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Self-propelled particles with hydrodynamic interactions (microswimmers) have previ-
ously been shown to produce long-range ordering phenomena. Many theoretical explana-
tions for these collective phenomena are connected to instabilities in the hydrodynamic or
kinetic equations. By incorporating stochastic fluxes into the mean field kinetic equation, we
quantify the dynamics of a suspension of microswimmers in the parameter regime where the
deterministic equation is stable. We can thereby compute nontrivial collective phenomena
concerning spatial correlations of orientation and stress as well as the enhanced diffusion of
tracer particles. Our analysis here focuses primarily on two-dimensional systems, though
we also show how superdiffusion of tracers in three dimensions can occur by our framework.
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I. INTRODUCTION

Bacteria, algal cells, and synthetic microscale motors can be conceptualized as hydrodynamically
interacting self-propelled particles, which we will refer to as microswimmers [1–9]. The flows created
by them can influence their own motion and the motion of passive objects suspended within the fluid.
If the long-ranged hydrodynamics largely determine the behavior of such a system, the response can
be understood by examining a suspension of dipole microswimmers. In this article, we develop a
fluctuation theory for a model consisting of an idealized system of point dipole microswimmers.

Continuum field theories have been a fruitful approach to understanding collective phenomena
in active suspensions with hydrodynamic interactions [10–14]. Such theories indicate that the linear
stability of the uniform isotropic state depends on the sign of the force dipole, which classifies the
“puller” and “pusher” mechanisms of swimming. The uniform isotropic configuration of pullers
is always linearly stable, while for pushers it can suffer an instability when rotational diffusion
is weak enough relative to the hydrodynamic coupling of orientations [15–23]. Much attention
has been focused on patterning phenomena proceeding nonlinearly from the instability, including
the associated long-ranged correlations [20,24], giant fluctuations [25,26], turbulence [27], and
other factors that influence the instability and nonlinear oscillatory dynamics [28,29]. Indeed, the
continuum mean-field equations describe only trivial dynamics in the linearly stable regime, which
includes the general dynamics of pullers.

Experimental [30–33] and particle-based computational realizations [10,34–38] in the stable
regime clearly demonstrate nontrivial flow and enhanced mixing even though the activity is less
organized and vigorous than in unstable pusher systems. Such nontrivial dynamics can be described
only by including the finite particulate nature of the microswimmers. One theoretical approach is to
analyze a sample pair of microswimmers to understand the role of particle interactions [34,39–42] or
a microswimmer and tracer to understand mixing in the dilute limit [32,35,43,44]. We will adopt the
complementary approach of adding stochastic fluxes to the continuum field equations to represent
the mesoscopic fluctuations. In addition to being more amenable to theoretical analysis, continuum
field models are typically much less computationally expensive than direct particle simulations [45],
though at the price of coarse-graining some interaction details.

The approach of adding physically appropriate mesoscopic noise to the diffusion equation has
been used previously for a thermal equilibrium bath by Dean [46], Yoshimori [47], and Biroli
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[48]. Cates [49,50] applied this concept to some systems of active Brownian particles without
explicit hydrodynamic interactions. A related approach was used by Lau and Lubensky [31,51] who
incorporated stochastic fluxes in a hydrodynamic model for microswimmers as a basis for computing
statistical fluctuations and enhanced tracer diffusion. In this article, we pursue similar objectives but
proceed instead from a mesoscopic stochastic equation which can be more transparently derived
from an underlying particle-level model, and which can be viewed as a stochastic variation of the
mean-field kinetic equation of [15]. Our results quantifying enhanced tracer diffusion are similar to,
but not in complete agreement with, those obtained by Ref. [51].

