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Although the roll-streak structure is ubiquitous in both observations and simulations of
pretransitional wall-bounded shear flow, this structure is linearly stable if the idealization
of laminar flow is made. Lacking an instability, the large transient growth of the roll-streak
structure has been invoked to explain its appearance as resulting from chance occurrence in
the background turbulence of perturbations configured to optimally excite it. However, there
is an alternative interpretation for the role of free-stream turbulence in the genesis of the
roll-streak structure, which is that the background turbulence interacts with the roll-streak
structure to destabilize it. Statistical state dynamics (SSD) provides analysis methods for
studying instabilities of this type that arise from interaction between the coherent and
incoherent components of turbulence. SSD in the form of a closure at second order is
used in this work to analyze the cooperative eigenmodes arising from interaction between
the coherent streamwise invariant component and the incoherent background component
of turbulence. In pretransitional Couette flow a manifold of stable modes with roll-streak
form is found to exist in the presence of low-intensity background turbulence. The least
stable mode of this manifold is destabilized at a critical value of a parameter controlling the
background turbulence intensity and a finite-amplitude roll-streak structure arises from this
instability through a bifurcation in this parameter. Although this bifurcation has analytical
expression only in the infinite ensemble formulation of second order SSD, referred in
this work as the S3T system, it is closely reflected in numerical simulations of both
the dynamically similar quasilinear system, referred to as the restricted nonlinear (RNL)
system, as well as in the full Navier-Stokes equations. This correspondence is verified
using ensemble implementations of the RNL system and the Navier-Stokes equations. The
S3T system also predicts a second bifurcation at a higher value of the turbulent excitation
parameter that results in destabilization of the finite-amplitude roll-streak equilibria. This
second bifurcation is shown to lead first to time dependence of the roll-streak structure in the
S3T system and then to chaotic fluctuation corresponding to minimal channel turbulence.
This transition scenario is also verified in simulations of the RNL system and of the
Navier-Stokes equations. This bifurcation from a finite-amplitude roll-streak equilibrium
provides a direct route to the turbulent state through the S3T roll-streak instability.
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I. INTRODUCTION

Streamwise roll vortices and associated streamwise streaks were identified in experiments on
transition in boundary layers [1] and observed in the near-wall region of turbulent flows [2—4]. These
observations were subsequently corroborated by direct numerical simulations (DNSs) (see [5]) and
the roll-streak structure is now understood to be central to the dynamics of turbulence in wall-bounded
shear flows.
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There are two distinct dynamical problems central to understanding wall turbulence: transition
from the laminar to the turbulent state and maintenance of the turbulent state. The roll-streak
structure, despite being hydrodynamically stable, is commonly agreed to be involved in instigating
transition from the laminar to the turbulent state in these flows. After transition this structure persists
but becomes highly variable in both space and time. This time-dependent streamwise roll and streak
structure is believed to be involved in the process maintaining turbulence in shear flow that is
referred to as the self-sustaining process [6-9]. Moreover, this self-sustaining mechanism appears
to be quite general in that it operates not only in the near-wall region but also, and independently, in
the logarithmic layer [10,11].

Our primary interest in this work is in the robust observation of the roll-streak structure in
wall-bounded shear flow prior to transition and in understanding the role of this structure in the
transition process. The prominence of the roll-streak structure in these flows presents a problem
because this structure is not an unstable eigenmode of the shear flow existing prior to transition.
The robust observation of the roll-streak structure was first rationalized by appeal to the lift-up
mechanism that describes the kinematic conversion of wall normal velocity into streamwise streak
velocity in sheared flows [12,13]. This insight was later advanced by recognition that the lift-up
mechanism could be subsumed into the analytical structure of generalized stability theory (GST) by
which modal stability theory and non-normal transient growth analysis are united [14—16]. While
modal stability analysis provides no reason to expect the appearance of roll-streak structures, GST
analysis predicts optimally growing perturbations with the observed form [17,18].

The success of optimal growth theory in predicting the roll-streak structure observed in perturbed
wall-bounded shear flow prior to transition appeared at first to be persuasive that the explanation
for observations of this structure in pretransitional flow was secure. Nevertheless, there remained a
lingering doubt. For one thing, there is the regularity of the spacing and amplitude of the roll-streak
structure in experiments [19,20], which, as remarked by Townsend [21], is characteristic of modal
growth. Then there is the observation that streamwise rolls decay in amplitude if background
turbulence levels are sufficiently low, which conforms with the expectation of roll decay associated
with the optimal growth predicted by transient growth theory [22,23], while rolls grow downstream
in the presence of moderate levels of background turbulence intensity [24], which is incompatible
with transient growth and suggestive of an underlying unstable mode.

