
PHYSICAL REVIEW FLUIDS 2, 034605 (2017)

Similarity transformation for equilibrium boundary layers, including effects
of blowing and suction

Xi Chen* and Fazle Hussain
Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas 79409-1021, USA

(Received 2 December 2016; published 27 March 2017)

We present a similarity transformation for the mean velocity profiles in sink flow
turbulent boundary layers, including effects of blowing and suction. It is based on symmetry
analysis which transforms the governing partial differential equations (for mean mass and
momentum) into an ordinary differential equation and yields a new result including an exact,
linear relation between the mean normal (V ) and streamwise (U ) velocities. A characteristic
length function is further introduced which, under a first order expansion (whose coefficient
is η) in wall blowing and suction velocity, leads to the similarity transformation for U

with the value of η ≈ −1/9. This transformation is shown to be a group invariant and
maps different U profiles under different blowing and suction conditions into a (universal)
profile for no blowing or suction. Its inverse transformation enables predictions of all mean
quantities in the mean mass and momentum equations, in good agreement with DNS data.
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I. INTRODUCTION

Equilibrium, denoted by the self-similarity (or self-preservation) of the mean profiles under
proper normalization [1], is one of the most fundamental concepts in turbulent boundary layers
(TBLs). It is classified into two broad categories [2]. One case involves an approximate equilibrium
where the velocity and Reynolds stresses are self-similar over most of the boundary layer, and the
other is an exact equilibrium where the self-similarity is observed over the entire layer thickness.
The zero-pressure-gradient (ZPG) TBL, containing two independent (inner and outer) scales with
the similarity properties expressed as the “law of the wall” and “defect law” [3], belongs to the
first category. In contrast, the sink-flow boundary layer, a counterpart of the laminar Falkner-Skan
boundary layers and a generic Jeffery-Hamel flow constrained by two smooth plane surfaces,
possesses many interesting properties [4,5]. This flow has an invariant velocity profile, a zero mean
entrainment, radial mean streamlines, a constant Reynolds number (Re), and a constant friction
coefficient along the stream, rendering it as the purest example of an exact equilibrium TBL [6], and
has triggered numerous studies on the scaling and flow structures [4,7–9].

Whereas the laminar sink flow is one of the few known exact solutions of the Navier-Stokes
equations [10], there is no known solution for the turbulent sink flow due to the Reynolds shear
stress. This is analogous to the ZPG TBL, where various models are developed for the unclosed mean
momentum equation. Notable works include an asymptotic logarithmic law for the mean velocity
[4,5,11], the mixing length hypothesis [12], etc. However, to emphasize, except for the logarithmic
law, few are known for the sink flow TBLs. A crucial question concerns how the exact equilibrium
state is produced [6] and whether the state is robust under various boundary conditions. This is
important because so far only the sink-flow TBL is known to display the exact equilibrium state
(first shown by Townsend [13] and Rotta [14]). To pursue more possible self-similarities in wall
flows, a general theoretical framework is thus needed which is developed in this paper.

Here, we use the Lie group symmetry analysis [10,15] to derive the self-similarity equation for
boundary layers including effects of blowing and suction. It follows a recent work by She et al. [16]
with a notable difference, viz., it transforms the mean mass and mean momentum equations to a
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FIG. 1. Sketch of a sink-flow turbulent boundary layer and the symmetry transformation from ψ(x,y) to
ψ∗(x∗,y∗) following (9), i.e., from location (x,y) to (x∗,y∗).

streamwise independent ordinary differential equation (ODE) and presents the necessary boundary
conditions for the existence of the exact equilibrium state. It systematically unifies the Falkner-Skan
laminar flows and the sink-flow TBLs having different pressure gradients and blowing and suction,
thus covering a wide class of equilibrium flows and perhaps fostering a more general study in the
future. The approach is more general than previous scaling analysis [1,5] where specific scales are
proposed for specific flows. Also note that while only the laminar cases (Blasius and Falkner-Skan)
have been studied through a symmetry analysis by Cantwell [10], as well as the smooth wall turbulent
boundary layers by Oberlack [17], we extend the symmetry analysis to include the Reynolds shear
stress and blowing and suction.

More importantly, we establish a similarity transformation for the mean velocity profile covering
ranges of blowing and suction strengths. This transformation is found to be a group invariant (in most
of the flow region except the buffer layer) and maps different U profiles under different blowing and
suction conditions into a universal profile under no blowing or suction. The latter reversely enables
calculations of all quantities in the mean mass and momentum equations—in good agreement with
direct numerical simulation (DNS) data [18]. The results indicate that the wall blowing and suction
not only preserve the equilibrium condition but also lead to a new similarity among different blowing
and suction strengths.

The paper is thus organized as follows. Section II is devoted to a symmetry analysis of the mean
mass and streamwise mean momentum equations, resulting a generalized ODE for various flows
mentioned above. The similarity transformation for U is presented in Sec. III; also included is a
prediction of the mean velocities. Section IV presents the conclusions and discussions.

