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Autocatalytic reaction fronts between two reacting species in the absence of fluid flow
propagate as solitary waves. The coupling between an autocatalytic reaction front and
a forced hydrodynamic flow may lead to a stationary front whose velocity and shape
depend on the underlying flow field. We focus on the chemohydrodynamic opposition
between forced advection and self-sustained chemical waves, which can lead to static
stationary fronts, i.e., frozen fronts (FFs). Toward that end, we perform experiments,
analytical computations, and numerical simulations with the autocatalytic iodate-arsenious
acid reaction (IAA) over a wide range of flow velocities around a solid disk. For the same
set of control parameters, we observe two types of frozen fronts: an upstream FF, which
avoids the solid disk, and a downstream FF with two symmetric branches emerging from
the solid disk surface. We map the range over which we observe these frozen fronts. We
also address the relevance of the so-called eikonal, thin front limit to describe the observed
fronts and select the frozen front shapes.
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I. INTRODUCTION

Depending on the reaction kinetics, chemical reaction fronts display fascinating phenomena, such
as Turing patterns, Belousov-Zhabotinsky oscillations, and chaotic or solitary wave propagation [1].
Autocatalytic reactions lead to fronts propagating as solitary waves with a constant velocity and
invariant, flat, concentration profiles resulting from a balance between reaction and diffusion [1–3].
These fronts are analogous to flames in combustion [4], and autocatalytic reactions are a kind of
“cold combustion model,” especially in the thin flame limit. In contrast to flame propagation in
combustion [4], where it has been analyzed thoroughly both theoretically and experimentally, the
effect of fluid flow (laminar or turbulent) on reaction fronts has not been explored in detail until
recently [5–20]. In the presence of a hydrodynamic flow, it has already been observed and understood
that such fronts, while propagating at a new constant velocity, adapt their shape in order to achieve
a balance between reaction diffusion and flow advection. More recently, the focus has been on the
situation in which the flow field acted against the chemical reaction. In such a case, it has been
observed over a wide range of flow velocity that the fronts are neither propagating forward (in the
chemical reaction direction) nor blown in the flow direction, rather they remain static, frozen. In this
dynamical equilibrium, chemistry and flow are both at work. For instance, in porous media [18–20],
the front is pinned around the stagnation zones of the flow, due to the porous structure, and the front
is curved in order to accommodate the local flow velocity fluctuations. In cellular flows, the frozen
fronts are pinned in a vortex structure [13,21].

To visualize the frozen fronts (FFs), we designed an experiment using the iodate arsenous acid
(IAA) chemical reaction in a simple heterogeneous forced flow field, namely a constant flow around
a single disk-obstacle, opposed to the natural autocatalytic reaction front propagation. Depending
on the control parameters, we observe two types of FF: one upstream FF, which avoid the solid disk,
and one downstream FF with two symmetric branches emerging from the solid disk surface. We map
the range over which we observe these frozen fronts. Numerical simulations provide a systematic
phase diagram of the frozen fronts. Using the so-called eikonal limit of thin front thickness, we are
able to account for the selection rule of the frozen fronts.

2469-990X/2017/2(4)/043302(13) 043302-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevFluids.2.043302


T. CHEVALIER, D. SALIN, AND L. TALON

FIG. 1. Experimental frozen chemical front in a flow around a circular disk inside a Hele-Shaw cell. The
fresh, blue reactant is injected from left to right at a flow at constant velocity U0. The solid disk obstacle is a
cylinder of diameter 17 mm. The burnt product is yellow. The front is made visible by the transition from blue
to yellow. The chemical front in the absence of flow would propagate from right to left at a velocity Vχ . The
two frozen fronts correspond to upstream fronts that avoid the solid for two different far field flow velocities:
left: U0/Vχ = −2.5; right: FF for U0/Vχ = −5. The small dots in the images are bubbles.

II. EXPERIMENTS

We performed experiments using the iodate-arsenous acid (IAA) autocatalytic reaction:

3H3AsO3 + IO−
3 + 5I− −→ 3H3AsO4 + 6I−. (1)

The reaction is autocatalytic in iodide (I−). The concentrations used are [IO−
3 ]0 = 7.5 mM and

[H3AsO3]0 = 25 mM. As the ratio [H3AsO3]0/[IO−
3 ]0 > 3, the arsenous acid is in excess [22] and

the front can be localized by the transient iodine generated during the reaction. Instead of the usual
method using starch to detect the transient iodine, we use polyvinyl alcohol (PVA) at a concentration
of 6 kg/m3, which is much more sensitive [23] and also provides good optical contrast (Figs. 4 and
9). In addition, we add to the fluids bromocresol green PH sensitive dye, which gives the location
of the leading edge of the reaction front: its color is blue for reagents and yellow for products. In
some experiments, we only use the latter front detection (Fig. 1).

