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Shell models of turbulence have a finite-time blowup in the inviscid limit, i.e., the
enstrophy diverges while the single-shell velocities stay finite. The signature of this blowup
is represented by self-similar instantonic structures traveling coherently through the inertial
range. These solutions might influence the energy transfer and the anomalous scaling
properties empirically observed for the forced and viscous models. In this paper we present
a study of the instantonic solutions for a set of four shell models of turbulence based on
the exact decomposition of the Navier-Stokes equations in helical eigenstates. We find
that depending on the helical structure of each model, instantons are chaotic or regular.
Some instantonic solutions tend to recover mirror symmetry for scales small enough.
Models that have anomalous scaling develop regular nonchaotic instantons. Conversely,
models that have nonanomalous scaling in the stationary regime are those that have chaotic
instantons. The direction of the energy carried by each single instanton tends to coincide
with the direction of the energy cascade in the stationary regime. Finally, we find that
whenever the small-scale stationary statistics is intermittent, the instanton is less steep than
the dimensional Kolmogorov scaling, independently of whether or not it is chaotic. Our
findings further support the idea that instantons might be crucial to describe some aspects
of the multiscale anomalous statistics of shell models.
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I. INTRODUCTION

The phenomenological Kolmogorov theory is able to catch the basic constituents of the energy
transfer mechanisms in homogeneous and isotropic turbulence, but it falls short in explaining subtle
effects such as intermittency, i.e., the existence of anomalous scaling laws for velocity increments
in the limit of high Reynolds numbers [1], where the Reynolds number Re measures the relative
importance of inertial and viscous effects. When Re → ∞, a wide separation opens between the
scale where forcing and viscous mechanism act, making the problem computationally hard and
analytically intractable. Up to now, all attempts to attack the problem for the three-dimensional
Navier-Stokes equation (NSE) have failed. As a result, many approximate approaches have been
developed in order to gain insights into the transfer mechanisms in turbulent flows. A successful
approach is represented by shell models [2–10], especially concerning the existence of intermittency
and anomalous scaling laws.

Shell models of turbulence are dynamical models that mimic the NSE in the wave-number space.
They are based on a strong reduction of the number of degrees of freedom, dividing and discretizing
the Fourier space into a number of shells equally spaced on a logarithmic scale kn = k0λ

n (a
common choice is λ = 2 and k0 = 1). Only a few representative variables un are kept for each
shell of wave numbers. Each variable is meant to represent a typical velocity fluctuation of the
original three-dimensional Navier-Stokes field δrv at scale r ∼ 1/kn. In this way, a large separation
of scales can be achieved with relatively few variables. Furthermore, inspired by the Kolmogorov
phenomenology for the direct energy transfer, these models consider only local interactions in Fourier
space, connecting dynamical evolution between three generic neighboring modes kn,kn+1,kn+2.
Finally, the models are built in such a way as to have the same inviscid invariants of the original
NSE: energy and helicity for models of three-dimensional (3D) turbulence or energy and enstrophy
for 2D turbulence.
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The success of these models lies in the fact that despite the huge simplifications, they still share
many properties with the original Navier-Stokes turbulence, including the development of anomalous
scaling laws with values of the scaling exponents very close to the ones measured in 3D turbulence
[6–8,11]. Though the turbulence even in such simplified models is far from being understood, shell
models remain important in fluid dynamics for accessing detailed properties of energy transfer
mechanisms.

In particular, in [12] the issue of intermittency was studied in one popular shell model [7] and
it was argued that anomalous scaling exponents of velocity moments can be related to the scaling
and statistics of instantons. Instantons are particular solutions of the inviscid equations of motion,
intimately connected to the finite-time blowup of the model with an infinite number of shells [13,14].
In the turbulent velocity field they are represented by coherent structures that traverse the inertial
range towards large wave numbers. In this work, we attribute the word instanton to a self-similar
inviscid structure localized in both time and scale, which is different from the viscous instantonic
solutions generated within the Martin-Siggia-Rose formalism and widely studied for the original
three-dimensional NSE and for Burgers equations [12–21].