II. SYMMETRY TRANSFORMATION FOR THE BOUNDARY LAYER EQUATIONS

The incompressible, two-dimensional Navier-Stokes equations with the standard boundary layer
approximation (NSBL) read

∂U

∂x
+ ∂V

∂y
= 0, (1)

U
∂U

∂x
+ V

∂U

∂y
= U∞

∂U∞
∂x

+ ν
∂2U

∂y2
− ∂R

∂y
, (2)

where U and V indicate mean streamwise (x) and wall normal y velocities; R = 〈u′v′〉 is the
Reynolds shear stress. Note that a zero R indicates the laminar flow. The boundary conditions
are U (y = 0) = 0, U (y → ∞) = U∞(x), and V (y = 0) = Vw(x), where a zero Vw indicates the
nonpenetrating wall and else for suction (a negative Vw) and blowing (a positive Vw) effects. Note
that the origin location (x,y) = (0,0) is set at the sink apex shown in Fig. 1, to explain the dilation
transformation defined later.
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Similar to the analysis of the laminar boundary layer flow, we introduce the stream function to
eliminate the mass equation. The novelty is that, due to blowing and suction effects, the velocities
are

U = ψy, V = −ψx + Vw. (3)

One can check that (3) always satisfies (1) as long as ψxy = ψyx , common to previous analysis [10].
Therefore, (2) written in stream function reads

ψyψxy − ψxψyy + Vwψyy = U∞∂xU∞ + νψyyy − Ry, (4)

where Vwψyy and Ry = ∂yR are additional compared to the Falkner-Skan equation. The idea of
symmetry analysis is that, once a specific solution (U∞,Vw,ψ,R) at the position (x,y) is given,
a series of solutions can be obtained under the group transformations. These transformations can
be calculated by requiring that the transformed variables (x∗,y∗,U ∗

∞,V ∗
w,ψ∗,R∗) satisfy the same

governing equation (4), also satisfied by untransformed variables (U∞,Vw,ψ,R). Technically, such
transformations can be obtained via mathematical software such as MAPLE, and the resultant group
invariants (easily obtained by eliminating group parameters) can be used as similarity variables
to readily transform the partial differential equation (PDE) to an ODE. This is different from the
sophisticated dimensional analysis where the similarity variables are mostly obtained by trial and
error [10]. Here, following the customary procedure, we search for the dilation symmetry permitted
by (4) and show how (4) is transformed to an ODE; for more symmetries permitted by (4) in terms
of infinitesimals, see the Appendix.

Denote the dilations as

x∗ = ea1x, y∗ = ea2y, U ∗
∞ = ea3U∞,

(5)
V ∗

w = ea4Vw, ψ∗ = ea5ψ, R∗ = ea6R,

where a6 = a3 + a4, as made apparent in (7) and (8) later. This indicates that the dilation for R

depends on the dilations for the velocities since R is a product of u′ and v′. Substituting (5) into (4),
we obtain

e(2a2+a1−2a5)ψ∗
y∗ψ

∗
x∗y∗ − e(2a2+a1−2a5)ψ∗

x∗ψ
∗
y∗y∗ + e(2a2−a4−a5)V ∗

wψ∗
y∗y∗

= e(a1−2a3)U ∗
∞∂x∗U ∗

∞ + e(3a2−a5)νψ∗
y∗y∗y∗ − e(a2−a6)R∗

y∗ . (6)

The dilation symmetry of (4) requires

2a2 + a1 − 2a5 = 2a2 − a4 − a5 = a1 − 2a3 = 3a2 − a5 = a2 − a6, (7)

where four of the six free coefficients ai (i = 1,2, . . . ,6) can be determined from (7). Without losing
generality, we denote the two free coefficients as a1 = ε and a3 = βε. Thus, the other four are given
as

a2 = (1 − β)ε/2, a4 = (β − 1)ε/2,

a5 = (1 + β)ε/2, a6 = (3β − 1)ε/2. (8)

Substituting (8) back into (5) yields the two-parameter (ε,β ∈ R) dilation symmetry group:

x∗ = eεx, y∗ = e(1−β)ε/2y, U ∗
∞ = eβεU∞,

(9)
V ∗

w = e(β−1)ε/2Vw, ψ∗ = e(1+β)ε/2ψ, R∗ = e(3β−1)ε/2R,

which has a clear explanation, i.e., a mapping of a solution at the location (x,y) to a series of solutions
at locations (x∗,y∗) in the sink flow when the two parameters ε and β vary (see Fig. 1). Note that
translations for x, y, ψ , and R also keep (4) invariant, which, however, break the invariance of wall
conditions ψ(x = 0) = 0 and R(y = 0) = 0, and hence are not considered here.
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An important fact is that the symmetry group (9) implies the necessary boundary conditions for
the existence of the equilibrium state (i.e., the similarity solution) as follows. By integrating the
characteristic equations of (9), i.e.,

dx

x
= dy

(1 − β)y/2
= dU∞

βU∞
= dVw

(β − 1)Vw/2

= dψ

(1 + β)ψ/2
= dR

(3β − 1)R/2
, (10)

we obtain five independent dilation invariants:

I1 = y/x(1−β)/2, I2 = U∞/xβ, I3 = Vw/x(β−1)/2,
(11)

I4 = ψ/x(1+β)/2, I5 = R/x(3β−1)/2,

which are explained in order. The first invariant I1, in analogy to the similarity variable χ =
y/

√
νx/U∞ in the Blasius equation, describes the characteristic line of the dilation, i.e., y =

I1x
(1−β)/2. The second invariant I2 indicates that the pressure gradient parameter Kp ≡ ν∂xU∞/U 2

∞,
widely used in the literature (e.g., [5,6]), must satisfy

Kp = νβ/(I2x
β+1) ∝ x−1−β, (12)

where U∞ = I2x
β is substituted. Moreover, I3 requires a streamwise dependent blowing and suction

velocity Vw ∝ x(1−β)/2. Finally, I4 and I5 respectively indicate the invariants along the characteristic
lines, composed of ψ and R (both are dependent variables) with x.

Here, we are particularly interested in the specific case β = −1, which corresponds to the
sink-flow TBL. It is known that for sink TBL, the boundary conditions are U∞ ∝ 1/x and Kp = const
[5,6]. Then, (12) yields β = −1. In fact, taking β = −1, we have y = I1x corresponding to the
radial mean streamline in Fig. 1 [5]. Moreover, I2 = U∞x indicates the sink strength in [4], and
Vw ∝ U∞ ∝ 1/x is the exact blowing and suction setting in the DNS by Patwardhan [18]. In such
a case, ψ is invariant under dilation as sketched in Fig. 1. Note that all of the group parameters are
independent of viscosity (or Re). Such a Re-independent dilation invariance should be considered a
significant property of the sink-flow TBL, because the symmetry could be physically identified in
the flow field without changing the viscosity (by different fluids).

Furthermore, the PDE system (1) and (2) is now transformed to an ODE under (9). Before we
proceed, it is natural to normalize the above invariants to be dimensionless using ν (viscosity) and
I2 (sink strength) [10], which are

α = I1

√
−I2/ν = y

√
−U∞/(xν),

γ = I3/
√

−I2ν = Vw/
√

−U∞ν/x,

F = I4/
√

−I2ν = ψ/
√

−U∞νx,

E = I5/

√
−I 3

2 ν = R/

√
−U 3∞ν/x (13)

(negative I2 due to U∞ < 0 in Fig. 1). Substituting (13) and (11) into (4) we obtain

Fααα + (1 + β)FFαα/2 − βF 2
α + β + Eα − γFαα = 0, (14)

which describes a class of the self-preserving flows. Here, γ represents the dimensionless blowing
and suction velocity. For β = 0 (ZPG), E = 0 (laminar flow), and γ = 0 (nonpenetrating wall),
(4) is the Blasius equation for laminar boundary layers. For nonzero β with E = γ = 0, (4) is
the Falkner-Skan family of boundary layers, with an exact analytical solution for β = −1 (i.e.,
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Fα = 3 tanh2[α + tanh−1 √
2/3] − 2) [10]. Moreover, for β = −1 with nonzero E and γ , (4)

becomes

Fααα + F 2
α − 1 + Eα − γFαα = 0, (15)

which is the self-preserving form of the sink-flow TBL with blowing and suction effects. Note that
(15) has been obtained by [5] (for γ = 0) and [18] (for γ = 0) by dimensional analysis (assuming a
specific self-similarity). However, the symmetry analysis here is more straightforward (the advantage
as emphasized in [10]) resulting from the NSBL equation, and (14) is more general than (15) which
indicates that there may exist other equilibrium flows with different values of β and γ (an open issue
for future study).

Several interesting results can be deduced for β = −1. First, it is derived from the definition
that the wall friction velocity uτ ≡ √−ν∂yU |y=0 = −U∞

√
Fαα|α=0Kp scales the same as the

free-stream velocity, i.e., uτ ∝ −U∞ (since Kp =
√

−νx−1U−1∞ is a constant). Then, the similarity
variable α (dimensionless invariant) in (15) actually scales the same as the viscous unit, i.e.,
α = y+U+

∞
√

Kp ∝ y+, and (15) can be rewritten as

∂2U+

∂y+2
+ ∂R+

∂y+ = γU+
∞

√
Kp

∂U+

∂y+ − KpU+
∞

(
U+2

∞ − U+2
)
, (16)

where superscript + denotes viscous normalization, i.e., y+ = yuτ /ν, U+
∞ = −U∞/uτ , U+ =