This autocatalytic reaction in the fluid flow of local velocity �U is governed by the convection (or
advection) -reaction-diffusion equation, which can be written as

∂C

∂t
+ −→

U
−→∇ C = Dm�C + 1

τ
f (C), (2)

where the specific kinetics of the IAA reaction is third order [22]: f (C) = C2(1 − C). C is the
concentration of the autocatalytic reactant (iodide), normalized by the initial concentration of iodate
(C = [I−]/[IO−

3 ]0), τ is the reaction time, and Dm is the molecular diffusion. In the absence of flow,
U = 0 m/s, the balance between diffusion and reaction leads to a solitary wave of constant velocity
Vχ and width lχ [1,22,24], solutions of Eq. (2) given by

Vχ =
√

Dm

2τ
, lχ = Dm/Vχ, C =

[
1 + exp −

(
x − Vχ t

lχ

)]−1

, (3)

where x is the propagation direction of the wave. With the above concentration, we measure
Vχ = (11 ± 1) μm/s, from which we can infer the reaction front width, lχ � 200 μm, using the
molecular diffusion coefficient of water (Dm = 2 × 10−9 m2/s). To achieve a quasi-two-dimensional
velocity field, we use a Hele-Shaw cell [25], namely two thick rigid transparent parallel plates
separated by a small gap (250 μm). The height of the solid circular disk of diameter 2R = 17 mm is
equal to the spacing of the joint squeezed between the two plates. A uniform flow field is achieved
by injecting fluid into two inlets using two different pumps and letting it flow out of the cell through
three outlets. In a Hele-Shaw cell, the velocity field (averaged over the thickness [26]) is, at leading
order, the two-dimensional (2D) potential flow created by a uniform flow around a hydrodynamic
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dipole [27], the intensity of which is linked to R. For a viscous fluid, the velocity is zero on solid
boundaries, therefore there is a boundary layer of the order of the gap thickness: the variation of the
velocity with the distance from the boundary can be approximated analytically [28]. We have also
performed experiments in which the disk is replaced by a hydrodynamic dipole with an inlet and an
outlet spaced by 5 mm where fluid is, respectively, injected and sucked at the same flow rate (see
Fig. 4) and around. We have also performed experiments in which, instead of a disk, we use an air
bubble (Fig. 9).

III. UPSTREAM FROZEN FRONT IN UNIFORM FLOW PAST A SOLID DISK

We have performed several series of experiments at different flow velocities U0 in the direction
opposite to that of the chemical wave without flow. Let us call u = |U0/Vχ | the experimental control
parameter. We first initiate the front at the left of the disk and let it propagate for a while; then, at a
chosen time, we switch on the two pumps to generate a uniform flow. For u < 1, fronts propagate
always toward the left and never stop, so that there is no FF. For u > 1, the front propagates toward
the right and achieves a frozen front: Fig. 1 is a plot of such frozen fronts. The observed FF develops
from “upstream” and avoids any contact with the disk surface. In Fig. 1 we see that the upstream
front becomes closer to the solid as u increases. For u � 5 − 6, the front cannot keep a stationary
shape and hence no frozen fronts are observed: the forming front comes so close to the left of the
solid disk that it comes into contact with it and then is transported by the flow to the right, hence
limiting the range of accessible u values. For the u values leading to a frozen front, we have to
account for the selection of its shape.

IV. FROZEN FRONT SELECTION USING THE EIKONAL EQUATION

In this section, we investigate the selection of the frozen front geometry, which can be explained
from the eikonal equation including the finite curvature effect (i.e., lχ �= 0). When the front width
lχ (200 μm in the experiment) is much smaller than the typical size of the system (here the disk
radius R = 8.5 mm), the so-called eikonal equation accounts accurately for the front behavior [6,9].
It also corresponds to the thin flame regime in combustion. In this regime, Eq. (2) reduces [6] to the
following expression of the normal component of the front velocity:

�VF · �n = �U (�r) · �n + Vχ + Dmκ = �U (�r) · �n + Vχ (1 + lχκ), (4)

where �U is the local fluid velocity at the front position −→
r , �n is the local unit vector normal to the

interface (oriented from product to reactant), and κ is the curvature of the interface. The last term
is particularly important in our study since it reduces the chemical velocity when the curvature is
negative, as in Fig. 1. Frozen fronts satisfy

�U (�r) · �n + Vχ (1 + lχκ) = 0. (5)

Introducing the (x,y) Cartesian coordinate (x along the symmetry axis in the
−→
U0 direction) and the

interface h(y), it follows that

− vx(h(y),y)√
h′(y)2 + 1

+ h′(y)vy(h(y),y)√
h′(y)2 + 1

+ 1 − lχ
h′′(y)

[h′(y)2 + 1]3/2
= 0, (6)

where −→v = −→
U /Vχ is the dimensionless velocity. The equation is thus an implicit second order

differential equation that can be integrated once the initial conditions h(0) and h′(0) are known. Due
to the symmetry of the problem, h′(0) = 0 so the frozen front is in principle a function of h(0) = h0,
which remains to be determined.

As lχ is assumed to be small, one neglects generally the last term in the eikonal equation [16].
Such an assumption is only valid, from a mathematical point of view, if lχ and Dm vanish at the same
rate [see Eq. (3)], which is unlikely as the molecular diffusion is intrinsically a constant depending
only on the involved fluids.
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A. Eikonal equation without a curvature correction (lχ = 0)

The “classical” use of the eikonal equation [16] neglects the curvature term, which corresponds
to setting lχ = 0 in Eqs. (5) or (6). The initial condition h(0) must then satisfy the implicit equation

−vx(h0,0) + 1 = 0. (7)

Once the initial condition h0 has been determined, the complete interface can be deduced with a
numerical forward method and by solving h′(y) implicitly from

−vx(h(y),y) + h′(y)vy(h(y),y) +
√

h′(y)2 + 1 = 0. (8)

It is important to remark at this point that the obtained solutions may have a nonzero curvature at
y = 0. Our objective is now to determine the influence of lχ and thus the curvature in the eikonal
equation on the interface selection.

B. Eikonal equation with a curvature correction (lχ �= 0)

We note that including the curvature term leads to degenerate solutions of Eq. (7). Indeed, the
initial condition now reads −vx(h(0),0) + 1 − lχh′′(0) = 0. The initial front position h0, and thus
the complete solution, hinges now on the initial curvature h′′(0), which is unknown and could a
priori be considered as a free parameter. To determine the selection of h(0), we make a Taylor
expansion of the static eikonal equation in the vicinity of the apex of the frozen front (y � 0) for the
variables involved in Eq. (6), namely

h(y) = h(0) + 1
2y2h′′(0) + 1

24y4h(4)(0) + O(y6), (9)

vx(h(y),y) = vx(h(0),0) + 1
2y2[h′′(0)∂xvx(h(0),0) + ∂xxvx(h(0),0)] + O(y4), (10)

vy(h(y),y) = −y∂xvx(h(0),0) − 1
6y3[3h′′(0)∂xxvx(h(0),0) + ∂xyyvx(h(0),0)] + O(y4), (11)

where we have taken into account the x-axis symmetries, namely h(y) = h(−y), vx(h(y),y) =
vx(h(−y),−y), and vy(h(y),y) = −vy(h(−y),−y) and of the fluid incompressibility (∂xvx + ∂yvy =
0). Equation (6) leads then to the polynomial expression

0 = −vx(h0,0) + 1 − lχh′′
0 + y2

{
vx(h0,0)h′′2

0 − 3∂xvx(h0,0)h′′
0 − ∂yyvx(h0,0) + lχ

(
3h′′3

0 − h
(4)
0

)}

+ y4

24

{
6h′′2

0 ∂yyvx(h0,0) − 15h′′2
0 ∂xxvx(h0,0) − 10h′′

0∂xyyvx(h0,0) + (
18h′′3

0 − 5h
(4)
0

)
∂xvx(h0,0)

+ (
4h

(4)
0 h′′

0 − 9h′′4
0

)
vx(h(0),0) − ∂yyyyvx(h0,0) − lχ

(
h

(6)
0 − 30h

(4)
0 h′′2

0 + 45h′′5
0

)} + O(y6),

where for compactness we use h0 = h(0), h′′
0 = h′′(0), etc.