In the following we study the structure of instantonic solutions in four different classes of shell
models [22] generalized to have a closer analogy with the original structure of the NSE decomposed
on a helical Fourier basis [23]. Helical decomposition of the NSE is useful to disentangle triad
interactions that preferentially transfer energy to small or to large scales (forward and backward
energy cascades). This statement was recently supported in direct numerical simulation of the NSE
with appropriate dynamical mode reduction [24–27] and in the equivalent helical version of shell
models [28]. Let us note that instantonic solutions were shown to be closely related to the events
preceding a shock formation in compressible flows [29], justifying their relevance also for realistic
hydrodynamical systems in the continuum. Such a relation for incompressible flows, as well as for the
case of a chaotic instanton, is unknown. Chaotic instantons may turn out to be useful for describing
an nonregular behavior in 3D Euler equations, in relation to the open problem of finite-time blowup,
and they are also conjectured to describe the Belinsky-Khalatnikov-Lifshitz singularity solution for
Einstein’s field equations of gravitation [30].

The paper is structured as follows. In Secs. II and III we review the general concepts of helical
shell models and define the instantonic solutions for such models. In Secs. IV, V, and VI we
show results from numerical simulations, concerning different aspects: the general dynamics of
the instantons, their helical structure, and the energy transfers they induce, respectively. Finally, in
Sec. VII we discuss our findings and summarize the connections between the instantonic solutions
and the stationary dynamics of shell models and real turbulence.

II. HELICAL SHELL MODELS

The three-dimensional incompressible Navier-Stokes equations can be exactly decomposed on a
base of positive and negative polarized helical waves [23]. In Fourier space, this helical decomposition
for a velocity field reads

u(k) = u+
k h+

k + u−
k h−

k , (1)

where for each wave vector k, h+
k , and h−

k are eigenvectors of the curl operator,

ik × hs
k = skhs

k. (2)

Such vectors carry, respectively, positive and negative helicity and can be taken as

hs
k = νk × κ + siνk, (3)

where k = kκ and νk is an arbitrary vector orthogonal to k. Then the two fields u+
k and u−

k are the
projections on the h+

k and h−
k directions of the Fourier coefficients of the velocity field. Plugging

decomposition (1) into the nonlinear term of the NSEs, one can distinguish eight possible nonlinear
triadic interactions depending on the signs of the corresponding helical projections [23]. Four out of
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TABLE I. Structure and coefficients of the four helical models (4) and (5). The second column lists classes
of helical interactions. Without loss of generality, we always choose a = 1. These a, b, and c coefficients ensure
energy and helicity conservation.

Model Helical modes coupling s1 s2 s3 s4 s5 s6 b c

SM1 (u+
n , u−

n+1, u+
n+2) or (u−

n , u+
n+1, u−

n+2) + − − − − + −1/2 1/2
SM2 (u+

n , u−
n+1, u−

n+2) or (u−
n , u+

n+1, u+
n+2) − − + − + − −5/2 −3/2

SM3 (u+
n , u+

n+1, u−
n+2) or (u−

n , u−
n+1, u+

n+2) − + − + − − −5/6 1/6
SM4 (u+

n , u+
n+1, u+

n+2) or (u−
n , u−

n+1, u−
n+2) + + + + + + −3/2 −1/2

eight interactions are independent, because the interactions with reversed helicities are identical. The
four structures of interacting triads will be labeled SM1-4 and they are summarized in the second
column of Table I.

It is possible to construct four different shell models with a helicity structure analogous to that of
the four subclasses of the original NSEs [22,28]:

u̇+
n = i

(
akn+1u

s1
n+2u

s2∗
n+1 + bknu

s3
n+1u

s4∗
n−1 + ckn−1u

s5
n−1u

s6
n−2

) + f +
n − νk2

nu
+
n , (4)

u̇−
n = i

(
akn+1u

−s1
n+2u

−s2∗
n+1 + bknu

−s3
n+1u

−s4∗
n−1 + ckn−1u

−s5
n−1u

−s6
n−2

) + f −
n − νk2

nu
−
n , (5)

where n = 1,2, . . . are shell indices and u+
n and u−

n are complex shell variables (speeds)
corresponding to positive and negative helicity modes. The helical indices si = ± and the coefficients
a,b,c can be found in Table I. Note that model SM1 can be split into two identical fully uncoupled
models for the variables u+

1 ,u−
2 ,u+

3 , . . . and u−
1 ,u+

2 ,u−
3 , . . .. The same is true for model SM4, where

the uncoupled models are u+
1 ,u+

2 ,u+
3 , . . . and u−

1 ,u−
2 ,u−

3 , . . .; models SM2 and SM3, on the contrary,
cannot be decoupled. In shell models (4) and (5) both the total energy E and the total helicity H are
conserved for zero viscosity and zero forcing (just as in NSEs):

E =
∞∑

n=1

En, H =
∞∑

n=1

Hn, (6)

where the energy and helicity spectra are

En = |u+
n |2 + |u−

n |2, Hn = kn(|u+
n |2 − |u−

n |2). (7)

Note that any linear combination of models SM1–SM4 conserves the total energy and helicity.
The coupling among the four models can be explicitly calculated so as to be consistent with the
structure of the NSE [31].