II. MODEL EQUATIONS

Our model consists of a suspension of Np rodlike dipole microswimmer particles in an
incompressible, Newtonian fluid occupying a two-dimensional periodic square of side length L.
We assume a concentration large enough for a continuum approximation to be reasonable but not so
large that near-field and steric effects should be taken into account. The phase space number density
ψ(x,n,t) of microswimmers with position x and the unit vector of orientation n at time t is governed
by a mesoscopic field kinetic equation. This equation can be derived from hydrodynamically coupled
Langevin equations for the individual microswimmers, following the procedures described for other
models [46,50,52], with the result

∂ψ

∂t
= −∇x · (ẋψ) − ∇n · (ṅψ) + Dt∇2

xψ + Dr∇2
nψ + �(x,n,t), (1)

ẋ = vn + u(x,t), (2)

ṅ = (I − nn) · [γ E(x,t) − �(x,t)] · n. (3)

Here ẋ is the velocity of the microswimmer, ṅ is the angular velocity, the noise term � describes the
divergence of stochastic fluxes from translational and rotational diffusion [46], v is the swimming
speed of an isolated swimmer, u is the local fluid velocity, Dt is the translational diffusivity, Dr is the
rotational diffusivity, I is the identity tensor, E is the rate of strain tensor, � is the vorticity tensor,
and γ is a shape parameter. For the case of long slender organisms including flagella, the shape
parameter is γ ≈ 1. The swimming and flow lead to an advective flux while the diffusion leads to a
stochastic flux. The Laplacian terms describe the mean divergence of these stochastic fluxes, while
� has zero mean and represents the fluctuations about the mean.

In the stochastic kinetic theory model, the instantaneous noise term in two-dimensional physical
space is given by [46]

�dt = ∇x · [
√

2Dtψ dU(x,θ,t)] + ∂θ [
√

2Drψ dV (x,θ,t)]. (4)

The variables dU and dV are independent Brownian motion processes following a Gaussian
distribution with zero mean. The spatial noise contains x and y Cartesian components that are
independent. The correlations are given by

〈dUx(x,θ,t)dUx(x′,θ ′,t ′)〉 = 〈dUy(x,θ,t)dUy(x′,θ ′,t ′)〉 = 〈dV (x,θ,t)dV (x′,θ ′,t ′)〉
= δ(x − x′)δ(θ − θ ′)δ

(
t − t ′

)
dtdt ′, (5)

and the stochastic differential equation is to be interpreted in the Itô sense. This noise on
microswimmers is generally considered to be dominated by nonthermal effects such as noise from
the operation of the molecular motors driving the swimming [9,14,51,53].

The fluid flow is obtained from the time-independent Stokes equation for an incompressible fluid

−η∇2
x u + ∇xq = ∇x · �, (6)

043104-2



STOCHASTIC KINETIC THEORY FOR COLLECTIVE . . .

where η is the dynamic viscosity and q is the pressure. The active stress is

� = d

∫
ψ(nn − I/2)dn, (7)

where d is the stresslet coefficient of the force dipole, which is positive for pullers and negative
for pushers. By using the time-independent Stokes equation, we are assuming the time scale of
stress fluctuations induced by the microswimmer dynamics is slow relative to viscous relaxation,
which amounts roughly to Dt � η/ρ, where ρ is the fluid density, and wave numbers k such that
k � vρ/η,

√
Drρ/η,

√|d|Npρ/(ηL).
These field equations lead to nontrivial dynamics even when the phase space density fluctuates

around the uniform isotropic state. If these fluctuations are small enough, the field equations can
be linearized, which is the subject of the rest of this article. In two dimensions, we can express
the orientation vector as n = (cos θ, sin θ ). We nondimensionalize the system using the time scale
tc = ηL2/(Np|d|) [54] and the length scale lc = vtc = vηL2/(Np|d|) and scale the dimensional
phase space density by its mean value Np/(2πL2). The key dimensionless parameters are L̃ = L/lc,
D̃t = Dttc/ l2

c , D̃r = Drtc. For simplicity of notation, in the rest of the article all other variables are
nondimensional unless otherwise stated.