While the absence of roll-streak instability in an unperturbed wall-bounded shear flow is
established, pseudospectral theory [25,26] reveals that a highly non-normal operator, such as that of
Navier-Stokes (NS) dynamics linearized about a strongly sheared flow, can be destabilized by small
perturbations to the dynamical operator itself. Consistently, it was recently shown that an emergent
instability with roll-streak structure arises from interaction between this structure and a field of
background turbulence with sufficient amplitude [27]. This instability does not have an analytical
expression in the linearized NS dynamics of the laminar flow because it is not a linear instability of
the laminar shear flow but instead arises from systematic organization by the roll-streak structure of
the Reynolds stress associated with the incoherent background turbulence. The analytical expression
of this instability therefore exists only in the equations for the associated statistical state dynamics
(SSD). The formulation of SSD used in this work to study this instability, referred to as S3T, is
a second-order closure of the Navier-Stokes dynamics in which full nonlinearity is retained in the
streamwise mean equation (first cumulant) while the dynamics of the perturbation covariance (second
cumulant) is linearized about the instantaneous streamwise mean flow. Nonlinear interaction occurs
between the mean flow dynamics (defined as flow components with streamwise wave number
ky = 0) and the perturbation covariance obtained from flow components with streamwise wave
number k, # 0, while nonlinearity is parametrized by a stochastic excitation in the perturbation
dynamics rather than being explicitly calculated. This quasilinear formulation in which nonlinearity
is parametrized in the perturbation dynamics has necessarily the dynamical structure of a second
order closure of the NS as noted by Herring [28]. We refer to this dynamical restriction of the full NS
equations as RNL. We employ the RNL restriction in constructing finite ensemble approximations
of the equivalently infinite ensemble S3T. Consistent with this usage, the perturbation equations
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making up the ensemble in an RNL-based approximation to S3T are used only to calculate an
approximate covariance. As a consequence, phase information is not retained for the perturbation
fields, only their second-order correlations being relevant to a second-order SSD.

As alluded to above, the approximation to the perturbation covariance obtained using RNL
dynamics can be systematically improved by forming a mean covariance from an ensemble of RNL
perturbation equations sharing a single mean flow. In the case that an N-member ensemble is used
to approximate the covariance, the SSD approximation is referred to as RNLy [29]. In the limit
N — 00, S3T dynamics is recovered. The RNL approximation has the advantage that it can be easily
implemented at high resolution. Moreover, simulations made using the RNL approximation can be
compared to the same DNS implementation that was restricted to obtain the RNL system [11,30].

Further insight can be obtained by proceeding similarly with the NS equations by formally separat-
ing the full dynamics into mean and perturbation equations and then calculating an ensemble-average
second-order closure using an N-member ensemble of perturbation equations sharing a single mean
flow in a manner parallel to the method used in constructing RNL y but retaining full nonlinearity in
the individual perturbation equations of the ensemble. This closure, which will be referred to as NLy,
corresponds to a complete cumulant expansion of the SSD solved up to second order. We find that in
our example problem satisfactory convergence of RNLy and NLy is obtained for N as small as 10.

Consider a Couette flow subjected to a random excitation that is statistically streamwise and
spanwise homogeneous and has zero mean with respect to time and space averaging. The S3T
system predicts a bifurcation occurring at a critical amplitude of the excitation in which an
unstable roll-streak structure emerges as an instability of the S3T dynamics. It is important at
this point to be clear about what entity is being referred to as unstable. The unstable mode
we are studying arises as an eigenmode with roll-streak structure at infinitesimal amplitude that
eventually grows sufficiently to become a nonlinearly equilibrated finite-amplitude equilibrium that
retains roll-streak structure. The existence of coherent roll-streak structures in the flow is therefore
explained by the growth and equilibration of this unstable mode. It is perhaps more correct to
say that the flow is unstable to this roll-streak structure than to say that this roll-streak structure
is unstable, which would admit the alternative interpretation that the finite-amplitude roll-streak
structure is itself unstable. At sufficiently high background turbulence levels the finite-amplitude
roll-streak structure proceeding from the S3T unstable mode does become itself subject to secondary
instability leading to transition to a self-sustaining turbulent state as we will show. The perturbative
S3T instability connects directly to the finite-amplitude roll-streak structure, which becomes
secondarily unstable, but these secondary instabilities are not of roll-streak form. There is an analogy
between equilibrated finite-amplitude roll-streak structures in S3T and exact coherent structures in
laminar flow [31-36], although exact coherent structures are finite-amplitude isolated equilibria
that do not connect to linear instabilities of the spanwise independent laminar flow as the S3T
roll-streak structures connect to their associated S3T unstable modes. While S3T finite-amplitude
roll-streak structures become secondarily unstable only when these roll-streak structures reach
high amplitude under excitation by strong background turbulence, the isolated exact coherent
structures generally support secondary instabilities, for example, those discussed by Deguchi and
Hall [36,37] in their investigation of the stability of the finite-amplitude states in vortex-wave
interaction theory. We remark that once its secondary instability becomes supported the coherent
roll-streak S3T equilibrium is rapidly destroyed. This observation suggests that physically realistic
levels of background turbulence should excite the parasitic modes of exact coherent structures as well.
In order to maintain such unstable structures it is necessary to suppress naturally occurring sources
of perturbations that would necessarily excite the parasitic modes to which these structures are
vulnerable. In contrast, the S3T instability results from organization of the background disturbances
that constitutes its energy source, so rather than being detrimental to it, the S3T mode growth rate
and amplitude at equilibrium increases with increasing background disturbance amplitude.