III. FINITE-TIME BLOWUP IN THE INVISCID MODEL

In this paper we are interested in understanding the propagation of fluctuations in the inertial
range of scales, i.e., in the inviscid limit. In such a limit, solutions of shell models are characterized
by a finite-time infinite growth (blowup) of the enstrophy [13,29,32,33]

�(t) → ∞ as t → t−c . (8)

For helical models, the enstrophy is defined as

� = ω2 =
∞∑

n=1

k2
n(|u+

n |2 + |u−
n |2), (9)
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where we also introduced ω as the square root of the enstrophy for further convenience. The
dynamical signature of this blowup is a coherent structure that travels from small to large wave
numbers in a self-similar manner.

Furthermore, it is possible to find a suitable change of variables that turns the blowup solution
into a steady-state traveling wave, which is much easier to study. Concerning the helical models, we
introduce the renormalized time τ and shell variables w±

n , respectively,

dτ

dt
= ω(t)

ω0
, w±

n (τ ) = − iknu
±
n (t)

ω(t)/ω0
, (10)

where �0 = ω2
0 is the initial enstrophy value at t = τ = 0. These variables are designed such that

their norm

‖w‖2 =
∞∑

n=1

(|w+
n |2 + |w−

n |2) = �0 (11)

is conserved. With definitions (10) it is possible to rewrite the inviscid and unforced equations (4)
and (5) in the form

(
d

dτ
+ A(τ )

)
w+

n = aλ−2w
s1
n+2w

s2∗
n+1 + bw

s3
n+1w

s4∗
n−1 − cλ2w

s5
n−1w

s6
n−2, (12)

(
d

dτ
+ A(τ )

)
w−

n = aλ−2w
−s1
n+2w

−s2∗
n+1 + bw

−s3
n+1w

−s4∗
n−1 − cλ2w

−s5
n−1w

−s6
n−2, (13)

where

A = 1

ω

dω

dτ
. (14)

For ω (square root of the enstrophy), we get

ω(τ ) = ω0 exp

(∫ τ

0
A(τ ′)dτ ′

)
. (15)

Here we wrote ω as a function of τ , which in turn is a function of original time t . Differentiating
(11) with respect to τ and using (12) and (13), one can get an explicit expression for

A = 1

�0

∑
n

Re(w+∗
n NLT +

n + w−∗
n NLT −

n ), (16)

where NLT +
n and NLT −

n represent the right-hand sides of Eqs. (12) and (13).
This renormalization completely removes the stiffness (exponential decrease in local time scale at

increasing shell numbers n) of the original system and maps the blowup limit t → t−c to the infinite
limit τ → ∞, so the solutions are well-defined globally in the renormalized time τ . Note that there
is a one-to-one exact correspondence between solutions of the original and renormalized systems,
for t < tc.

The blowup can be described asymptotically as an attractor of the renormalized dynamics [34].
For instance, as the norm ‖w‖2 = �0 is conserved, the renormalized system (12) and (13) may have
a solitary wave solution

w±
n = W±(n − sτ ), (17)

where s represents the wave speed and W±(ξ ) are functions vanishing as ξ → ±∞. Let us introduce
the scaling exponent

y = logλ

ω(τ1)

ω0
> 0, τ1 = 1/s, (18)
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where the value τ1 is defined as the renormalized time in which solution (17) travels over a single
shell n �→ n + 1. If y > 0, then the traveling wave (17) represents the self-similar finite-time blowup
for the original shell variables u±

n given by (10) as [13,34]

u±
n = iky−1

n U±[
ky
n (t − tc)

]
, (19)

where

U±(t − tc) = ω(τ )

ω0
W±(−sτ ), (20)

tc =
∫ ∞

0
exp

ω(τ )

ω0
dτ ′ < ∞. (21)

Here the condition y > 0 is necessary to ensure the convergence of the integral (21), i.e., the finiteness
of the blowup time tc.