The scaled phase space density in a spectral expansion decouples the spatial Fourier modes for
each spatial wave vector k = (kx,ky). In the spectral (Fourier) expansion, the phase space density is

ψ(x,n,t) =
∑

k∈2πL̃−1Z2

∞∑
l=−∞

ψ̂k,le
i(k·x+lθ). (8)

The Fourier coefficients for different angular modes l are coupled and can be written in matrix form
as a vector ψ̂ k with components ψ̂k,l for l = . . . ,−1,0,1, . . .. The evolution equation is

∂ψ̂ k

∂t
= Lkψ̂ + ikx

√
2D̃t

Np

dUx,k

dt
+ iky

√
2D̃t

Np

dUy,k

dt
+ i

√
2D̃r

Np

Rk
dVk

dt
, (9)

where Rk is diagonal with components Rk,l,l′ = lδl,l′ , while the matrix Lk is an infinite matrix with
components given, for k �= 0, by

Lk,l,l′ = − i

2
ke−iθk δl,l′−1 − i

2
keiθk δl,l′+1 − D̃tk

2δl,l′ − D̃r l
2δl,l′ + δl,2

pγ

8
(−δl′,2 + e−i4θk δl′,−2)

+ δl,−2
pγ

8
(δl′,2ei4θk − δl′,−2), (10)

where θk is the angle between the x axis and k, and p = d/|d| is the sign of the stresslet strength.
The noise terms are also written in Fourier space and collected in vectors dUx,k, dUy,k, and

dVk that are proportional to the Fourier transform of the physical space noise. These vectors
have components dUx,k,l , dUy,k,l , and dVk,l . All components are independent differentials of
standard complex-valued Brownian motion, namely, Gaussian random functions with zero means
and correlation functions given by

〈dU∗
x,k,l(t)dUx,k,l(t

′)〉 = 〈dU∗
y,k,l(t)dUy,k,l(t

′)〉 = 〈dV∗
k,l(t)dVk,l(t

′)〉 = δ(t − t ′)dt dt ′. (11)

The linear evolution equation for ψ̂ k for each k contains all the information about how the
active motion and hydrodynamic interactions of the microswimmers lead to coordinated motion
provided the phase space density remains close enough to the uniform isotropic state that the linear
approximation is valid. Within this approximation, we will focus on the properties of the long-time
statistically stationary state [or nonequilibrium steady state (NESS)] of the fluctuations and whose
Fourier space amplitude will be proportional to N

−1/2
p .
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FIG. 1. Fourier mode amplitudes of orientation correlation function, log10(NpĈo,k), for pushers (a) and
pullers (b) as a function of wave number k and nondimensional rotational diffusivity D̃r . The blank region in
panel (a) corresponds to the region of linear instability of the pusher system. For both cases, the microswimmers
are rodlike and slender (γ = 1) with translational diffusivity of D̃t = 0.45.

III. MICROSWIMMER FLUCTUATIONS AND CORRELATIONS

One important measure of group behavior is the local orientation of microswimmers, which for
our nondimensionalization is

N(x,t) = 1

2π

∫
nψ(x,n)dn. (12)

Its spatial correlation function is defined as

Co(x′) = 〈N(x,t) · N(x + x′,t)〉, (13)

with its Fourier spectrum given by

Ĉo,k = 1

L̃2

∫ L̃×L̃

0×0
Co(x′) exp(−ik · x′)dx′. (14)

Figure 1 shows the spectrum from truncation of Eq. (9) to components |l| � 32, and solving the
deterministic Lyapunov matrix equation characterizing the NESS statistics.

At large D̃r , the spectrum of the orientation fluctuations approaches the flat profile Ĉo,k = N−1
p

corresponding to independent microswimmers, while for sufficiently small D̃r and wave number
k, the linearized theory is inapplicable for pushers due to the instability of the uniform isotropic
state [15,23]. At intermediate D̃r , the fluctuations in the orientation correlation field are enhanced
for pushers and depressed for pullers, corresponding to their respective aligning and antialigning
tendencies [7,38]. This can be understood by noting the polar orientation correlations can only be
induced from the symmetric force dipole flows through coupling to swimming [first two terms ∝ k

in Eq. (10)]. Translational diffusion destroys correlations at larger k.
To obtain further insight, we developed a “slow-swimming approximation” in which the first two

terms representing swimming in Eq. (10) are perturbations to the remaining terms involving diffusion
and active stress. This approximation is formally valid for wave numbers k � min(D̃r ,4D̃r + pγ/4)
or k � D̃−1

t , provided a singular perturbation expansion is developed to handle the degeneracy
of rotational diffusion in the l = 0 angular mode. Under the slow-swimming approximation, the
orientation fluctuation spectrum is

NpĈo,k = 1 − pγ k2/640(
D̃r + k2D̃t

4 + pγ

16

)(
D̃r + 2k2D̃t

5 + pγ

20

)
(D̃r + k2D̃t )

+ · · · . (15)
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FIG. 2. Comparison of NpĈo,k − 1 between the numerical results from Fig. 1(a) and the slow-swimming
perturbation approximation. The translational diffusivity is D̃t = 0.45, and the rotational diffusivity is
D̃r = 0.09.