−U/uτ , R+ = R/u2
τ , and V + = V/uτ (all normalized variables are positive). A validation of (16) is

shown in Fig. 2, in agreement with our theoretical descriptions obtained from (37)–(39) (explained
later). Note that superficially (16) shows no explicit Re dependence, but in fact the latter is contained
in the pressure gradient parameter Kp. In the DNS data of [18], KP ≈ 7.71 × 10−7 is fixed while
the dimensionless blowing and suction strength γ = Vw/

√−U∞ν/x (invariant along the stream)
varies within a typical range from −0.34 to 0.68. This thus allows us to focus on the wall blowing
and suction effects here, leaving the Kp effect for future study (we hence omit the Kp dependence
below).

Moreover, an exact relation between U+ and V + following the definition (3) is obtained:

V + = V +
w − KpU+

∞y+U+. (17)

Here ψ = νF/
√

Kp and ψx/uτ = KpU+
∞y+U+ are substituted (note also V +

w = Vw/uτ ). The
comparison with DNS data [18] is shown in Fig. 2. Note that the remarkable linear slope extends
from the wall to the entire flow region. The data agree with the theoretical KpU+

∞ in (17) closely,
thus validating the above analysis.

III. A SIMILARITY TRANSFORMATION FOR DIFFERENT γ ’S

We pursue the following question, i.e., how the wall blowing and suction influences the mean
velocity. To address this, let us recall a similar problem in compressible flows where the mean
velocity is altered by the density variation. Through the well-known van Driest transformation,
different mean velocities at different M’s (Mach numbers) are transformed into a universal profile
at M = 0 [19,20]. Similarly, it is natural to make an analogy that mean velocities at different γ ’s
would be transformed to be the universal one at γ = 0, when wall blowing and suction effects are
considered in a proper way [see Figs. 3(a) and 3(b)]. This is formally expressed as

U+
∗ (y+,0) =

∫
φS+(y+,γ ) dy+, (18)

where U+
∗ is the mean velocity at γ = 0, i.e., U+

∗ = U+(y+,0); φ(y+,γ ) is the weighting function,
and S+(y+,γ ) = ∂y+U+ is the mean shear obtained from mean velocity profile U+(y+,γ ) for
blowing and suction conditions. Note that φ is a function of mean density in the van Driest
transformation; here φ is unknown a priori, whose determination (as below) thus achieves a
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(a) (b)

(c) (d)

FIG. 2. (a)–(c) Budgets of (16): symbols, DNS data [18] for γ = −0.17, −0.34, and 0.68; lines, theoretical
description; squares, ∂2U+/∂y+2; circles, ∂R+/∂y+; and triangles, the right-hand side of (16). (d) Verification
of the linear relation between V + and U+ for different γ ’s where lines denote (17). Each profile has been
vertically shifted by 0.2 for better display.

quantitative characterization of the blowing and suction effects. To emphasize, the existence of
such a φ in (18) is nontrivial, because it requires that the wall blowing and suction not only preserve
the streamwise equilibrium condition, but also lead to a new similarity among different γ ’s never
addressed before.

In fact, (18) has a transparent physical meaning. To see this, let us differentiate (18) with y+
and obtain φ−1 = S+/S+

∗ . The latter indicates that φ−1 is the relative variation of the mean shear
S+(y+,γ ) divided by S+

∗ = S+(y+,0) in the case of the nonpenetrating wall. This is very much like
the case in the rough pipes [21,22], where the mean flux in rough pipes subtracted by the smooth
wall flux (the so called Hamas function) is the right quantity to reveal the similarity induced by
roughness elements. This also inspires us to seek the expression of the φ function.

Note that the transformation (18) implies a γ -independent quantity φS+ (= S+
∗ ). It motivates us

to study the symmetry of (16), where group invariants independent of γ can be calculated from the
first principle. To extend the symmetries of (16), we take the derivative of (16) with respect to y+ to
obtain the PDE system:

S+ = ∂y+U+,

∂2S+

∂y+2
+ ∂2R+

∂y+2
= γU+

∞
√

Kp

∂S+

∂y+ + 2KpU+
∞U+S+. (19)

Here, Kp (pressure gradient) is a constant; U+
∞ depends on γ ; and U+, S+, and R+ depend on

γ and y+. Then, using MAPLE, the infinitesimals for the symmetry transformation of (19) are
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(a) (b)

(c) (d)

(e)

FIG. 3. A comparison of mean velocity profiles for different γ ’s (a) before and (b) after transformations.
(c) Measurement of η = −1/9 (line) by plotting γ −1(S+

∗ /S+ − 1) using DNS data. Note that scatters towards
free stream are due to S+

∗ and S+ approaching zero (hence S+
∗ /S+ is very sensitive to data). A comparison is

shown of the departures before and after transformation, i.e., (d) U+ − U+
∗ (solid symbols) versus U+