Since the terms at all orders should be equal to zero, it thus amounts to solving an infinite set
of equations with an infinite number of unknowns, {h(2n)

0 , n = 0,1, . . . }. Interestingly, one can note
that each order 0(y2n) involves the same order derivative, h

(2n)
0 , but also the next one, h

(2n+2)
0 . For

instance, the leading order (y0) involves h(0) and h′′(0) and the second order (y2) involves h(0),
h′′(0), and h(4)(0):

−vx(h0,0) + 1 − lχh′′
0 = 0, (12)

vx(h0,0)h′′2
0 − 3∂xvx(h0,0)h′′

0 − ∂yyvx(h0,0) + lχ
(
3h′′3

0 − h
(4)
0

) = 0. (13)

Therefore, a method to construct an approximation consists in truncating the Taylor expansion
at a given order n, and thus discarding the last term of order (n + 1). For instance, the zeroth-order
truncation simply leads to solving the eikonal equation without the curvature correction Eq. (7). The
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parabolic, second order truncation leads to the following system of equations:

−vx(h0,0) + 1 − lχh′′
0 = 0, (14)

vx(h0,0)h′′2
0 − 3∂xvx(h0,0)h′′

0 − ∂yyvx(h0,0) + lχ
(
3h′′3

0

) = 0, (15)

and so forth.
It is also important to note that each equation depends strongly on the derivatives of the flow

field. We expect thus that the choice of the order of truncation depends significantly on the spatial
structure of the flow.

C. Numerical validation

To validate this analytical procedure, we integrate numerically the full eikonal equation, Eq. (4).
The velocity field corresponding to a uniform flow around a 2D solid disk of radius R immersed
in a uniform flow has simple analytical expressions (and thus explicit derivatives) [26,27]. In polar
coordinates,

vr (r,θ ) =
(

1 − R2

r2

)
U0 cos θ, vθ (r,θ ) = −

(
1 + R2

r2

)
U0 sin θ, (16)

where U0 is the uniform far-field flow velocity, thus u = U0/Vχ . The front is initially flat and located
far upstream from the disk. The integration is performed with the step forward direct method. As can
be seen in the top left of Fig. 2, where the different fronts correspond to different evolution times, the
front achieves an asymptotic frozen front geometry. The top right part of the same figure displays a
series of FFs corresponding to different lχ : the front geometry is observed to depend significantly on
the chemical length lχ . The larger lχ is, the smaller is the distance (apex) of the front, |h(0)|, from
the disk, in agreement with experiments (Fig. 1).

We compare now the achieved frozen front geometries to those obtained by our truncating
procedure. In the bottom of Fig. 2, the measured values of the normalized apex coordinate at
the axis, |h0| (square), and the corresponding curvature, h′′

0 (diamonds), on the asymptotic frozen
fronts are plotted versus lχ/R. The solid curves correspond, respectively, to the zero, second, and
fourth order truncation approximations. This clearly shows that increasing the truncation order
asymptomatically converges toward the numerical results. Hence, for a given set of parameters
(u,lχ/R), the asymptotic FF, obtained from the dynamics of Eq. (4), can be characterized by the
values h(0) and the curvature h′′(0). We thus observe an excellent agreement between the truncation
expansion and the numerical calculation for the selection of the frozen fronts. Moreover, Fig. 2
clearly shows that as lχ → 0, both h(0) and h′′(0) asymptotically converge to finite values, which
correspond to the limit of the eikonal ones. To conclude, this procedure allows us to improve the
“classical” use of the eikonal equation [16], which neglects the last term in Eq. (4): indeed, setting
lχ = 0 in Eq. (4) does not mean that there is no front curvature but that the zero order approximation,
−vx(h0,0) + 1 = 0, gives only the front position, hlχ=0(0).

In the same papers [16], a clever construction of the allowed fronts is described. In the full eikonal
limit (lχ = 0), the front is initiated at the boundary of slow zones and is not allowed to penetrate
them. These slow zones correspond to | �U (�r)| � Vχ . In Fig. 3, we have drawn the slow zone around
the solid disk (red), and the eikonal frozen front (lχ = 0) corresponds to the blue solid line, which
obviously follows the prescription.

