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The dynamics of a three-dimensional (3D) bimodal turbulent wake downstream of a
square-back Ahmed body are experimentally studied in a wind tunnel through high-
frequency wall-pressure probes mapping the rear of the model and a horizontal
two-dimensional (2D) velocity field. The barycenters of the pressure distribution over
the rear part of the model and the intensity recirculation are found highly correlated.
Both described the most energetic large-scale structures dynamics, confirming the relation
between the large-scale recirculation bubble and its wall-pressure footprint. Focusing on the
pressure, its barycenter trajectory has a stochastic behavior but its low-frequency dynamics
exhibit the same characteristics as a weak strange chaotic attractor system, with two
well-defined attractors. The low-frequency dynamics associated to the large-scale structures
are then analyzed. The largest Lyapunov exponent is first estimated, leading to a low positive
value characteristic of strange attractors and weak chaotic systems. Afterwards, analyzing
the autocorrelation function of the timeseries, we compute the correlation dimension, larger
than two. The signal is finally transformed and analyzed as a telegraph signal, showing that
its dynamics correspond to a quasirandom telegraph signal. This is the first demonstration
that the low-frequency dynamics of a turbulent 3D wake are not a purely stochastic process
but rather a weak chaotic process exhibiting strange attractors. From the flow control point
of view, it also opens the path to more simple closed-loop flow-control strategies aiming at
the stabilization of the wake and the control of the dynamics of the wake barycenter.
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I. INTRODUCTION

It is well known that the turbulent wakes downstream of three-dimensional (3D) bluff bodies can
be very complex, exhibiting large-scale and small-scale coherent structures with strongly intermittent
behaviors. Among the various 3D bluff bodies, one of the most famous is the so-called Ahmed body,
which is a model used in automotive aerodynamics to study the wake of a very simplified passenger
car [1]. Depending on the geometry of the rear part, the overall structure of the wake changes
together with the aerodynamic drag coefficient. One can find a competition between large-scale
streamwise longitudinal vortices [2], spanwise Kelvin-Helmholtz vortices, recirculation bubbles,
or toroı̈dal vortices. If the time-averaged velocity fields are relatively simple and well defined,
the instantaneous velocity fields are very complex and exhibit together large- and small-scale
structures, leading to one of the most complex 3D turbulent flows. Recently, it has been shown
experimentally [3] and numerically [4] that a square-back Ahmed body at high Reynolds numbers
exhibits a peculiar behavior with a bimodal wake, which was first observed in the laminar regime [5].
Indeed, depending on the geometric parameters (aspect ratio of the bluff body’s cross section [6]
and underbody flow [7]), one can observe a right-left oscillation of the global wake, defining the
so-called reflectional symmetry-breaking (RSB) modes.
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The large-scale dynamics of another wake, which is 3D turbulent axisymmetric, has been captured
in Ref. [8], using a deterministic model for the persistent laminar instabilities coupled with a
stochastic representation of the turbulent fluctuations. For such dynamics, two different time scales
are notable: A short one is associated to the vortex shedding process whereas the symmetry-breaking
one is characterized by a long time scale [3,9]. We are interested here in the characterization of the
bimodal oscillation of the near wake in the framework of dynamical systems theory and, more
precisely, as a chaotic system.

A classic example of a chaotic system is the Lorenz attractor and corresponding Lorenz system,
whose characteristic butterfly shape is famous [10]. The so-called Lorenz system is a simplified
weather model defined by the set of three ordinary differential equations:

ẋ = σ (y − x),
ẏ = x(R − z) − y,

ż = xy − βz.

(1)

With the correct choice for the three parameters (σ = 16, R = 45.92, and β = 4), the trajectory
plotted in the (x,y,z) space exhibits a chaotic behavior, circling in an apparent random manner
between two stable attractors.

Since the pioneering work of Lorenz, it has been shown that many biological, natural, or artificial
systems, either at very small or very large scales, follow a chaotic dynamics. The brain wave
activity (EEG) [11] or the heart rate activity (ECG) [12] can exhibit chaotic behaviors. In some
cases, chaotic excitations can be used to study the response of mechanical systems. A variation in
correlation dimensions can be used as an indicator of a fracture in the overall structure [13]. Chaotic
behavior has been found in trading market time series [14]. One can also find chaotic behavior for
large-scale phenomena like earthquakes [15].