T − U+
∗

(open symbols) and (e) U+/U+
∗ − 1 (solid symbols) versus U+

T /U+
∗ − 1.

calculated:

ξ ′
γ = F1,

ξ ′
y+ = (F2/2)y+2 + F3y

+ + F4,

η′
U+ = −γF2/(2

√
Kp) + (F3 + F5)U+,

η′
S+ = S+(F5 − F2y

+),
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η′
R+ = U+U+

∞
√

KpF1 + (3S+/2 + R+/2 − γU+U+
∞

√
Kp)y+F2 − 2γU+U+

∞
√

KpF3

+ (R+ − γU+U+
∞

√
Kp)F5 + (R+ + S+)F6 + F7y

+ + F8,

η′
U+∞ = −(y+F2/2 + 3F3 + F5 − F6)U+

∞, (20)

where Fi (i = 1, . . . ,8) are arbitrary functions of γ and U+
∞. The corresponding characteristic

equations for group invariants are

dγ

F1
= dS+

(F5 − F2y+)S+ = dy+

(F2/2)y+2 + F3y+ + F4
= · · · . (21)

Since our goal is a γ -independent φS+, we focus on the invariant composed only of γ and S+ by
integrating the first equation in (21), i.e.,

IS = ln(S+) −
∫

(F5/F1) dγ + y+
∫

(F2/F1) dγ. (22)

Therefore, Is and any function of Is are also group invariants independent of γ . While this gives a
general expression for a γ -independent quantity, we need to further identify the explicit expression
of φS+. As shown below, φS+ is indeed a function of Is and hence also a group invariant in most of
the flow region (where S+ � 1 or S+ ≈ 1). This is important because it supports that S+

∗ = φS+ is
indeed a γ -independent quantity based on the first principle [i.e., the symmetry of (19)].

Below we start to derive an analytical φ once the mean velocity profile U+(y+,γ ) is known. At
first, integrating (16) from 0 to y+ yields

S+ + M+ = 1, (23)

where M+ is the sum of the shear stress (RS), the pressure gradient effect (PG), and the mean vertical
convection (VC), i.e.

M+(y+,γ ) = R+︸︷︷︸
RS

+Kpy+U+3
∞︸ ︷︷ ︸

PG

− γ
√

KpU+
∞U+ − KpU+

∞

∫ y+

0
U+2 dy ′

︸ ︷︷ ︸
VC

. (24)

By dimensional analysis, a characteristic length function is introduced:

�+(y+,γ ) =
√

M+/S+ = √
1 − S+/S+. (25)

Therefore,

�+

�+∗
=

√
1 − S+/S+√
1 − S+∗ /S+∗

= φ
√

1 − S+
√

1 − φS+ , (26)

where �+
∗ = �+(y+,0). Then, (26) leads to an important expression for φ in terms of S+ and �+/�+

∗ ,
i.e.,

φ = 2ξ/[1 +
√

1 + 4ξ (ξ − 1)/(�+/�+∗ )2], (27)

where ξ = 1/S+ (= 1/∂y+U+). Now, the key is to estimate �+/�+
∗ as below. Considering that the

moderate blowing and suction effect is indicated by a small parameter |γ | < 1 (validated by all the
data here), an expansion of �+(y+,γ ) in γ is thus

�+(y+,γ ) = �+
∗ (1 + ηγ + η′γ 2 + higher-order terms), (28)

where coefficients η = ∂γ (�+/�+
∗ )|γ=0 and η′ = 1

2∂γ [∂γ (�+/�+
∗ )]|γ=0 are generally functions of y+.

For simplicity, the expansions are truncated at the first order, i.e., �+ ≈ �+
∗ (1 + ηγ ), which, after a

substitution into (27), yields

φ ≈ 2ξ/[1 +
√

1 + 4ξ (ξ − 1)/(1 + ηγ )2] (29)
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and hence

S+
∗ = φS+ ≈ 2/[1 +

√
1 + 4ξ (ξ − 1)/(1 + ηγ )2]. (30)

The relation between (30) and the symmetries of (19) is further discussed here. Note that for
ξ = 1/S+ � 1 or S+ � 1 (data showing S+ < 0.1 beyond the buffer layer edge y+ ≈ 30), (30)
approximates to

S+
∗ = φS+ ≈ 2/[1 +

√
1 + 4ξ 2/(1 + ηγ )2]. (31)

Importantly, φS+ in (31) is indeed a function of the group invariant IS , i.e.,

φS+ ≈ 2/[1 +
√

1 + 4ξ 2/(1 + ηγ )2]

= 2/[1 +
√

1 + 4/(eIs )2]. (32)

Here, after substituting the following specific conditions in (22), i.e.,

F5 = −ηF1/(1 + γ η), F2 = 0, (33)

the invariant IS is given as

IS = ln(S+) + ln(1 + γ η). (34)