Returning now to the S3T instabilities with roll-streak form, as the background turbulence
excitation is increased, at first the streamwise and spanwise averaged mean flow differs little from
the laminar Couette profile while superimposed on this profile is a fixed-point finite-amplitude
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roll-streak structure. With a further increase in the excitation amplitude another critical value
is exceeded at which the flow transitions to turbulence. The existence of these three statistical
regimes under increasing levels of background turbulence—the near laminar state, the near laminar
with superimposed finite-amplitude equilibrated roll-streak structure, and the turbulent regime
characterized by chaotic fluctuation of the roll-streak structure in Couette flow—was predicted
using S3T [27]. The purpose of this paper is to determine whether these predictions made using S3T
are reflected in ensemble RNL and NL SSD approximations and to analyze the convergence to the
S3T predictions obtained using the RNLy and NLy approximations as N — oo.

II. FORMULATION OF THE S3T SYSTEM

Consider a plane Couette flow with streamwise direction x, wall-normal direction y, and spanwise
direction z in which background turbulence is maintained by stochastic excitation applied throughout
the flow. The lengths of the channel in the streamwise, wall-normal, and spanwise directions are,
respectively, Ly, 2k, and L,. The channel walls are at y/h = —1 and 1. Spatial and temporal
averages are denoted by square brackets with a subscript denoting the independent variable over
which the average is taken, i.e., spanwise averages by [-], = LZ_1 fOL‘"‘ - dz and time averages

by [, =T""! fOT - dt, with T sufficiently long. Multiple subscripts denote an average over the

subscripted variables in the order they appear, ie., [-], &f [[-]1c]y. The vector velocity u is

decomposed into its streamwise mean, denoted by U(y,z,7) def [u(x,y,z,1)]:, and the deviation from
this mean (the perturbation), denoted by w'(x,y,z,¢), so that u = U + w’. The pressure is similarly
decomposed as p = P(y,z,t) + p'(x,y,z,t). Velocity is nondimensionalized by the velocity at the
wallU, aty/h = 1,lengths by h, and time by &/ U,,. The nondimensional NS equations decomposed
into an equation for the mean and an equation for the perturbation are

U+U-VU+VP — AU/Re = —[u’ - Vu'],, (1a)
ou+U-Vu +u -VU+Vp —Au/Re = —u' - Vu' + [u' - VU], + /& f, (1b)
V.U=0, V.-u=0, V-f=0, (1c)

where Re = U,/ /v is the Reynolds number. The velocities and the stochastic excitation f'(x, y,z,t)
satisfy periodic boundary conditions in the z and x directions and no-slip boundary conditions
in the cross-stream direction: U(x,*1,z,¢) = (£1,0,0) and w'(x,£1,z,7) = f'(x,£1,z,#) = 0. The
stochastic excitation is applied only to the streamwise varying Fourier components of the flow. It
is nondivergent, has zero ensemble mean (f’) = 0 (the ensemble mean over excitation realizations
being denoted by (-)), and is §-correlated in time and statistically homogeneous in the x and z
directions. §-correlation in time of the excitations implies that the energy input by the stochastic
excitation is independent of the flow state and can be parametrized by ¢ in Eq. (1b). The x,y,z
components of U are (U,V,W) and the corresponding components of uw’ are (u’,v’,w’). The streak
component of the streamwise mean flow is denoted by U; and is defined as

U, €U - [U].. 2)
The streamwise mean cross-stream and spanwise velocities V and W, respectively, are found to
primarily constitute the roll vortices. We also define the streak energy density E; = [US2 /21y, the
roll energy density E, = [(V? + W?)/2] y,z» and the perturbation energy density £, = [u'|?/2].. 2+
Energy is injected from the moving walls at rate I = (2 Re)_l[E)yU | y=1 T 0,U|,__,]; and at rate &

y=
from the appropriately normalized stochastic forcing. Energy is dissipated at rate D = Re™'[|V x
u|2]x,y, .- By I. and D, we denote the energy injection and dissipation rates of the Couette flow,
respectively.

