and natural frequency ω are calculated using these

relationships ε = −UT3/UT1 = e−ξπ/
√

1−ξ 2
and ω = π (1 − ξ 2)

−1/2
/(T3 − T1), respectively.

In a pure fluid, Cμ,C = Cμ = aμR [29], where a is a constant. Therefore, the damping ratio can

be written as ξ = a√
24πK

√
Ca
St . Since Ca

St ∼ O(10−4), ε ∼ e−M
√

Ca
St in the case of ξ 	 1, where M

is a fitting parameter. By combining data from our experiments and literature [14–16], we find that
M = 17 provides the best fit [see Fig. 8(b)].
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