IV. REGULAR AND CHAOTIC INSTANTONS

We have performed a series of numerical integrations of Eqs. (12) and (13), using a standard
fourth-order Runge-Kutta scheme. For each model we made a number of simulations with different
initial conditions. In the initial conditions, energy was distributed uniformly over a small interval
of shell numbers n = 10, . . . ,14; the velocity was zero elsewhere. For every initial condition, the
energy E = 1 and helicity H = 1.55 were the same, while the phases of velocity variables were
random. Since the stiffness characterizing the original shell model equations is removed in the
renormalized description, we were able to study a very large range of shell numbers (N = 120 total
shells are used in most simulations) with a shell-to-shell ratio λ = 2. Each simulation was stopped
as soon as the energy reached the highest wave number. Given the possibility to achieve extremely
high wave numbers, care must be taken when measuring the helicity H or other helicity-sensitive
quantities [in general, all observables of the form kα

n (|u+
n |β − |u−

n |β)], because huge cancellations
might take place at high wave numbers and quadruple precision arithmetic is required for large N .

Two types of limiting behavior were observed at large τ , depending on the model. Models SM1
and SM3 exhibit an attractor in the form of a traveling wave, which moves toward larger shell
numbers n keeping a constant shape W±(ξ ) and speed s [see Eq. (17)]. Models SM2 and SM4,
on the other hand, show chaotic behavior with a solution moving in the same direction of large
n. Figure 1 shows two representative cases of regular (left) and chaotic (right) dynamics. Both the
energy En and the norm |w+

n |2 + |w−
n |2 spectra at each shell are shown at equally separated moments

in renormalized time τ , showing clearly the traveling wave nature of the solution. In the first case,
the wave has a constant profile and we say that the instanton is regular, while in the second case the
profile fluctuates chaotically and we call the instanton chaotic.

At each time, the dynamics is effectively confined to a finite number of shells in the front of the
propagating pulse, while in the tail of the solution, i.e., at smaller shell numbers n, the dynamics
is frozen due to much larger characteristic time scales [see Figs. 1(a) and 1(b)]. Thinking in terms
of the original time t , the dynamics is localized in the instants immediately preceding the blowup
time tc.

Figure 2 shows the relative enstrophy growth �/�0 with τ and the corresponding logarithmic
derivative A = 1

ω
dω
dτ

[see Eq. (14)] for the different models. We clearly distinguish two different
behaviors. The enstrophy growth is exponential on average for large τ . However, the growth rate
A stabilizes near specific values for models SM1 and SM3, where the attractor in the renormalized
system is a traveling wave. On the contrary, a chaotically pulsating A is observed for models SM2
and SM4, where the attractor is chaotic.

By approaching the infinite shell number n → ∞ as τ → ∞ (corresponding to t → t−c ), the
energy gets a specific distribution over the whole range of scales, as shown in Fig. 3. The regular
instanton (models SM1 and SM3) leaves behind an asymptotically exact power-law energy spectrum,
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FIG. 1. Snapshots of the solution of Eqs. (12) and (13) at different, equally separated, moments in the
renormalized time τ , for two models with a regular and a chaotic instanton: energy spectrum for (a) model SM1
and (b) model SM2 and norm spectrum |w+

n |2 + |w−
n |2 for (c) model SM1 and (d) model SM2. Panels (e) and

(f) show the same curves as (c) and (d), without logarithmic scale on the y axis. The arrows in the background
show the direction of increasing τ .

while the chaotic instanton (models SM2 and SM4) leads to the power-law energy spectrum only
on average, and a fluctuating component remains at all scales. The scaling exponents of the energy
spectra vary greatly from model to model, a hint that the different helical nonlinear interactions
(models) may have a different degree of influence over the dynamics of the whole system when
coupled together. Figure 3 presents results for a number of different simulations, which have the
same initial amplitudes for the u±

n limited to n ∈ [10,14] but with different phases, randomly
chosen. An interesting feature that distinguishes the chaotic instantons of model SM2 from the one
of model SM4 is the increasing spread of the energy profiles at small scales shown by the former.
Simulations with larger total shells N indicate that this spread may be explained as the intermittency
phenomenon, in the context of dynamical systems [35]: In the renormalized variables, the wave
undergoes irregular jumps between periodic and chaotic dynamics and among regimes characterized
by different scalings. This is shown in Fig. 4, where we plot the probability density function (PDF)
of the local scaling exponents α of the energy spectrum En ∼ kα

n for the two models SM2 and
SM4. The scaling exponents α are related to y in Eq. (19) by α = 2(y − 1). They are calculated
by performing a power-law fit on several sections, 40 shells long, taken from the energy spectrum
curves (Fig. 3) (limited to 20 � n � 100). As one can see, while model SM4 has a distribution
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FIG. 2. (a) Relative enstrophy �/�0 growth with renormalized time τ for different models in a single
realization of the instanton. (b) Logarithmic derivative A = 1