In the following, we will first show how the 3D full turbulent wake dynamics can be characterized
by the single trajectory of its projected barycenter. After recovering the classic chaotic pattern, we
will analyze more thoroughly the inner characteristics of the large-scale dynamical system. We
will, in particular, evaluate the family of random process to which it belongs, the largest Lyapunov
exponent of the system and the correlation dimension.

II. EXPERIMENTAL SETUP

A. Ahmed body

The bluff body is a 0.7 scale of the original Ahmed body (L = 0.731 m long, H = 0.202 m high,
and W = 0.272 m wide), as described in Ref. [16]. The rear part of the model is a square-back
geometry with sharp edges.

B. Wind tunnel

Experiments are carried out in the PRISME laboratory wind tunnel (Orléans, France). The model
is mounted on a raised floor with a properly profiled leading edge and an adjustable trailing edge
to avoid undesired flow separations. The ground clearance is set to C = 5 cm. In the following,
the free-stream velocity is U∞ = 30 m s−1, which corresponds to a Reynolds number based on the
height of the model ReH = U∞H/νair = 3.9×105, where νair is the kinematic viscosity of the air at
ambient temperature. The origin is located on the rear of model (x = 0), in the vertical symmetry
plane (y = 0) and on the raised floor (z = 0). Nondimensionalization is applied to distances such as
x∗ = x/H , y∗ = y/H , and z∗ = z/H .

C. Sensors

The wall pressure over the rear part of the model is studied using a set of 95 pressure vinyls
defining an area denoted Sp and covering 70% of the entire surface Sr , as shown in Fig. 1. Each vinyl
is 2 cm away from each of its neighbors and is connected to a 32-channel microDAQ pressure scanner,
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FIG. 1. Upper view (top figure) and side view (lower left figure) and view from behind (lower right figure)
of the Ahmed body. The PIV measurement plane is shown on top (green rectangle) and lower left (green line)
figure. The rear part of the model is mapped with 95 pressure sensors (red circles on lower right figure). The
bluff body is fixed on the aerodynamic balance through a supplementary leg (gray part on lower figures).

ensuring an accuracy of ±17 Pa located inside the body. The number of samples per acquisition is
unfortunately bounded to N = 3×104, making the sampling frequency for the pressure fP dependent
on the acquisition time TP : fP = N/TP . A typical instantaneous pressure field is shown in Fig. 2(a).
From these instantaneous pressure fields, a global indicator of the state of the wake can be inferred,
as will be detailed in the following section.

The velocity fields are obtained using a standard particle image velocimetry (PIV) setup based
on a double-frame 14.50-Hz TSI camera streaming snapshots on a computer and synchronized with
a double-cavity pulsed YaG laser. The investigated PIV plane is the near wake horizontal plane at
z∗ = 1.

The two-dimensional (2D) velocity fields are computed at the frequency fPIV = 4 Hz using
an optical flow algorithm implemented on a graphics processing unit. The interrogation window
size is 16×16 pixels and the calculation is based on three iterations for each of the three pyramid

FIG. 2. Typical (a) instantaneous pressure field over the rear part of the model and (b) instantaneous 2D
velocity field in the horizontal plane shown in Fig. 1. The diamond (white) is the instantaneous barycenter
position of respectively (a) the rear pressure Gp and (b) the intensity recirculation Grec, which are introduced
and discussed in the following section.
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reduction levels. One can find more details on this measurement method in Refs. [17–21], which
rigorously demonstrate its offline accuracy as well as its online efficiency in closed-loop flow control
experiments. An example of a 2D instantaneous velocity field is shown in Fig. 2(b). One can see the
complexity of the turbulent wake, with large- and small-scale strongly fluctuating vortices.

The bluff body is linked to an aerodynamic balance through a cylindrical leg of diameter 32 mm
localized at the center of the bottom face. This leg does not modify the reflectional symmetry of
the square-back body but it has certainly an influence on the near wake, which is discussed in the
following section. The aerodynamic data are not used in the present study.