The S3T dynamics is an SSD governing the evolution of the first two cumulants consisting of
the streamwise mean flow U = (U,V,W) or U = (U,,U,,U;) and the second cumulants that are the
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same time covariances of the Fourier components of the velocity fluctuations i, , , where the index
o = x,y,z indicates the velocity component in the Fourier expansion of the perturbatlon velocity o/,

wx,y.z.t) =Y R[E (v.z.0e ], (3)

k>0

with k, the streamwise wave numbers that are excited by the stochastic excitation ()t denotes the
real part). We similarly expand the excitation in its Fourier components f’ In this study we limit the
stochastic excitation to only the streamwise fundamental wave number kx = 2m /L, and, as a result,

the subscript k, in the velocity and excitation components can be dropped without ambiguity. Because
in the S3T equations the perturbation-perturbation interactions are not included, this choice of
excitation implies that the S3T flow field perturbations have power only at the streamwise component
that is forced. The covariance variables of S3T are the covariances of the velocity components of

Fourier component k, between point 1 &ef (y1,22) and point 2 e (y2,22) evaluated at the same time:
Cop(1,2) = (1, (D) (2)), 4)

which is a function of the coordinates of the two points (1) and (2) on the (y,z) plane and of time
(* denotes complex conjugation). The S3T equations are

3 Uy + UgdpUsy + 34 P — AU, /Re = =L 91[0,C o (1,1) + 3, Co (1,1, (52)
% Cap(1,2) = Aay(DCyp(1,2) + A%, (2)Cay (12) + Qup(1,2),  (5b)
3.Uq = 0,0,(1)Cqp(1,2) = 3;(2)Cafs(l,2) =0, (5¢)

with summation convention on repeated indices and the operator hat (iky,0dy,0;) (for a derivation
see [27]). The operator A,g(1) [or Aug(2)] is the operator governing the quasilinear evolution of
streamwise varying perturbations in Eq. (1b) with streamwise wave number k, = 27/L, linearized
about the instantaneous streamwise mean flow U(1) [or U(2)] and 1 (or 2) indicates that the operator
acts on the 1 (or the 2) variable of C(1,2). Here Q,g(1,2) are the spatial covariances of the k, Fourier
components of the forcing components f; and are defined as

(fa(1,0) f§(2,12)) = 8(t1 — 12) Qup(1,2). (6)

Using S3T we can find roll-streak structures that are independent of time because their forcing
derives from a converged covariance obtained from an equivalently infinite ensemble of independent
realizations. These fixed-point equilibria are imperfectly reflected in individual realizations because
fluctuations in the covariance arise due to the finiteness of the equivalent ensemble of statistically
independent structures that fit in the channel. These fluctuations in the covariance result in imperfect
correspondence with the underlying equilibrium structure revealed by S3T (see [38,39]). In order
to verify that the S3T fixed point does in fact underly the dynamics of the roll-streak structure
observed in RNL and NS simulations it is useful to obtain solutions lying on the continuum from
the single-realization solution to the infinite-ensemble S3T fixed-point solution. The S3T dynamics
is approached by RNLy simulations as N — co. The RNLy system is governed by the system of
equations

U+U-VU+ VP — AU/Re = —{([u’ - V'], ), (7a)

u,+U-Vu, +u,-VU+ Vp, — Au,/Re = /¢f, (7b)

vV.U=0, V-u,=0, V-f =0, (Tc)

where n = 1,...,N indicates the ensemble member and (-), indicates an average over the N

ensemble members. Note that as required by correspondence with S3T dynamics, the perturbation-
perturbation interaction in Eq. (1b) is ignored.
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In a similar manner we can form ensemble NLy equations

3U+U-VU+ VP — AU/Re = —([u’ - Vu'ly)y, (82)
u,+U-Vu, +u,-VU+ Vp, — Au//Re = —u, - Vu,, + [u, - Vu,], + /¢ f, (8b)
V.U=0, V.-u,=0, V.f =0. (8c)

We are interested in whether the analytical predictions of the S3T equations are approached in RNL y
and NLy simulations as N increases. Results are presented for the minimal Couette flow channel of
Hamilton et al. [7] at R = 400 (based on channel half-width) with streamwise length L, = 1.75m,
spanwise length L, = 1.2, and channel half-width L, = 1. The gravest streamwise wave number
ky = 2w /L, is stochastically excited using independent compact support cross-stream velocity and
cross-stream vorticity structures in (y,z). Numerical calculations employ N, = 21 grid points in the
cross-stream direction and 32 harmonics in the spanwise and streamwise directions. Other stochastic
excitations produce only qualitative differences in the results. A study of the S3T dynamics of this
channel model was reported in Ref. [27].