Therefore, (32) tells us that φS+ in (31) is also a group invariant and, hence, independent of γ and
equal to S+

∗ . Note that Eqs. (20) and (33) are permitted by (19), but not by (16), due to the cubic term
U+3

∞ in (16). Furthermore, the above analysis also applies to ξ ≈ S+ ≈ 1 (viscous sublayer), where
(30) approximates to S+

∗ ≈ S+ ≈ 1. The latter is of course a group invariant with F5 = F2 = 0 in
(20); this result trivially follows from the Taylor expansion U+

∗ ≈ U+ ≈ y+ at the wall.
The value of η is empirically measured as below. From (29), φ ≈ 1 + ηγ for ξ � 1, indicating

η ≈ γ −1(φ − 1) for y+ � 1. Therefore, we use DNS to evaluate η by plotting γ −1(S+
∗ /S+ − 1) [see

Fig. 3(c)], which is suggested as

η ≈ −1/9. (35)

Note that values of η between −0.12 and −0.10 improve the collapse of the velocity profiles,
and we therefore set it to −1/9, which is very close to −0.11. Currently we do not have a clear
physical explanation of η = −1/9, although it may have an interpretation in the future. In other
words, η is currently derived empirically rather than theoretically. Also, there is larger data scatter
towards the outer flow; this is because both S+

∗ and S+ approach zero in the outer flow, hence their
ratio is rather sensitive to the data quality. Here the negative sign indicates that �+ decreases with
increasing γ , which is physical. This is because a larger γ indicates more mean vertical convection
to be compensated by pressure force in (24), hence a relatively smaller M+ and a smaller �+. An
interesting topic for future study is how η depends on Kp and Re.

Therefore, we obtain the final transformation by substituting (29) with (35) into (18). Figure 3(a)
shows notable departures of U+ profiles from each other before the transformation, and the departures
increase apparently with increasing wall distance. In contrast, Fig. 3(b) shows the transformed
velocities (U+

T ) according to (18), which remarkably collapse onto the universal one U+
∗ for the entire

flow region. To display the quality of the collapse, Fig. 3(d) compares U+
T − U+

∗ (open symbols)
with U+ − U+

∗ (solid symbols). While the maximum difference between two velocity profiles
before transformation is between γ = −0.3417 and γ = 0.6834, i.e., �Umax = U+(∞,0.6834) −
U+(∞, − 0.3417) ≈ 1.8, differences after transformation are mostly bounded within 0.4. We further
plot U+

T /U+
∗ − 1 in Fig. 3(e), which is bounded within 2% after the transformation. The collapse

of data, although not an order of magnitude reduction, is still satisfactory since we only use a linear
expansion for �+/�+

∗ (i.e., a constant η).
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(a)

(b)

FIG. 4. Verification of (37). (a) Predicted Û+ (lines) from U+
∗ by (37) compared with DNS data (symbols).

Each profile has been vertically shifted (by 2) for better display. (b) Relative errors (×100) are uniformly
bounded within 2% for the entire flow region.

The performance of the transformation (18) is further illustrated by a reverse transformation from
U+

∗ to U+. In order words, we predict U+’s at different γ ’s from the single profile U+
∗ (y+). Note

that, according to (27) and (29), we have

S+ = 2/[1 +
√

1 + 4ξ ∗(ξ ∗ − 1)(�+/�+∗ )2]

≈ 2/[1 +
√

1 + 4ξ ∗(ξ ∗ − 1)(1 + ηγ )2], (36)

where ξ ∗ = 1/S+
∗ (and η = −1/9). Thus, by integrating (36) with y+, the resulting mean velocity is

Û+ =
∫

S+(ξ ∗,γ ) dy+. (37)

The results are shown in Fig. 4. One can see the agreement is very good and the relative errors are
within 2% for the entire flow region. Note that one may introduce a damping function [23] to model
�+ and hence obtain U+. This is another topic to be presented elsewhere.

Moreover, the wall normal mean velocity is given based on the single U+
∗ y+ profile. According

to (17) we have

V̂ + = γ
√

KpÛ+
∞ − KpÛ+

∞y+Û+, (38)
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FIG. 5. Comparison of V̂ + from (38) with DNS data. Data are vertically shifted by 0.2 for each profile.

which indicates the wall normal velocity monotonically decreases from the wall due to the sink-flow
constraint. Figure 5 shows the comparison between V̂ + and data, and the agreement is good. In
addition, the Reynolds shear stress from (16) is

R̂+ = 1 − ∂y+Û+ − Û+3
∞ Kpy+ + γ

√
KpÛ+

∞Û+ + KpÛ+
∞

∫ y+

0
Û+2 dy ′. (39)

Using (38) and (39), we thus calculate the budget of terms in (16), which is displayed in Figs. 2(a)–
2(c), also in good agreement with data. The results in turn support well the similarity transformation
(18).