III. DYNAMIC OF THE WAKE BARYCENTER

A. Wake characterization

We are interested in the large-scale dynamics of the global wake. This is the reason why we define
the instantaneous wall-pressure barycenter, which can be seen as the footprint of the wake. Denoting
the space average of a quantity f over an area S as 〈f 〉S , we compute the pressure barycenter at
x∗ = 0 as

−−−−→
OGp(t) =

(
y∗

p(t)

z∗
p(t)

)
=

⎛
⎝ 〈y∗p(t)〉Sp

〈p(t)〉Sp

〈z∗p(t)〉Sp

〈p(t)〉Sp

⎞
⎠, (2)

where p(t) = p(y∗,z∗,t) is the local pressure measured at time t . Thus the instantaneous barycenter
of the depression can be tracked at each time step. In the same way, we define the instantaneous
recirculation intensity barycenter from the velocity fields in the PIV horizontal plane at z∗ = 1 as

−−−−−→
OGrec(t) =

(
x∗

rec(t)

y∗
rec(t)

)
=

⎛
⎝ 〈x∗urec(t)〉Arec(t)

〈urec(t)〉Arec(t)

〈y∗urec(t)〉Arec(t)

〈urec(t)〉Arec(t)

⎞
⎠, (3)

where urec(t) = urec(x∗,y∗,t) and Arec(t) are respectively the local streamwise component of the
recirculation velocity and the recirculation area at time t . An example of the evolution in time is
given for y∗

p [Fig. 3(a)] and y∗
rec [Fig. 3(c)].

The probability density function (PDF) is then computed from the spanwise position of both
barycenters. Figure 3 shows clearly the bimodal behavior of the turbulent wake, whether it is through
the pressure barycenter PDF Py∗

p
[Fig. 3(b)] or the recirculation barycenter PDF Py∗

rec
[Fig. 3(d)].

Indeed their PDFs have two peaks whose positions are nearly symmetric with respect to the y axis.
The difference in the peaks value is due to the low acquisition time as observed in Ref. [7]. Longer
acquisitions only done for the pressure show well two peaks of the same level. The small amount
of data regarding the PIV explains the noisy aspect of Py∗

rec
. The two identified RSB modes are the

(y∗
p < 0, y∗

rec > 0) state and the (y∗
p > 0, y∗

rec < 0) state.
Even if the barycenters seem to switch successively from a mode to the other randomly, some

characteristic time scales and characteristic frequencies can be estimated. The mean time spent in
each mode is TRSB = 1.57 ± 0.32 s. The estimated switching frequency is fswitch = 0.56 ± 0.08 Hz,
whereas the switch itself lasts for Tswitch = 0.30 ± 0.05 s. As expected, these results have a high
dispersion: Their respective standard deviations are σTRSB = 2.1 ± 0.3 s and σTswitch = 0.11 ± 0.01 s.

Regarding the normal to the wall position z∗
p and the streamwise position x∗

rec presented for the
pressure [Figs. 4(a) and 4(b)] and the recirculation intensity respectively [Figs. 4(c) and 4(d)], these
positions are stable. Indeed, their respective PDF, Pz∗

p
and Px∗

rec
, show only one mode.

Thus the same lateral symmetry-breaking mechanism is observed in our wake topology as the
ones presented without a central leg in Refs. [3,7]. The effects of the modified ground clearance on
the wake reversal behind a square-back bluff body have been studied in Ref. [22]. It was reported
in particular that the presence of a circular cylinder, very similar to the central leg attached to the
aerodynamical balance in our experiments, changes only the mode position for z∗

p but does not
cancel the lateral bimodality.
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FIG. 3. Pressure barycenter spanwise position y∗
P : (a) evolution in time and (b) normalized PDF Py∗

p
for

TP = 1 min (fP = 500 Hz). Recirculation intensity barycenter spanwise position y∗
rec: (c) evolution in time and

(d) normalized PDF Py∗
rec for TPIV = 1 min. Red curves show the data smoothed over 1 s.