V. COMPARISON WITH EXPERIMENTS USING A SOURCE-SINK CONFIGURATION

We want to test these predictions against the experiments. Due to the contact with the solid
disk mentioned above, the range of accessible u values was limited. Therefore, we designed an
analogous experiment that allows us to cover a wider range of u values. Remembering that the
potential flow around a solid disk in a Hele-Shaw cell [see Eq. (6)] is the same as the one around a
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FIG. 2. Frozen chemical front for a flow around a disk determined by using the eikonal equation (4). Top
left, views of the frozen front formation at different time steps from flat initial front (t = 0) to frozen front
at long times (t = ∞) for u = 2 and lχ /R = 0.1. Top right: achieved static frozen front for u = 1.5 and for
different values of lχ /R increasing from 0 to 1; the larger the ratio, the closer the solid disk. Bottom: variations
of the normalized distance |h(0)|/R from the disk of the apex of the front (on the symmetry axis) and of its
curvature versus lχ /R: The squares and diamonds correspond, respectively, to |h(0)| and h′′(0) measured on
the achieved static FF. The dotted, dashed-dotted, and solid lines correspond, respectively, to the zero, second,
and fourth order truncation approximations (see text) for the apex (top) and curvature (bottom).

hydrodynamic dipole (immaterial solid) [26–28], we designed such an experiment. The fresh, blue
reactant is injected from left to right, as shown in Fig. 1, at a constant flow rate Q0 and hence a
constant flow velocity U0 = Q0/(w e), where w = 65 mm and e = 0.25 mm, are, respectively, the

100 200 300 400

300

400

500

FIG. 3. The red zone around the solid disk (black circle) corresponds to the so-called slow zone [16], where
| �U (�r)| � Vχ . The solid blue line corresponds to the eikonal frozen front (lχ = 0).
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FIG. 4. Frozen chemical front in a flow around a hydrodynamic dipole. The fresh, blue reactant is injected
from left to right as in Fig. 1 at a flow at constant velocity U0. The “solid” obstacle is mimicked by a
hydrodynamic dipole. Burnt, yellow fluid flows out of the leftmost hole (source) and into the other one (sink) at
the same flow rate (U+ = −U−); the distance between holes is d = 5 mm and lχ /d = 0.04. In all the pictures,
the ratio between U0 and U+ remains the same, and the radius of the immaterial obstacle remains, therefore,
constant (see the text); R = 7.2 mm. From top left to bottom left: U0/Vχ = −2.6,−5.25,−12.6. The graph on
the right is a plot of the normalized distance, |h0|/d , of the apex of the front to the dipole on the symmetry
axis vs u = |U0/Vχ |. The continuous line through the data is the prediction obtained from the eikonal with the
experimental value of lχ /d = 0.04. The open triangles correspond to the selection with lχ /d = 0 (order zero).
The tracks superimposed on the fluids are shadows of tubing.

cell width and thickness. The “solid” obstacle is mimicked by a hydrodynamic dipole (yellow). Burnt
yellow flows out of the leftmost hole (source) and into the other one (sink) at the same flow rate
(Q+ = −Q−); the distance between holes is d = 5 mm. The strength of the hydrodynamic dipole
[26,27] is p = d(Q+/e), so that the solid disk radius involved in this velocity field is from Eq. (16):

R2 = p

2πU0
= Q+

Q0

wd

2π
. (17)

Therefore, keeping constant the ratio Q+/Q0 provides an immaterial solid disk of constant radius
in a uniform flow field U0.1

The three pictures in Fig. 4 display the frozen fronts achieved at different flow rates while
keeping Q0/Q+ = 1 so that R = 7.2 mm. The figure at the bottom right is a plot of the position
|h0|/d of the front on the symmetry axis versus the reduced flow rate u = |U0/Vχ |: the squares are
the experimental data, and the continuous line is the theoretical prediction obtained using the above

1Here we have a real source and sink, the far field of which is that of a dipole. Therefore, instead of the dipole
flow, we use, for the selection calculations, the velocity field of a source and a sink distant of d [26] that is
closer to the experimental velocity field, especially for the near field. As a result, in the case of Fig. 4, instead
of a virtual solid disk of radius R = 7.2 mm, the solid is closer to an ellipse of semiaxis 7.6 and 5 mm.
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FIG. 5. The second class of experimental frozen front in a flow around a circular disk in a Hele-Shaw cell
corresponds to an initial condition in which the front is in contact with the disk. The left picture is obtained for
a normalized flow velocity (U0/Vχ = −2.5), which is the same as the one of the left picture of Fig. 1; therefore,
for the same flow velocity, two types of frozen fronts are observable: an upstream front that avoids the solid,
and a downstream one originating from the solid disk. Right: the downstream FF for U0/Vχ = −1.4.

procedure assuming an eikonal equation with the experimental, rather small, value of lχ/d = 0.04:
the agreement is quite reasonable, validating both the relevance of the eikonal equation in such an
experiment and the selection procedure. It is worth noting that, for such a small lχ/d value, the
theoretical prediction for lχ = 0 (open triangles in Fig. 4) is very close to the continuous line.