III. COMPARISON OF ROLL-STREAK EMERGENCE AND EQUILIBRATION
IN S3T, RNLy, AND NLy

The S3T system (5) supports spanwise uniform fixed-point solutions with streamwise mean flow
form U, = (U,(y),0,0) and associated spanwise covariance C,(y1,y2,21 — 22). Taking & = 0 recov-
ers the laminar Couette flow U, = y with C, = 0. As ¢ increases the equilibrium streamwise mean
flow U,(y) departs from the Couette flow. Stability of these spanwise uniform S3T equilibria can be
determined as a function of & using the S3T equations (5) linearized about these fixed points [27].

Eigenvalues and the associated mean flow eigenfunction structure for the first two most unstable
S3T modes are shown in Fig. 1. The complete associated eigenfunctions comprise both a mean flow
component (8U(y,z2),6V(y,2),6 W(y,z)), which is shown in Fig. 1, and a covariance component
8C(y1,¥2,21,22). The structure of the mean flow component of these eigenfunctions changes only
slightly as the amplitude of the forcing ¢ increases. The eigenfunctions consist of low- and high-speed
streamwise streaks together with roll circulations exactly collocated to reinforce the streak velocity.
Despite being more highly dissipated by diffusion, the mean flow eigenfunction that becomes
unstable first as ¢ increases is not the eigenstructure with the gravest spanwise wave number
k, =2n/L, = 1.67, shown in Fig. 1(b), but the second spanwise harmonic with wave number
k, = 4m/L, = 3.33, shown in Fig. 1(a). Destabilization of these roll-streak eigenfunctions can be
traced to a universal positive feedback mechanism operating in turbulent flows: When incoherent
turbulence is perturbed by a coherent streak, the streak distorts the incoherent turbulence so as to
induce ensemble mean Reynolds stresses forcing streamwise mean roll circulations configured to
reinforce the streak perturbation that gave rise to them (see [27]). The modal streak perturbations
of the fastest growing eigenfunctions induce the strongest such feedback (when account has been
taken for viscous damping).

We note that neutral mode and critical layer based self-sustaining process (SSP) theories such
as the vortex-wave interaction (VWI) theory predict structures at variance with the S3T unstable
modes we obtain. As shown in Figs. 1(a) and 1(b), organization of the Reynolds stress by the streak
(even at perturbational amplitude) results in a smooth domainwide forcing of the roll circulation. At
high Reynolds number in the neutral mode SSP and VWI mechanisms this interaction is localized
at the critical layer [32,34,36,40]. The interaction between perturbations and mean flow in neutral
mode and VWI theories by necessity occurs near the the critical layer in the inviscid limit because
according to the nonacceleration theorem at steady state and in the absence of forcing and dissipation
there is no interaction between mean and perturbations except at the critical layer [41-43]. In S3T
there is forcing and consequently the interaction is not required to be concentrated in the vicinity
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FIG. 1. Shown on the left is the growth rate of the two most unstable S3T eigenfunctions about the spanwise
homogeneous S3T equilibrium as a function of the excitation amplitude of the background turbulence €. On the
right is the structure of the corresponding eigenfunctions with growth rate (a) and (b) for excitation amplitude
&/e. = 2. Shown are contours of the streak velocity U, and velocity vectors of the components (V, W) plotted
on a (y,z) plane cross section. The structure of these eigenfunctions does not change appreciably for /¢, < 6.
At ¢ = ¢, the S3T spanwise uniform equilibrium bifurcates to a finite-amplitude equilibrium with perturbation
structure close to that of the most unstable eigenfunction shown in (a). The channel is minimal with L, = 1.757
and L, = 1.2z, the Reynolds number is Re = 400, and the stochastic forcing excites only Fourier components
with streamwise wave number k, = 2w /L, = 1.143. The critical ¢, sustains a background turbulent field with
mean energy 0.14% of the Couette flow energy.

of the critical layer even in the inviscid limit. The modes we calculate organize distributions of
Reynolds stress with divergence exactly coherent with the mode roll structure, as is required of a
mode solution, and not in any sense concentrated at a critical surface. In fact, the lack of any evidence
for concentration of Reynolds stress divergence at a particular cross-stream location either in our
stable roll-streak regime or in our self-sustaining turbulence simulations argues against a mechanism
relying on an interaction localized at a critical surface.

Stability analysis of the spanwise homogeneous equilibrium of the S3T system determines the
critical excitation &, at which this turbulent equilibrium state becomes unstable. For the parameters
of our example problem this ¢, corresponds to maintaining in the Couette flow a perturbation
field with mean energy density 0.14% of the energy density of the Couette flow. For ¢ > ¢, the
spanwise symmetry is broken with the emergence of mean flow structures in the form of the fastest
growing eigenfunction that is shown in Fig. 1(a). Over a finite interval ¢, < ¢ < &, the unstable S3T
eigenfunction equilibrates nonlinearly to form new finite-amplitude S3T equilibria with roll-streak
structure qualitatively similar to the corresponding eigenfunction (for our examples ¢, /¢, & 5.5).