ω

dω

dτ
for different models. The curves stabilize near

specific values (regular instantons, SM1 and SM3) or oscillate chaotically (chaotic instantons, SM2 and SM4).

peaked around α = −1.6, for model SM2 we have a wider spectrum of values with a strong peak
around α = −0.85 and a less pronounced peak around α = −1.3.

V. HELICAL STRUCTURE

Let us now analyze the helical component of the instantonic solutions. Model SM1, being made
of two decoupled Sabra models, will develop also decoupled instantons for each submodel with
different blowup times that depend on the initial condition. As a result, only the fastest instanton
will dominate the dynamics asymptotically and the connection among helicity and energy spectrum
is trivial: Hn = (−)nknEn. The very same happens for model SM4, with the only difference that
Hn = knEn (or Hn = −knEn).

On the other hand, in models SM2 and SM3 all positive and negative helical modes are coupled
and the dynamics is richer. In Fig. 5(a) we show the helicity spectrum for models SM2 and SM3 at
a late time. We immediately notice that for model SM3 there is a fast recovery of parity invariance,
u±

n �→ u∓
n , as suggested by the alternation of positive (black) and negative (gray) signs in Hn. A

further confirmation of this recovery comes from the power-law scaling

En = enk
−ξE

n , Hn = hnk
−ξH

n , (22)

where en and hn are O(1) functions of n. Exploiting (22) in the helical decomposition (7), we can
write

|u+
n |2 = (

enk
−ξE

n + hnk
−ξH −1
n

)
/2, (23)

|u−
n |2 = (

enk
−ξE

n − hnk
−ξH −1
n

)
/2, (24)
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FIG. 3. Late-time (t → t−
c ) energy spectrum En of the instantons for different helical models. Multiple

realizations are shown for the chaotic instantons (models SM2 and SM4). The dotted lines show scaling laws
that best fit the different curves.

with a power law for the relative helicity

|u+
n |2 − |u−

n |2
|u+

n |2 + |u−
n |2 ∼ kξE−ξH −1

n . (25)

Looking at Figs. 3 and 5(a), we conclude that model SM3 with ξE ≈ ξH has a strong recovery of
mirror symmetry for small scales with the power law k

ξE−ξH −1
n ≈ k−1

n .
On the other hand, for model SM2 one has ξE ≈ ξH + 1. Hence, the chaotic behavior does not

produce an exact cancellation of the leading mirror-symmetric terms and we observe k
ξE−ξH −1
n ∼ 1

in (25). Nevertheless, the PDF of the helicity at different shell numbers indicates that even model
SM2 eventually recovers parity invariance. As shown in Fig. 5(b), the PDF of Hn is strongly skewed
at shell numbers where the (helical) initial condition is nonzero (n = 12), while the same PDF
becomes more and more symmetric at increasing n. It is then argued that model SM2 will recover
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101

-2.2 -2 -1.8 -1.6 -1.4 -1.2 -1 -0.8 -0.6

PD
F(

α)

α

SM2SM4

FIG. 4. PDF of local scaling exponents α of the energy spectrum En (see Fig. 3) for models SM2 and SM4.
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FIG. 5. (a) Late-time (t → t−
c ) helicity spectra Hn of the instantons for different helical shell models.

Multiple realizations are shown for the chaotic instantons (model SM2). The two different models are shifted
vertically for clarity The segments in gray represent negative values. (b) Late-time PDF of xn ≡ Hn√

〈H 2
n 〉−〈Hn〉2

for model SM2 at different shell numbers n.

parity symmetry in a statistical sense when averaged over different instantonic solutions. However,
given the huge fluctuations in the energy and helicity spectra, this test would require an extremely
high number of instantons to converge.