VI. TWO TYPES OF FROZEN FRONT IN UNIFORM FLOW PAST A SOLID DISK

As already described (Fig. 1) for u > 1, “upstream” frozen fronts are observed. These fronts
avoid touching the disk surface and correspond to an initial front generated on the left of the disk,
far upstream. For the same velocity u, but with an initial front in contact with the disk, we observed
(Fig. 5) another class of frozen fronts: the fronts remain in contact at subsequent times, leading to a
“downstream” FF with two symmetric branches. In Fig. 5, we see that, when u is increased, the two
branches of the front become closer to the symmetry axis.

For u � 5 − 6, the separation between the two branches becomes thinner and thinner as u

increases, which can lead to a pinch-off followed by a detachment as observed in Ref. [17], hence
no frozen fronts are observed. These new downstream frozen fronts that remain in contact with the
disk surface deserve a deeper analysis. Indeed, in the experiments it is rather difficult to vary the
two control parameters lχ and Vχ over a wide range. We will address this issue with numerical
simulations.

VII. PHASE DIAGRAM OF A DIFFERENT CLASS OF FROZEN FRONTS
AROUND A SOLID DISK

In the experiments (Figs. 1 and 5) we have been able to observe an upstream FF avoiding the
obstacle and a downstream one in contact with the solid disk. We want to draw the phase diagram
of these two types of frozen front. To cover a wide range of (u,lχ/R) values, numerical simulations
of the full convection reaction diffusion equation (CRD) Eq. (2) are more suitable than experiments,
especially for the control parameter lχ/R. For that purpose, we performed two-relaxation-time (TRT)
lattice Boltzmann simulations [29]. We use a 2D 400 × 1000 lattice (Fig. 6) with a solid of size 80
lattice unit diameter. In the low Reynolds number limit, we first compute the velocity field around
this solid disk with periodic boundary conditions at the top and bottom and a constant flux from left
to right (U0). We wait until a stationary flow field is achieved. Then we trigger the reaction with a
straight vertical product line either upstream (left) of the solid disk (top left in Fig. 6) or in contact
with the solid disk on the right (top third picture from the left in Fig. 6). The chosen values of the
reaction characteristics (Vχ and lχ ) [18] fix the two control parameters of the simulation, namely
u = |U0/Vχ | and lχ/R (propagation from left to right in the absence of flow).

043302-8



FROZEN FRONTS SELECTION IN FLOW AGAINST SELF- . . .

FIG. 6. Top row: from left to right, two sets of the initial condition and the corresponding frozen front. The
bottom diagram is a log-log map of the observations of the two types of fronts as a function of lχ /R (vertical
scale) and u = |U0/Vχ | (horizontal scale) in which the red dots (•) correspond to unsteady fronts, the black
� to observation of both upstream and downstream frozen fronts, and the blue � to downstream frozen fronts
only.