FIG. 4. Pressure barycenter spanwise position z∗
P : (a) evolution in time and (b) normalized PDF Pz∗

p
for

TP = 1 min (fP = 500 Hz). Recirculation intensity barycenter spanwise position x∗
rec: (c) evolution in time and

(d) normalized PDF Px∗
rec for TPIV = 1 min. Red curves show the data smoothed over 1 s.
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FIG. 5. Normalized cross correlation of y∗
P and y∗

rec.

The relation between the dynamics of the wake, characterized by its instantaneous recirculation
area, and the dynamics wall pressure is not straightforward because of the complex 3D flow. To study
their relationship, the normalized cross correlation of y∗

P and y∗
rec has been computed for five 1-min

runs: �y∗
p,y∗

rec
(τ ) = y∗

p(τ ) ⊗ y∗
rec(τ ). The results show a strong correlation and an almost nonexistent

delay between the two measurements as illustrated by Fig. 5.
The value of the peak is �y∗

p,y∗
rec

(τ ∼ 0) = −0.84 ± 0.05 so both barycenters are in phase
opposition. When the depression is located in the negative part of the rear surface (y∗

p < 0), the
recirculation bubble is located in the positive one (y∗

rec > 0) and vice versa. This behavior was first
observed in Ref. [23]. So the wake states can be characterized either by the pressure barycenter or
by the recirculation intensity one. In the following, we present only results regarding y∗

p for several
independent experiments of various lengths TP = {2; 5 min} acquisition runs (fP = 250 Hz and
fP = 100 Hz respectively).

B. Coherent structures

As we are interested in the dynamics of the large-scale structures, we analyze the spatiotemporal
organization of the wall-pressure spatial distributions using the proper orthogonal decomposition
(POD). It is an efficient approach to detect coherent structures in turbulent flows [24,25]. Thus we
apply the POD on the rear pressure coefficient fluctuations C̃p:

C̃p(t) ∼
k∑

i=1

ai(t)�i, (4)

where k is the number of POD modes �i carrying most of the coherent structures energy and ai are
the corresponding temporal coefficients. The energy distribution of the first 25 POD modes is given
in Fig. 6, showing that the first five modes contain 75% of the total energy.

FIG. 6. Energy distribution of the first 25 POD modes of the rear pressure.
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FIG. 7. (a) First POD mode �1 (43%) and (b) PSD of its corresponding coefficient a1 (dashed black line)
together with the PSD of y∗

p (solid blue line).

The power spectral density (PSD) is computed to analyze the dynamics of the first POD modes.
For practical comparisons we express the frequency f as the Strouhal number based on the width
bluff body: StW = f W/U∞.

The most remarkable results are that the first mode �1 represents 43% of the total energy and
that its spatial organization exhibits the global symmetry breaking presented on Fig. 7(a). Moreover,
its spectral signature is identical to the one of the pressure barycenter, displayed in Fig. 7(b): The
low frequencies, StW < 0.02, contain most of the power spectrum. Thus the pressure barycenter
is a direct measure of the most energetic large-scale coherent structure governed by a long time
scale.

FIG. 8. Evolution in space of the pressure barycenter GP (black line for the trajectory and blue circle for
the last position) with the identified centers (red squares) for three successive small intervals: (a) t ∈ [237; 247],
(b) t ∈ [247; 251], (c) t ∈ [251; 255], and (d) a larger interval t ∈ [237; 266] (red cross for the standard
deviation). (e) y∗

p(t) for t ∈ [200; 270] with the spanwise position of the two centers (dash-dotted red lines). All
intervals are in seconds and data are smoothed for clarity. See Supplemental Material [26].
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FIG. 9. Normalized 2D PDF of the pressure barycenter GP with the two identified local maxima of the
PDF (black squares).

C. Quasistrange attractor dynamics

The positions of the pressure barycenter GP for three successive stays in the RSB modes are
displayed in Figs. 8(a)–8(c). We also plot the most probable position (red square) near which Gp

evolves during each stay.
Figures 8(d) and 8(e) show longer tracking with the most probable positions of each RSB mode,

disclosing two y-axis symmetric points which acts like the centers of a strange attractor.
The 2D PDF of the pressure barycenter is computed to analyze its most frequent positions on the

rear. We also calculate the positions of the identified centers, denoted C1(y∗
C1