Figure 2 compares the slow-swimming approximation for slender pushers (pγ = −1) with
D̃r = 0.09 and D̃t = 0.45 against the results from Fig. 1. We see agreement with both the k2

scaling due to swimming at small k and k−4 scaling at large k from translational diffusion. For
D̃r � γ /16, the correlations peak at a wave number kp ∼ (D̃t/D̃r )−1/2, where translational diffusion
and rotational diffusion balance. For pushers (p = −1), the hydrodynamic interactions cause the
correlation length to increase as D̃r decreases and to diverge to the system size at the stability limit
D̃r = γ /16 of the uniform isotropic state.

In addition to orientation correlations, another important measure of fluctuations is the concen-
tration of organisms relative to the mean concentration. Fluctuations in the spatial concentration
defined as

C(x,t) = 1

2π

∫
ψ(x,n,t)dn (16)

in our nondimensional scaling are found to be negligibly small in the linearized model. This is
supported by the slow-swimming perturbation expansion which shows that the spatial autocorrelation
function of the concentration fluctuations is delta-correlated in real space to the first three orders.
Recall that it is typically nonlinear effects or near-field effects that are responsible for the substantial
concentration fluctuations seen in other studies [25,29,55–57], while near-field effects are neglected
here.

We consider next the shear component of the active stress, which under the deterministic mean
field theory is the driver of the instability of the uniform isotropic state. The results will be reported
for the dimensional stress scaled by η/tc = Np|d|/L2, so the dimensionless stress is given by

� = p

2π

∫
ψ(nn − I/2)dn. (17)

The shear stress correlation function in the nonequilibrium steady state (NESS) is

Cs(x′) = 〈�xy(x,t)�xy(x + x′,t)〉. (18)

This choice of shear component leads to a stress correlation that depends on θk , so we will focus
here on θk = 0. Similar to our approach with orientation correlations, the Fourier spectrum was
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FIG. 3. Fourier mode amplitudes of active stress correlation function, log10(NpĈs,k|θk=0), for pushers (a)
and pullers (b) as a function of wave number k and nondimensional rotational diffusivity D̃r . The blank region in
panel (a) corresponds to the region of linear instability of the pusher system. For both cases, the microswimmers
are rodlike and slender (γ = 1) with translational diffusivity of D̃t = 0.45.

calculated numerically and is shown in Fig. 3. As with the orientation spectrum, the independent
swimmer fluctuations are obtained for large enough D̃r or k. The spectrum is monotonically varying
in k, with the largest value for pushers at small k and the smallest value for pullers as k → 0. This is
consistent with the mechanism of linear instability found in the mean field theory. The flows created
by pushers enhance perturbations while the flows created by pullers suppress perturbations. The
magnitude of this enhancement is largest for small k.

Many of the key features are illustrated by the perturbation expansion of the shear stress fluctuation
spectrum under the slow-swimming approximation, which is given by

NpCs,k|θk=0

=
(

4D̃r + k2D̃t

32D̃r + 8k2D̃t + 2pγ

)

×
[

1 + 2pγ k2(36D̃r + 8k2D̃t + pγ )

(52D̃r+8k2D̃t+pγ )(20D̃r+8k2D̃t+pγ )(16D̃r+4k2D̃t+pγ )(4D̃r+k2D̃t )
+ . . .

]
.

(19)

Figure 4 compares the slow swimming approximation for slender pushers (pγ = −1) with D̃r =
0.09 and D̃t = 0.45 against the results from Fig. 3. The leading order term of the approximation
matches qualitatively with the numerical results. The slow-swimming approximation is formally
valid for wave numbers k � min(D̃r ,4D̃r + pγ/4) or k � D̃−1

t . For these values of k, using more
terms in the expansion improves the comparison to the numerical results.