As both the flow and the reaction take place, the front develops, deforms, and can achieve a
stationary, time-independent, shape: we observe, depending on the initial conditions, a frozen front
either upstream of the disk or a downstream link on the solid surface, as seen in Fig. 6. Therefore,
our numerical simulations are able to reproduce the experimental observations of the two types of
observed frozen fronts. For a constant lχ/R as the uniform flow velocity U0 is increased, we observe
the following: for u < 1, there is no stationary front, the front propagates continuously toward the
left; for 1 < u < um, the two types of frozen fronts can be achieved, whereas a further increase of
u leads to both fronts detaching and propagating toward the right. This is in agreement with the
experimental observations, although for a single experimental lχ value. In the simulations, we can
also increase the chemical length at a constant flow rate: above a certain lχm, both types of fronts are
unable to remain stationary. As discussed below, the values of um and lχm can be slightly different for
the two types of fronts. There is a hierarchy between the stability of the upstream and downstream
fronts: for all the pairs of values of (u,lχ/R), for which an upstream front is observed, one may also
observe a downstream one (black �) in Fig. 6. In a small window of (u,lχ/R) values, we observe
instead only the downstream frozen fronts (blue �). This greater stability of the downstream frozen
front is demonstrated in the middle row of Fig. 7, where the upstream front barely tried to freeze
upstream around the solid disk but failed, whereas it succeeded downstream. The diagram on Fig. 6 is
a log-log plot of lχ/R versus u = |U0/Vχ | in which the red dots correspond to unsteady fronts. This
diagram clearly shows that increasing either u = |U0/Vχ | or lχ/R while keeping the other constant
leads to the disappearance of frozen fronts. This can be easily understood at least qualitatively:
increasing the flow velocity moves the upstream frozen front toward the disk while the downstream
one gets closer to the downstream branches. As a result, when the velocity is increased, the upstream
front ends up touching the solid from the left, whereas the two downstream branches end up touching.
We observe the same effect by increasing lχ . More quantitatively, on the log-log plot of Fig. 6 the
boundary between frozen fronts and unsteady fronts is an almost straight line of slope −1, that is,
u ∼ R/lχ . This variation may be accounted for as follows. Physically, the threshold corresponds to
the rightmost extension of the front touching the disk; the front extension on the symmetry axis is
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FIG. 7. Successive pictures of a front generated on the left of the disk (upstream conditions) for u = 1.5.
Top row, lχ /R = 0.25: development of an upstream front. Middle row, lχ /R = 0.27: the front fails to freeze
upstream, whereas it freezes downstream. Lower row, lχ /R = 0.35: the front is neither able to freeze upstream
nor downstream and propagates toward the right.

roughly ±lχ around h0; the contact with the disk, and hence the lack of a frozen front, corresponds
to |h0| − lχ ∼ R. On the solid surface, vx(h0 + lχ ,0) = 0. In this vicinity, vx(x,0) ≈ U0f (x/R)
(Stokes flow [26]), then at first order, vx(h0,0) = −∂xvx(0,0)lχ = −(U0/R)f ′(0)lχ ≈ U0lχ/R. From
Eq. (7), the flow velocity on the axis is balanced by the chemical velocity, vx(h0,0) = Vχ , leading
to U0/Uχ ≈ R/lχ , in agreement with the slope on the diagram.

VIII. SIMULATION AT FINITE lχ VERSUS THE EIKONAL LIMIT

In the previous section, we reported accurate numerical simulations of the frozen fronts, C(x,y),
for different chemical lengths lχ (and flow rates). Therefore, this is a good opportunity to compare
these simulations with the eikonal limit obtained in the corresponding section. On the left of Fig. 8,
we have plotted the normalized apex |h(0)|/R from the numerical simulations versus lχ/R for
u = 2. The value of h(0) corresponds, respectively, to the isoconcentration lines C = 0.25, 0.5, and
0.75. In the same figure, the black squares correspond to the numerical integration of the eikonal
equation, and the continuous line corresponds to the truncation procedure (second order) on the same
velocity field as the numerical one. If the trend is the same, especially at low lχ values, neither of the
isoconcentration lines matches with the eikonal one. This is more evident in the right of the same
figure, where the isoconcentration map from the simulation and the profile of the eikonal frozen
front are superimposed for v = 1.5 and lχ/R = 0.037. Even for such a small lχ , a discrepancy
still remains. Of course we cannot expect that the single concentration jump eikonal curve matches
with the C = 0.5 isoconcentration of the simulation, but the difference is surprising, especially far
away from the solid disk where the velocity field is uniform,

−→
U = −→

U0. Let us try to understand
this difference. The eikonal line is a straight line with an angle θ0 with the x axis along

−→
U0. The

eikonal equation (4),
−→
U0

−→
n + Vχ = 0, reads U0sinθ0 = Vχ . In Fig. 8, we measure θ0 = (40 ± 2)◦

in agreement with the eikonal expectation 1/sinθ0 = 1.55 ± 0.05, in reasonable agreement with
v = 1.5.
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FIG. 8. Left: normalized apex distance to the disk |h(0)|/R vs lχ /R for u = 1.5. The circles, triangles,
and × correspond to the numerical simulations where the apex is determined from the three isoconcentrations
C = 0.25, 0.5, and 0.75. The squares correspond to the numerical integration of the eikonal equation, and the
continuous line corresponds to the second order above the truncation procedure. Right: superposition on the
same graph of the isoconcentration map from the simulation and of the eikonal front (solid curve) for u = 1.5
and lχ /R = 0.037.