IV. DISCUSSIONS AND CONCLUSIONS

We present a first similarity transformation for the mean velocities in sink-flow TBL with blowing
and suction effects. It achieves a mapping of different U+’s at different blowing and suction strength
γ ’s into a universal U+

∗ at γ = 0. The result builds on a Lie group symmetry analysis which derives
the self-similarity equation (ODE) for the mean mass and momentum, and unifies the Falkner-Skan
equation and the sink-flow TBL with different pressure gradient and blowing and suction effects.
Unlike dimensional analysis where there are various ways to combine primary variables, the dilation
symmetry here straightforwardly leads to the similarity variables. The latter has been emphasized
as an advantage of symmetry analysis by Cantwell [10], who has suggested it to be used along with
dimensional analysis.

In the second part of this paper, a characteristic length is introduced whose first order expansion
in γ leads to an analytical expression of the transformation. The latter is further shown to be a group
invariant in the flow region where S+ ≈ 1 or S+ � 1. Note that the expansion is key to the success
of the transformation, which means that blowing and suction conditions can be effectively described
by the relative variation (ratio) of length functions. Such a procedure (by characteristic lengths) was
introduced by She et al. [22] as a new way to quantify turbulent wall flows (with more results to
be presented). The accurate descriptions of the mean flow quantities from the single profile U+

∗ (y+)
indicate that the wall blowing and suction not only preserve the equilibrium condition but also lead
to a new similarity among different γ ’s.

A further discussion on the meaning of the dilation symmetry is presented here. Note that (9)
means that if U (x,y) is a solution of the sink-flow TBL, U ∗ = e−εU , x∗ = eεx, y∗ = eεy is also a
solution. In other words, (9) implies a similarity solution of the form U = x−1f (y/x) for the sink-
flow TBL, just like the Blasius similarity solution U = g(y/

√
x) for the flat plate laminar boundary
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layer. As the former can be rewritten as U+ = f (y+) since uτ ∝ x−1 and y+ = yuτ /ν ∝ y/x, (9)
also indicates that the mean velocity profiles at different streamwise locations would collapse when
nondimensionalized by uτ and y+. However, to emphasize, (9) does not result in any specific form
of U+. The latter may allow the scaling such as the logarithmic law in the overlap region or the
exponential law in the wake region as proposed by Oberlack [17]; nevertheless, these scalings are
just “candidate” invariant solutions but not a direct consequence. This is the difference between our
current work and that of Oberlack [17].

This work also opens several important issues which are explained briefly. The first is on the Kp

effect. While the current study focuses on a specific Kp, more calculations are needed for different
Kp’s to validate the transformation with an appropriate η. Second, towards a compete analytical
description of mean velocity profiles [for instance, the U+

∗ (y+)], closure assumptions such as the
mixing length model or the asymptotic logarithmic law can be introduced. Along this direction, a
third-parameter paradigm, i.e., Reθ − Kp − γ , is expected in analogy to [4]. Third, it is important
to delineate the γ range where the similarity transformation holds, as a huge intensive blowing
and suction effect would break the similarity transformation and the equilibrium flow state. This is
already mentioned in the preceding expansion analysis where |γ | < 1 is noted. Finally, a similar
analysis can be carried out for the sink-flow TBL with different roughness effects [24]. Note that
extending the current work to source flows would be interesting to determine if the rich variety of
similarity flow states [25,26] would be broken by blowing and suction. All these to be pursued in
the future are essential to the fundamental understanding of turbulent wall flows.
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APPENDIX: SYMMETRIES OF (4)

More symmetries of (4) can be calculated by using algebraic software. Below are the results
obtained by using MAPLE:

ξ ′
x = G1(x),

ξ ′
y = (1 +

•
G1 /2)y + G2(x,U∞,Vw),

η′
ψ = (

•
G1 /2 − 1)ψ + G3(x),

(A1)

η′
R = −(

•
G1 /2 + 3)R + ∂xG4(x,y) + G5(x,U∞,Vw),

η′
U∞ = −2U∞ + ∂yG

′
4/U∞,

η′
Vw

= −(
•

G1 /2 + 1)Vw + ψ
••
G1 /2 +

•
G3 ,

where ξ ′
i and η′

i are infinitesimals for independent and dependent variables, respectively; the overdot

indicates
•
G = dG/dx and

••
G = d2G/dx2. Note that (A1) is equivalent to the dilation group (9) by

letting G2 = G3 = G4 = G5 = 0 and G1 = −2x/β. Also note that due to the boundary condition
(U = R = ψ = 0 at the wall) with the fixed sink apex, no translation or rotation is permitted. In this
paper, we focus on the dilation group (9) in analogy to the Blasius equation for laminar flows, and
the resulting symmetry is sketched in Fig. 1.
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[21] J. Jiménez, Turbulent flows over rough walls, Annu. Rev. Fluid Mech. 36, 173 (2004).
[22] Z. S. She, Y. Wu, X. Chen, and F. Hussain, A multi-state description of roughness effects in turbulent pipe

flow, New J. Phys. 14, 093054 (2012).
[23] S. B. Pope, Turbulent Flows (Cambridge University Press, Cambridge, UK, 2000).
[24] J. Yuan and U. Piomelli, Numerical simulations of sink-flow boundary layers over rough surfaces, Phys.