IV. TRACER DYNAMICS

We next consider how the statistical dynamics of the microswimmers enhance diffusion of passive
objects (tracers) suspended in the fluid. To quantify this diffusion, we have numerically integrated
the stochastic equations of motion for the fluid velocity fluctuations, using the linearized equations
together with non-Brownian point tracers advected by the local fluid velocity. The linearized version
of Eqs. (1)–(3) are discretized on a mesh with central finite difference derivatives in position or
angle and explicit first order time stepping. The mesh contains 64 elements each in x and y and
128 in θ . The time step is �t = 10−2. At each step, the active stress is evaluated on the mesh and
the fluid velocity is found on the mesh from the Stokes equation using the FFTW algorithm. All of
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FIG. 4. Comparison of NpĈs,k|θk=0 between the numerical results from Fig. 3(a) and the slow-swimming
perturbation approximation. The translational diffusivity is D̃t = 0.45, and the rotational diffusivity is
D̃r = 0.09. The red line uses the first approximation (first term) from Eq. (19), while the blue line uses
both terms shown in Eq. (19).

the results shown here have parameters D̃t = 0.45, L̃ = 50, and Np = 109. The initial 200 units of
dimensionless time of the simulations are ignored to allow the system to reach the NESS.

The mean-squared-displacement of the tracers is calculated and a diffusivity D̃tr is extracted
from the slope at long time. These diffusivities are shown as symbols in Fig. 5 for suspensions of
slender rodlike (γ = 1) pushers and pullers. At large D̃r , the interactions between organisms do not
significantly alter the swimmer dynamics, which leads to tracer diffusion that is the same for pushers

10-1 100
101

102

103

104

2N
p
D̃

tr

D̃r

FIG. 5. The diffusivity D̃tr of non-Brownian passive point-particle tracers as a function of the rotational
diffusivity of the microswimmer D̃r . The symbols are from PDE-based stochastic simulations for slender
rodlike pushers (squares) and pullers (circles). The lines are the solution to deterministic matrix equations that
assume zero Kubo number. The solid red line is the calculation result for pushers, while the solid blue line is
for pullers, and the solid black line is for noninteracting microswimmers.
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and pullers. At smaller D̃r , the interactions between organisms can alter the effective diffusion of the
tracers. The tracer diffusivity is the integral of its Lagrangian velocity correlation function, which
is generally difficult to calculate analytically. However, the cases simulated in Fig. 5 have a small
Kubo number Ku = vf τf / lf ∼ 10−5, where vf is the root-mean-square fluid velocity, τf is the
correlation time of the fluid velocity, and lf is the correlation length of the fluid velocity [58]. For
small Kubo number, the Lagrangian velocity correlation function can be well approximated by the
Eulerian one.

From the linearized stochastic equations [Eqs. (9) and (10)], we derived deterministic (truncated)
matrix equations for the Eulerian velocity correlation function, and solve these numerically to
obtain small Kubo number approximations for the tracer diffusivity, which are shown as solid
curves in Fig. 5. Because the Kubo number of the stochastic simulations are very small, they match
well with the small Kubo number approximation. If all wave numbers can be treated under the
slow swimming approximation [D̃−1

t � min(D̃r ,4D̃r + pγ/4)], and we have the further condition
L̃2D̃−1

t (4D̃r + pγ/4) � 1 so that the sum over modes can be well approximated by an integral, we
can obtain an analytical expression for the tracer diffusivity as

D̃tr = L̃2

64πNp

(
4D̃r + pγ

4

)2

(
pγ

4
+ 4D̃r

{
δ + ln

[
L̃2

4πD̃t

(
4D̃r + pγ

4

)]})
, (20)

where δ ≈ 1.8 is the Masser-Gramain constant. In dimensional terms this expression is

Dtr = Np|d|2
256πη2DrL2

(
1 + Npdγ

16DrηL2

)2

{
Npdγ

16DrηL2
+ δ + ln

[
L2Dr

πDt

(
1 + Npdγ

16DrηL2

)]}
. (21)

For small concentrations the tracer diffusivity is proportional to the concentration of microswimmers
and is the same for pushers and pullers. For higher concentrations, the hydrodynamic interactions
of the microswimmers alter the tracer diffusion. This formula provides an analytical approximation
of this effect.