VI. PROPERTIES OF INSTANTONS VS DEVELOPED TURBULENT DYNAMICS

In this section we study how the dynamics of the instantons compare with the stationary dynamics
obtained in the same models with a forcing and viscous dissipation. In particular, we are interested
in understanding whether a correlation exists between the direction of the stationary energy transfer
and the transfer properties of instantonic solutions, together with issues connected to the anomalous
scaling of the full stationary solutions.

In the stationary case, the energy transfer has been already studied in the literature [22,28,36],
showing that models SM1–SM3 have mainly a forward energy cascade (from large to small scales)
while model SM4 have a backward energy transfer but close to a quasiequilibrium state [36,37].
Recently, a model (SM2E) with the same helical structure as SM2 and second-neighbor interactions
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TABLE II. Summary of the dynamical properties of helical shell model (4) and (5) and model (26) and
(27) in both the blowup and stationary regimes. Here α is the scaling exponent of the energy spectrum for the
instanton. We recall that in the stationary regime, a forward energy cascade induces a Kolmogorov spectrum
En ∼ k−2/3

n .

Instanton dynamics Stationary dynamics

Model Type Energy transfer α Intermittency Energy dynamics

SM1 regular forward −0.56 yes forward cascade
SM2 chaotic forward −1.3 < α < −0.85 no forward cascade
SM2E chaotic backward −1.6 < α < −1.1 no backward cascade
SM3 regular forward −0.03 yes forward cascade
SM4 chaotic backward � −1.6 no backward flux + quasiequilibrium

among modes kn,kn+2,kn+3 was introduced in order to get a well developed inverse energy cascade
regime, motivated by theoretical arguments based on the structure of the triadic interactions [28]:

u̇+
n = i(akn+2u

−
n+3u

−∗
n+2 + bknu

+
n+1u

−∗
n−2 + ckn−1u

+
n−1u

−
n−3) + f +

n − νk2
nu

+
n , (26)

u̇−
n = i(akn+2u

+
n+3u

+∗
n+2 + bknu

−
n+1u

+∗
n−2 + ckn−1u

−
n−1u

+
n−3) + f −

n − νk2
nu

−
n , (27)

where, for λ = 2, the model constants are a = 1, b = −9/4, and c = −5/4. Model SM2E also
develops a chaotic instanton with a slope for the energy spectrum around α = −1.4 (discussed
later).

A. Stationary dynamics

A summary of the energy transfer direction for all five models considered here is given in Table II.
In the same table we also summarize what is known about the scaling properties of the stationary
dynamics for all models. Scaling is here intended in terms of the structure functions for the full
forced and viscous dynamics, defined as

Sp(kn) = 〈|u+
n |p + |u−

n |p〉 ∼ k
−ζp

n , (28)

where with 〈· · · 〉 we mean the average over the statistically stationary ensemble and by ζp we denote
the scaling exponents. For the case of three-dimensional Navier-Stokes turbulence, it is empirically
known that the equivalent of (28) written for velocity increments in real space, 〈(δrv)p〉 ∼ rζp ,
develops anomalous corrections: The scaling exponents do not follow a linear dimensional law
ζp − (p/3)ζ3 �= 0.

For the common choice λ = 2 the shell models SM1 and SM3 show anomalous exponents
quantitatively very close to those of the full three-dimensional NSE. Other models do not show
intermittent behavior: SM2 has a nonintermittent forward cascade and the structure functions scale
with exponents very close to ζp = p/3; SM4 has a forward helicity cascade, as for the case of the
NSE restricted to evolve only on a given sign of helical modes [24], and the scaling exponents are
very close to ζp = 2p/3; finally SM2E has neither a forward energy cascade nor a forward helicity
cascade, but the scaling exponents are still linear in p (model SM2E actually shows a forward cascade
of a third positive-definite invariant; see [38] for details). In Fig. 6 we summarize the anomalous
corrections for the stationary structure functions in the presence of viscous and forcing terms for all
models.