Fluids 26, 015113 (2014).
[25] H. K. Moffatt, Viscous and resistive eddies near a sharp corner, J. Fluid Mech. 18, 1 (1964).
[26] H. K. Moffatt and B. R. Duffy, Local similarity solutions and their limitations, J. Fluid Mech. 96, 299

(1980).

034605-13

https://doi.org/10.1017/S0022112008004989
https://doi.org/10.1017/S0022112008004989
https://doi.org/10.1017/S0022112008004989
https://doi.org/10.1017/S0022112008004989
https://doi.org/10.1063/1.3453711
https://doi.org/10.1063/1.3453711
https://doi.org/10.1063/1.3453711
https://doi.org/10.1063/1.3453711
https://doi.org/10.1017/S0022112000002597
https://doi.org/10.1017/S0022112000002597
https://doi.org/10.1017/S0022112000002597
https://doi.org/10.1017/S0022112000002597
https://doi.org/10.1017/S0022112008004047
https://doi.org/10.1017/S0022112008004047
https://doi.org/10.1017/S0022112008004047
https://doi.org/10.1017/S0022112008004047
https://doi.org/10.1017/S0022112086001751
https://doi.org/10.1017/S0022112086001751
https://doi.org/10.1017/S0022112086001751
https://doi.org/10.1017/S0022112086001751
https://doi.org/10.2514/8.3889
https://doi.org/10.2514/8.3889
https://doi.org/10.2514/8.3889
https://doi.org/10.2514/8.3889
https://doi.org/10.1017/S0022112072002903
https://doi.org/10.1017/S0022112072002903
https://doi.org/10.1017/S0022112072002903
https://doi.org/10.1017/S0022112072002903
https://doi.org/10.1017/S0022112009993430
https://doi.org/10.1017/S0022112009993430
https://doi.org/10.1017/S0022112009993430
https://doi.org/10.1017/S0022112009993430
https://doi.org/10.1063/1.868336
https://doi.org/10.1063/1.868336
https://doi.org/10.1063/1.868336
https://doi.org/10.1063/1.868336
https://doi.org/10.1017/S0022112068001953
https://doi.org/10.1017/S0022112068001953
https://doi.org/10.1017/S0022112068001953
https://doi.org/10.1017/S0022112068001953
https://doi.org/10.1016/0376-0421(62)90014-3
https://doi.org/10.1016/0376-0421(62)90014-3
https://doi.org/10.1016/0376-0421(62)90014-3
https://doi.org/10.1016/0376-0421(62)90014-3
http://arxiv.org/abs/arXiv:1112.6312
https://doi.org/10.1017/S0022112000002408
https://doi.org/10.1017/S0022112000002408
https://doi.org/10.1017/S0022112000002408
https://doi.org/10.1017/S0022112000002408
https://www.researchgate.net/profile/Saurabh-Patwardhan/publication
https://doi.org/10.2514/8.1895
https://doi.org/10.2514/8.1895
https://doi.org/10.2514/8.1895
https://doi.org/10.2514/8.1895
https://doi.org/10.1103/PhysRevLett.109.054502
https://doi.org/10.1103/PhysRevLett.109.054502
https://doi.org/10.1103/PhysRevLett.109.054502
https://doi.org/10.1103/PhysRevLett.109.054502
https://doi.org/10.1146/annurev.fluid.36.050802.122103
https://doi.org/10.1146/annurev.fluid.36.050802.122103
https://doi.org/10.1146/annurev.fluid.36.050802.122103
https://doi.org/10.1146/annurev.fluid.36.050802.122103
https://doi.org/10.1088/1367-2630/14/9/093054
https://doi.org/10.1088/1367-2630/14/9/093054
https://doi.org/10.1088/1367-2630/14/9/093054
https://doi.org/10.1088/1367-2630/14/9/093054
https://doi.org/10.1063/1.4862672
https://doi.org/10.1063/1.4862672
https://doi.org/10.1063/1.4862672
https://doi.org/10.1063/1.4862672
https://doi.org/10.1017/S0022112064000015
https://doi.org/10.1017/S0022112064000015
https://doi.org/10.1017/S0022112064000015
https://doi.org/10.1017/S0022112064000015
https://doi.org/10.1017/S0022112080002133
https://doi.org/10.1017/S0022112080002133
https://doi.org/10.1017/S0022112080002133
https://doi.org/10.1017/S0022112080002133