A bifurcation diagram showing the maximum of the streak velocity U, and of the streamwise
mean cross-stream velocity V is shown as a function of € in Fig. 2. The indicated critical &,
was determined by stability analysis of the S3T system. For /¢, < 1 the equilibrium is spanwise
independent with no coherent roll-streak structure. The equilibrium values shown in Fig. 2 were
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FIG. 2. Bifurcation diagram for the Couette problem. Shown is the time mean of the maximum value of the
streak amplitude U, as a function of the stochastic excitation amplitude ¢ for an NL; simulation (red curve),
an ensemble NL;, simulation (green curve), an ensemble NLo simulation (blue curve), and an ensemble
RNL gy simulation (black curve). The critical bifurcation value was determined from stability analysis of the
S3T system and it has been confirmed that this value is closely approximated using RNL . For e/e. < 1, S3T
predicts that the streamwise streak and roll amplitude is zero. At ¢ = &, the S3T spanwise uniform equilibrium
bifurcates, giving rise to a finite-amplitude equilibrium with roll and streak. The NL; and NL,, simulations
exhibit fluctuating streak-roll structures and one standard deviation of the fluctuations corresponds to the shaded
regions in the figure. The fluctuations in the ensemble NL ;oo and RNL,( simulations are small and only those
associated with NLoy are shown. Other parameters are as in Fig. 1.

obtained using RNLoy simulations. These RNL (g equilibria have been verified to be very close to
the equivalently infinite-ensemble S3T equilibria.

Single NL and ensemble NL integrations allow us to study the correspondence between the
infinite-ensemble predictions of S3T analysis and NL turbulence. While finite-ensemble simulations
produce fluctuating roll-streak structures, we find that even in the case of a realization simulation,
correspondingto N = 1, aclearroll-streak structure emerges for e > &, that exhibits great persistence
and has the same structure as that predicted by the S3T system. An indicative comparison between
an S3T equilibrium roll-streak structure and a snapshot of the corresponding roll-streak from an NL
simulation at ¢ /e, = 3 is shown in Fig. 3.

While the S3T equilibria are fixed points, the corresponding roll-streak structure in the NL;
simulation reflect the time independence of the S3T equilibria imperfectly. However, it is persuasive
that the analytical structure revealed by the S3T system underlies the behavior seen in the NL;
simulation; for example, see the snapshots shown in Fig. 4. Noise-driven fluctuations of the ensemble
structure are also apparent in the bifurcation diagram shown in Fig. 2 in which the mean and variance
of the maximum streak U, in NL; and NL,o are indicated. The reflection of the analytical S3T
bifurcation is clearly seen in the NL( results and near convergence is obtained in the NLq results.

We have demonstrated that the unstable roll-streak modes and associated finite-amplitude S3T
equilibria that are revealed by S3T analysis give rise to the structure observed in pretransitional
turbulent Couette flow in both NL and ensemble NL simulations. However, the stable S3T modes
supported in the S3T stable the interval (0 < ¢/e, < 1) are also important structures in the dynamics
of pretransitional turbulence. While not excited in the fluctuation-free S3T dynamics, these stable
S3T modes are robustly excited by fluctuations in the forcing in NL; simulations (see [38,39,45]).
Correspondingly, for subcritical excitation (0 < /¢, < 1) the mean flow of NL or ensemble NL
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FIG. 3. The top panels show a snapshot of the streamwise mean flow from an NL; simulation at stochastic
excitation amplitude ¢ /e, = 3. Shown are contours of the streamwise mean velocity U (top left), streak velocity
U (top right), and velocity vectors of the components (V,W) in the (y,z) plane at = 1000 of the simulation.
The bottom panels show the corresponding streamwise mean flow for the S3T system at ¢ /e, = 3. This figure
shows that the equilibrium roll-streak regime predicted by S3T is reflected in single realizations of the NL
equations. The development of the roll-streak structure in an NL; simulation can be seen in movie 1 of the
Supplemental Material [44]. The development of the roll-streak equilibrium in an S3T equilibrium simulation
can be seen in movie 2 in Ref. [44]. Parameters are as in the previous figures.