From the above considerations we notice that there exists a correlation between the presence of
chaotic instantons and the absence of small-scale statistically stationary anomalous scaling, at least
for the evolution of each helical shell model separately. Furthermore, we note that the absence of
anomalous scaling for the stationary statistics is also correlated to the existence of instantons with an
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FIG. 6. Anomalous corrections �p = ζp − (p/3)ζ3 to the scaling exponents of the structure functions
Sp(kn) calculated in the forced-viscous regime, as functions of the order p, for the various helical shell models.

energy spectrum steeper than the dimensional Kolmogorov scaling En ∼ k
−2/3
n . This follows from

the condition |α| > 2/3 in Table II.
The full Navier-Stokes dynamics corresponds to a mixture of the four helical classes, including

models with all possible nonlocal interactions [28]. The behavior of the full coupled system may
(or may not) inherit some properties of the individual models. In the shell model framework, this
aspect can be studied by considering a linear combination of different models, e.g., by linearly
coupling with a parameter 0 � z � 1 the dynamical evolution of two models. In Fig. 7 we show the
correlation between the anomalous correction to the sixth-order structure function �6 = ζ6 − 2ζ3 in

0
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-Δ6 α
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α = 2/3

α
-Δ6

1.0

FIG. 7. Comparison between the instantonic solution and the forced-viscous system solution, for a linear
combination of models SM2E and SM3, with coupling coefficients z and 1 − z, respectively. The left axis is
the anomalous correction to the sixth-order structure function �6 = ζ6 − 2ζ3 for the forced-viscous system
solution. The right axis is the scaling exponent α of |u±

n | ∼ kα
n for the instantonic solution. The gray line

represents the Kolmogorov scaling En ∼ k−2/3
n .
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FIG. 8. Energy transfers (29)–(31), from the scales where the initial condition is localized, towards larger
T <, smaller T >, or the same scales T 0, for various models. The values are obtained by averaging over all the
instantons in the ensemble and over different initial conditions (both differing in phases and in the number of
shells where energy is initially present); the error bars show the standard deviation.

the forced-viscous system and the scaling exponent α = 2(y − 1) of En measured in the instantonic
solution, for a linear combination of model SM3 (no inverse cascade and regular instanton with
a slope less steep than Kolmogorov’s) with model SM2E (inverse cascade and chaotic instanton
with a slope steeper than Kolmogorov’s). The transition from the very intense (regular, small |α|) to
the weak (chaotic, large |α|) instanton and the transition from an intermittent to a nonintermittent
dynamics in the forced-viscous regime occur at roughly the same value of z. The transition on the
instanton slope is sharper. Moreover, the instanton becomes chaotic already for z < 0.1, weakening
the statement about the existence of a strict correlation among the presence of anomalous scaling
and the inviscid structure of the instantonic solutions observed for the pure models (z = 0 or z = 1).
Figure 7 also shows that the transition to an intermittent scaling (−�6 > 0) is observed for values
of α around the Kolmogorov scaling (−2/3). Notice that there exists a residual intermittency even
in the region where the instanton has a slope |α| > 2/3 (z � 0.6). We cannot state if this effect is
vanishing with increasing Reynolds number because of numerical limitations.

B. Energy transfer by instantons

In order to understand the transfer properties of instantonic solutions for each of the five models,
we divided the shells inside the system into three domains: the interval of shells n where the instanton
is initialized I0 = {n1 � n � n2} and the interval of shells at larger and smaller scales, respectively,
I< = {n < n1} and I> = {n > n2}. For each instanton, we measured the energy contained in each
of the three ranges at a late time t∗ ≈ tc (very large τ ). Normalizing this number by the total energy
gives the fraction of energy transferred to larger and smaller scales, or kept in place, by a single
instanton. Formally,

T <
E (t∗) = 1

E

∑
n∈I<

En(t∗), (29)

T 0
E(t∗) = 1

E

∑
n∈I 0

En(t∗), (30)

T >
E (t∗) = 1

E

∑
n∈I>

En(t∗). (31)

034606-12



CHAOTIC AND REGULAR INSTANTONS IN HELICAL . . .

10-4

10-3

10-2

10-1

100

101

-10 -5 0 5 10

PD
F(
x n

)

xn

SM2
xn=80
xn=40
xn=20

SM2E

10-4

10-3

10-2

10-1

100

101

-10 -5 0 5 10

PD
F(
x n

)

xn

xn=80
xn=40

xn=20

SM4

10-4

10-3

10-2

10-1

100

101

-10 -5 0 5 10

PD
F(
x n

)

xn

xn=80
xn=40

xn=20

FIG. 9. PDF of xn ≡ Re[un]√
(〈Re[un]2〉)

(Re is the real part), at different scales identified by the shell number n,

for models SM2, SM2E, and SM4.