A closer analysis of the simulations shows that the isoconcentration curves are nearly perfectly
straight lines parallel to one another with an angle θ > θ0 with the x axis. In the direction z

perpendicular to these isoconcentrations, the concentration is well fitted by an expression similar to
that applying to the chemical front in the absence of flow [Eq. (3)]: C(z) = [1 + exp −( z

w
)]−1, but

with a width w = 3.5 larger than lχ = 3. As the isoconcentration curves are parallel straight lines,
we can integrate the steady convection diffusion reaction Eq. (2) along z from −∞ to ∞, which is
merely the balance between convective flux and reaction, leading to

Uz = U0 sin θ = Vχ

w

lχ
, (18)

where Uz = U0 sin θ is the projection of the uniform velocity on the normal to the isoconcentrations.
When w is larger than lχ , θ > θ0, in agreement with what is observed in Fig. 8: θ = �45◦,

leading to sinθ � 0.7, in agreement with Eq. (18). These observations deserve further comments.
Even if the chemical length is very small compared to the disk size (lχ/R � 0.037), we are not
in the full eikonal regime lχ → 0, as already observed [9]. The extension of the front, ∼lχ , still
matters; in this uniform flow region, the isoconcentrations can adapt their spreading (w) as well as
their orientation to fulfill the CRD, whereas the eikonal front has only the orientation freedom.

IX. FREE BOUNDARY CONDITIONS AT THE DISK SURFACE:
EXPERIMENTS WITH AN AIR BUBBLE

The experiments with the dipole design have proven the relevance of the eikonal limit to account
for the shape of frozen fronts around an immaterial obstacle. The problem would not be so easy for
a front originating from the solid surface. In the eikonal limit, the front cannot be static: at the solid

surface, the flow velocity vanishes,
−→
U = −→

0 , and unless the curvature at the surface is of the order
of lχ , the only possibility left from Eq. (4) is

−→
VF = −→

Vχ , as already discovered [6].
To get rid of this lack of velocity at the disk surface, we perform experiments with an air disk,

namely an air bubble squeezed between the two plates of the Hele-Shaw cell: the boundary conditions
between these two fluids (air and chemical solution) are the previous one of zero normal velocity
[vr (R) = 0], but the free boundary allows for a nonzero tangential velocity vθ at the bubble surface
[Eq. (16)]. Moreover, at this surface there is no flux of matter (

−→∇ C · −→
n = 0) leading to a front

perpendicular to the surface. Therefore, the eikonal equation at the surface reduces to vθ (R) = Vχ .
Figure 9 displays pictures of the front on a bubble for different flow rates. Compared to the solid
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FIG. 9. Frozen chemical front in a flow around an air bubble of diameter 10 mm in a Hele-Shaw cell at
different flow rates. Compared to Fig. 1, where the disk is solid, the front is perpendicular to the bubble surface.
From left to right: u = 2.1, 1.5, and 1.05. The angle θ in the middle picture is the far-field one, whereas α is
the angle expected at the bubble surface calculated from the eikonal relationship (see the text).

disk (Fig. 1), the front is perpendicular to the bubble surface at their contact point, as expected from
the eikonal equation. To be more quantitative as to the relevance of this eikonal equation, we have
measured the slopes (or the angle with the symmetry axis) of the straight part of the front at the
bubble surface (angle α) and far away from the bubble (θ ) where the flow is uniform (U0).

Applying the eikonal equation in the far field, we obtain U0sin(θ ) = Vχ , whereas at the bubble
surface where the tangential velocity is known from the potential flow [Eq. (16)], we get 2U0sin(α) =
Vχ . Therefore, we can expect the relationship 2 sin(α) � sin(θ ) between α and θ . Our measurements
of α and θ are in reasonable agreement with this eikonal expectation: In the middle picture of Fig. 9,
we provide θ and the corresponding expected α = arcsin( sin(θ )/2), in reasonable agreement with
the front position on the bubble surface.

X. CONCLUSION

We have reported experiments, analytical computations, and numerical simulations with the
autocatalytic iodate-arsenious acid reaction (IAA) over a wide range of flow velocities around a solid
disk. For the same set of control parameters, we observe two types of frozen fronts: an upstream FF,
which avoids the solid disk, and a downstream FF with two symmetric branches emerging from the
solid disk surface. We have mapped the range over which we observe these frozen fronts. We also
revisited the so-called eikonal, thin front limit in order to describe the observed fronts and to select
the frozen front shapes.
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