NL,, T = 720

NL,, T = 640

FIG. 4. Snapshots at times ¢ = 640,720,800,880 of the contours of the streak velocity U, and velocity
vectors of the components (V, W) plotted on a (y,z) plane cross section from an NL; simulation at stochastic
excitation amplitude ¢ /e, = 3. This figure shows the persistence of the organized structure in NL. This structure
and its persistence stem from the underlying equilibrium state that exists for this excitation amplitude in the
S3T dynamics. The other parameters are as in the previous figures.
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FIG. 5. Contours of streak velocity U, and vectors of roll components (V,W) plotted on a (y,z) cross
section for the first four PODs of the streamwise mean flow fluctuations of an NL, forced at /e, = 0.75.
The PODs come in pairs. The first pair of PODs that account for 82% of the energy of the fluctuations of the
streamwise mean flow has the structure of the least damped S3T mode, which because of its more effective
energetic interaction with the covariance, as revealed by S3T, is not the least viscously damped mode in the
channel. This figure shows that the fluctuations in the NL; simulations reveal the S3T stable modes. Other
parameters as in the previous figures.

simulations reveals fluctuating (y,z) structure arising from excitation of the stable manifold of
S3T eigenmodes. A proper orthogonal decomposition (POD) analysis (see [46]) of the streamwise
mean flow verifies that the streamwise mean fluctuations reflect the structure of and are ordered
by the damping of the stable eigenmodes identified by S3T analysis (see [47]). For example, the
first four PODs of NL; at ¢/e. = 0.75, shown in Fig. 5, have the structure predicted by the S3T
eigenmodes. Consistent with S3T analysis, the first POD corresponds to the mode with spanwise
wave number k, = 4 /L, which corresponds to the least stable eigenfunction at this ¢/¢.. Note
that all PODs exhibit exact alignment of the roll circulations with the streaks. These results are
consistent with identifying the POD structures with the eigenmodes predicted by S3T stability
analysis. Consistent with these stable modes being excited by turbulent fluctuations, as /g, — 1
fluctuations of roll-streak form exhibit enhanced variance (cf. Fig. 2), which is indicative of approach
to a bifurcation and is a phenomenon analogous to that of critical opalescence on approach to a fluid
phase transition.

IV. TRANSITION TO TURBULENCE

At background turbulence excitation parameters exceeding &, (&;/¢. = 5.5 for the chosen
parameters) the finite-amplitude roll-streak equilibria are no longer S3T stable and the flow transitions
to a turbulent state, which is self-sustaining and persists even when the background turbulence
excitation parameter is subsequently set to ¢ = 0 (see [27]). RNL; and NL; also transition to
essentially similar self-sustaining turbulence. Example trajectories of transition from the laminar
equilibrium state to the turbulent attractor for NL; and S3T are shown in Fig. 6.

A typical evolution of the perturbation energy density E,, streak energy density E;, and roll
energy density E, of the background turbulence excitation parameter ¢ /¢, = 9 is shown in Fig. 7 for
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FIG. 6. Evolution of energy input rate //I. and dissipation rate D/D, from the laminar state to the
turbulent state in an NL; simulation (squares and solid line) and in an S3T simulation (crosses and solid line)
with background turbulence excitation parameter €/¢. = 9. Symbols are marking intervals of ten units of time.
The metastable state is characterized by D/D, ~ 1.7. The parameters are as in the previous figures.

the case of S3T. The S3T integration was initialized with a small random streak perturbation. The
flow transitions to turbulence at time 7 & 550. In this transition process the roll-streak emerges at
first as an S3T instability that equilibrates by time 7" &~ 200 to the quasiequilibrium finite-amplitude
roll-streak structure shown in the left panel of Fig. 8. This quasiequilibrium is associated with

0.035 I I I I I I I
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0.025
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I

0.015

0.01 —

I

0.005

LZ T I

0
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FIG. 7. Evolution of the streak energy E,, roll energy E,, and perturbation energy E, in an S3T integration
at &/e, = 9 under spanwise homogeneous forcing. The flow is initialized with a small random streamwise mean
perturbation with spanwise dependence in order to break spanwise symmetry. The spanwise symmetric S3T
equilibrium is unstable and a quasisteady state emerges by time r = 200 with the roll-streak structure shown in
Fig. 8. At this supercriticality the roll-streak structure (cf. Fig. 9) is an unstable fixed point of the S3T dynamics
and the flow transitions to the turbulent state. Other parameters are as in the previous figures.
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T

450,1/1, = 1.7 T =550.1/1.=23 1 . T =600.1/I. =37

FIG. 8. Snapshots of the streamwise mean flow as it undergoes S3T transition to turbulence under stochastic
excitation. Shown are contours of the streak velocity U, and velocity vectors of the components (V, W) plotted on
the (y,z) plane. A quasisteady roll-streak structure forms initially (left panel) with input energy rate I /1. ~ 1.7
and structure near that of the fastest growing S3T instability (cf. Fig. 1), which has spanwise wave number
k., =4m/L,. At about ¢ = 550 the flow transitions through initially nearly periodic oscillations to a turbulent
roll-streak structure dominated by spanwise wave number one (k, = 2w /L.). The transition period can be
extended by enforcing the mirror symmetry of the streak-roll structure about the streak maximum. Note that
after transition the spanwise wave number of the roll-streak structure is half that of the S3T instability. Other
parameters are as in the previous figures.