Many experimental and simulation studies of passive tracers in active systems show super-
diffusion at shorter times [32,37,59,60]. Yodh and coworkers [31] found the mean-squared-
displacement scaled as T 3/2, where T is the lag time, and a fluctuating field model was used to
deduce this scaling [31,51]. The theory developed here also produces superdiffusive scaling (nearly
ballistic) of tracer motion for T � (4Dr + pγ/4)−1 in two spatial dimensions. In particular, the
dimensionless mean-squared displacement is approximately

L̃2T 2

32πNp

{
c + ln

[
1(

4D̃r + pγ

4

)
T

]}
(22)

with

c = 4 − γ̃ + 4D̃r

4D̃r + pγ

4

{
δ + ln

[
L̃2

(
4D̃r + pγ

4

)
4πD̃t

]}
, (23)

where γ̃ ≈ 0.58 is the Euler-Mascheroni constant.
To better compare with experimental studies performed in three dimensions, we can examine

the predictions of the fluctuating field theory in three dimensions. The predictions are most easily
calculated analytically if we restrict attention to microswimmers which are not interacting. The long-
time diffusion for non-Brownian tracers moving in these flows can be computed analytically in three
dimensions under the assumptions of low Kubo number, weak swimming, and D̃t L̃

−2 � D̃r (the
rotational diffusion is faster than translational diffusion across the domain). For these assumptions
the long-time diffusivity is

D̃tr = L̃3

90π
√

6NpD̃
1/2
r D̃

1/2
t

. (24)
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In dimensional form, this tracer diffusivity is

Dtr = Np|d|2
90π

√
6L3η2D

1/2
r D

1/2
t

. (25)

The dimensional formula shows explicitly that the diffusivity is proportional to the microswimmer
concentration and is independent of the sign of the dipole moment. This matches with previous
theoretical work [34,35,39]. For the low Kubo number calculation to be self-consistent, it is sufficient
that Dtr � Dt. Using the expression above, this condition is equivalent to

Np

L3
� η2D

3/2
t D

1/2
r

|d|2 . (26)

In dimensional terms, the point dipole approximation used throughout the article is valid when
the swimmer size satisfies lsw � √

Dt/Dr . The slow swimming approximation corresponds to
v � √

DrDt . Our result matches exactly, including prefactors, with the slow swimming limiting
behavior of the work of Ref. [35]. Relative to Ref. [35], our approach can incorporate hydrodynamic
interactions of swimmers and describe the mean-square displacement of the tracers at all times in
addition to the long-time diffusivity.

Indeed, for lag times T � 1/D̃r , with the same assumptions as above, we find a superdiffusive
regime with the tracer mean-square displacement behaving as 4L̃3T 3/2/(45Npπ3/2D̃

1/2
t ), which is

consistent with previous experimental [31,60] and theoretical [51] results. That is, superdiffusion of
tracer motion in a three-dimensional flow emerges already from the long-range spatial correlations
in the fluid generated by independently diffusing force dipoles, apart from any hydrodynamic
interactions influencing the dynamics of those force dipoles, and does not seem to require a nonlinear
theory as in Ref. [51] to obtain.

V. CONCLUSION

We have developed a stochastic kinetic theory that allows us to better understand how
hydrodynamic interactions alter the behavior of suspensions of active particles. The equations can be
used both when microswimmers act nearly independently and when they produce large scale group
behavior. The results here have focused on situations where the uniform, isotropic state is linearly
stable, and the correlations and fluctuations for the linearized dynamics have been quantified.
Even within this regime, we have shown how microswimmer interactions alter the correlations
and enhance the diffusion of passive tracers. This statistical structure cannot be obtained from a
deterministic mean-field theory. Finally, we have shown that a simplified field theory produces
the same superdiffusive scaling as observed in experiments. The stochastic kinetic theory can be
used further to understand the role of fluctuations when the nonlinear terms are important and to
understand the enhanced diffusion of tracers when the Kubo number is not small.
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