The transfers T <
E , T 0

E , and T >
E for all the models are shown in Fig. 8. These transfers are averaged

over all the instantons in the ensemble and over different choices for the width of the interval I 0

(ranging from three to seven shells). We see that in general instantons do not transfer forward (to
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small scales) a large amount of energy, in agreement also with what is shown in Fig. 3, except for
instantons of SM3, which are able to downscale almost 40% of the initial energy. For the backward
energy transfer, the main effect is detected for models SM2E and SM4. Despite the fact that the total
amounts of transferred energy are not too big, it is remarkable that the energy transfer by instantons
follows the same direction as the energy cascade in stationary turbulent dynamics (see Table II).
In particular, model SM3 has a very clear predominance in transferring forward. This might be
considered a good indication that instantons play a relevant role in such helical interactions. For the
inverse cascade, the properties of models SM2E and SM4 are less compelling but are still present.

C. Intermittency of instantons

The presence of chaotic instantons for models SM2, SM2E, and SM4 might eventually lead
to nontrivial anomalous scaling by themselves, without considering the whole forced and viscous
dynamics. In Fig. 9 we show the PDF of the real part of u+

n for different values of the shell number
n, where the statistics is obtained over O(106) instantons. As one can see, model SM2 and SM2E
show a imperfect rescaling of the standardized PDF, even though the statistics does not allow one
to make a firm statement about a strong breaking of self-similarity. The possibility that by allowing
the instantons to travel for a much larger number of shells they all converge on one single averaged
scaling exponent cannot be ruled out. This would indicate the existence of a chaotic attractor in the
renormalized dynamics.

VII. CONCLUSION

We have studied the finite-time blowup solutions (instantons) for a set of four families of helical
shell models that follow the exact decomposition of the Navier-Stokes equations in helical states. Four
models SM1–SM4 were studied with the simplest short-range interactions allowed by the symmetries
of the equations; an extra model SM2E was also considered with more nonlocal interactions in order
to study also systems with an inverse energy cascade. When the models are initialized with energy
at the large scales, the blowup solutions generate coherent structures that travel toward small scales.
For models SM1 and SM3, the instantons are regular, less steep than the Kolmogorov scaling,
and develop a self-similar asymptotic profile. For model SM4, the self-similarity holds only on
average, with the instanton showing a chaotic evolution around a well defined mean profile. For
models SM2 and SM2E, the instantons are again chaotic and oscillating among different states,
apparently breaking a self-similar propagation, even on average. All models SM2, SM2E, and SM4
have instantons with spectral slopes steeper than Kolmogorov.

The regularity or chaoticity of the blowup solutions correlates with the distinction of the various
helical interactions based on the linear stability analysis of a single triad [23]. In fact, the models with
regular instantons (SM1 and SM3) belong to categories of helical interactions where the smallest
wave number in a triad transfers energy to the other two, while the models with chaotic instantons
(SM2, SM2E, and SM4) belong to categories in which the middle wave number in a triad transfers
energy to the other two.

Another interesting correlation was observed concerning the intermittency in the stationary
dynamics for the same helical shell models. In fact, the stationary regimes of both models SM1
and SM3 show anomalous scaling exponents for the velocity structure functions, quantitatively very
similar to those of the Navier-Stokes turbulence [7,8,22]. On the contrary, models SM2, SM2E, and
SM4 do not show significant anomalous correction [28,36]. Combining two models, e.g., SM2E and
SM3, one observes that whenever the small-scale stationary statistics is significantly intermittent,
the instanton is less steep than the dimensional Kolmogorov scaling, independently of whether or
not it is chaotic. This observation supports the idea that intermittency in the forced-viscous dynamics
is influenced by instantons, if they are intense enough.

We also found a correlation between the energy transfers observed in the instantons and the
energy fluxes measured in the stationary dynamics. All the models characterized by constant fluxes
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of energy toward small scales have instantons in which the dominant energy transfer is toward small
scales and vice versa.

Finally, we have shown that model SM3 has a faster recovery of parity invariance at small scales
compared to the other models. This seems to be the case also in the stationary dynamics [31].
Furthermore, model SM3 is known to have a dynamics that is very robust with respect to variations
in the model parameters such as the shell-to-shell ratio λ or the dimensionality of the second inviscid
invariant [22]. All these clues reinforce the idea that the helical interaction present in model SM3 is
actually the dominant component of the 3D Navier-Stokes dynamics.
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