an energy input rate /I, ~ 1.7, which lies approximately midway between the value associated
with the laminar state and that associated with the statistical mean of the turbulent state. At these
parameters there exists near this quasiequilibrium a symmetric unstable equilibrium, shown in
Fig. 9, which can be converged to by suppressing spanwise asymmetries. In the presence of realistic
spanwise asymmetric perturbations excitation of the unstable directions of this equilibrium at about
T =~ 550 initiates the transition to turbulence. While this pathway to turbulence is typical in all

ele.=9

FIG. 9. Unstable roll-streak S3T equilibrium at ¢ /¢, = 9. Shown are contours of the streak velocity U, and

velocity vectors of the components (V, W) plotted on a (y,z) plane cross section. Other parameters are as in the
previous figures.
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FIG. 10. Snapshots of the streamwise mean flow as it undergoes transition to turbulence in an NL; simulation
under stochastic excitation with €/, = 9. Shown are contours of the streak velocity U, and velocity vectors
of the components (V,W) in the (y,z) plane. The quasisteady roll-streak structure that initially forms, breaks
down and the flow transitions to turbulence. The transition is as in the S3T simulation (cf. Figs. 7 and 8), except
that the flow passes through the metastable state rapidly. Other parameters are as in the previous figures.

S3T simulations with ¢ > ¢, the timing of transition depends on the structure of the initialized
state, which determines the projection on the instability of the S3T unstable equilibrium state. For
example, if the flow at /¢, = 9 is constrained to have no perturbations breaking mirror symmetry
in the spanwise direction the flow is attracted to the unstable roll-streak structure shown in Fig. 9
without ever transitioning to turbulence, while if the initial flow state includes a rich spectrum of
mirror asymmetric perturbations transition to turbulence occurs rapidly.

This sequence of events, with rapid breakdown of the finite-amplitude roll-streak structure, is
observed in NL; simulations at £/¢. = 9 when the simulation is initialized with the laminar state.
The roll-streak structure associated with the underlying S3T instability arises at first, as in the S3T
simulation, but then rapidly transitions to the turbulent state. Snapshots of the roll-streak structure
during this transition, which occurs by 7" = 90, are shown in Fig. 10.

V. CONCLUSION

Statistical state dynamics makes available to analysis the manifold of instabilities associated
with the systematic organization of the background turbulence by coherent structures. In this work
the S3T implementation of SSD was used to study instabilities of this type and their nonlinear
extensions in a minimal channel configuration of Couette flow. At first a manifold of stable
modes with roll-streak form is supported as the parameter controlling the background turbulence
intensity, ¢ is increased from zero. The least stable mode of this manifold is destabilized at a critical
excitation, designated ., and a finite-amplitude stable fixed point with roll-streak structure arises
for excitations between &, and a second critical value for which the finite-amplitude roll-streak
equilibrium is destabilized, designated ¢,. For excitation exceeding &, the roll-streak equilibrium
is unstable to spanwise asymmetric perturbations and becomes time dependent, resulting in the
establishment of the turbulent state with spanwise wave number approximately half that of the
equilibrium state. Emergence of finite amplitude roll-streak structure through S3T instability and
the subsequent secondary instability provides a new route to turbulence in wall bounded shear flow.
In order to study SSD dynamics in more detail we compared S3T to ensemble implementations of
a quasilinear model sharing the dynamical restrictions of S3T (RNLy) and the associated nonlinear
model (NLy). Although the SSD instabilities and their associated fixed-point nonlinear equilibria
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and time-dependent statistical mean attractor states have analytical expression only in the S3T
implementation of SSD dynamics, the predicted dynamics is clearly reflected in both the dynamically
similar quasilinear system (RNL;) and DNS (NL,). This correspondence was further examined using
ensemble implementations of the RNL and DNS systems. As a consequence of sharing the same
dynamical restrictions, the RNLy system converges to S3T as N — co. Remarkably, the NLy
system, which corresponds to a full closure for this problem, also converges to close correspondence
with S3T as N — oo. This convergence is reflected in similar bifurcation behavior as well as
similar equilibrium structures for the stable fixed-point equilibria. As previously remarked, S3T also
predicts a second bifurcation at a higher value of the turbulent excitation parameter that results in
destabilization of the finite-amplitude roll-streak equilibria and establishment of a turbulent state
corresponding to minimal channel turbulence. Comparison with NL; simulations reveals that this
mechanism is responsible for bypass transition instigated by background turbulence rather than by
an optimal perturbation imposed at sufficiently high amplitude.
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