,z∗
C1

) and C2(y∗
C2

,z∗
C2

),
as local modes of the PDF Py∗

p
, such as

−−→
OC1 =

⎛
⎝y∗

p| max
y∗
p<0

P
y∗
p

z∗
p| max

y∗
p<0

P
y∗
p

⎞
⎠ and

−−→
OC2 =

⎛
⎝y∗

p| max
y∗
p>0

P
y∗
p

z∗
p| max

y∗
p>0

P
y∗
p

⎞
⎠. (5)

The results, shown in Fig. 9, reveal two areas highly preferred by the barycenter, corresponding
to the two RSB states. For each area, a quasiattractive center can be identified, such as y∗

C1
∼ −y∗

C2

and z∗
C1

∼ z∗
C1

. During the switch between these two positions, the pressure barycenter follows
preferentially a trajectory along a well-defined path. In the following section we characterize the
signal y∗

p.

IV. CHARACTERIZATION OF THE ATTRACTOR

A. Structure function

Analyzing the signal to know whether the dynamics of the wake are chaotic or stochastic is
of prime interest. An effective approach is to study its self-affinity by computing its first-order
(k = 1) [27] or its second-order (k = 2) [28] structure function Sk , defined as

Sk(n) = 〈|y∗
p(i + n) − y∗

p(i)|k〉i , (6)

where n is the lag and 〈.〉i stands for the average over N − n points. According to Ref. [29], if y∗
p is

fractal, Sk follows a scaling law for small n:

Sk(n) ∝ nkh, (7)

where h is the so-called scaling exponent. If the signal X is chaotic, then h = 1. If it is stochastic,
then its power spectrum follows a power-law SXX(StW ) ∝ St−α

W and α = 2h + 1. However, Sk alone
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FIG. 10. (a) Second-order structure functions of y∗
p (dashed blue line) and of its first derivative (solid black

line). (b) Second-order structure functions of the LP filtered y∗
p (dashed blue line) and of its first derivative

(solid black line). fp = 250 Hz.

is not enough to conclude and the structure function of the first derivative of the signal y∗
p, denoted

as Sk,d , needs to be computed [28]. Thus, if it is stochastic then Sk,d is almost constant, and if the
signal is chaotic then Sk,d (n) follows a scaling law for small n. Figure 10 displays S2 and S2,d for
the raw signal y∗

p (a) and for the signal on which we apply a low-pass (LP) filter (b) to only select
low-frequency modes which have the highest magnitudes: StW < 10−3 [see Fig. 7(b)].

The raw signal behaves clearly like a fractal noise with h = 1/2 implying α = 2, which is in
agreement with Refs. [3,30]. Conversely the LP filtered data appear to be chaotic since h = 1 and
S2,d is not constant. It is noteworthy that the same observations hold for k = 1.

B. Embedding dimension

As we only observe a part of the nonlinear wake dynamics (rear body pressure and 2D-
2Components velocity fields of the near wake), we cannot experimentally access to its complete phase
space. But Refs. [31,32] provide the so-called embedding methods to reconstruct a pseudophase space
from time series. Thus, according to the pioneering Takens’s time-delay embedding method [33],
we build the M state vectors {Yi}i=1...M :

Yi(m) = {y∗
p(i)y∗

p(i + J ) . . . y∗
p[i + (m − 1)J ]}, (8)

where m is the embedding dimension and J is the reconstruction delay, implying M = N − (m −
1)J . J is computed trough the mutual information process [34] using improved kernel density
estimation algorithm [35,36] to avoid redundance (J too small) and irrelevance (J too large) in
phase space reconstruction [37]. We then determine the minimum value of m from y∗

p, following
Cao’s method [38], which is based on the false nearest neighbor algorithm of Ref. [39]. It should be
noted that the values obtained for J are also checked through improved Celluci’s algorithm [40,41].

Cao’s method is summarized here since it enables us also to distinguish deterministic and
stochastic time series. The idea is to evaluate how the mean distance between close state vectors
E(m) evolves with respect to m. Over the real embedding dimension E(m) does not change anymore.
We look for the closest neighbor YN (i,m)(m) of each state vector Yi(m):

min
N (i,m)�=i

‖Yi(m) − YN (i,m)(m)‖, i ∈ [[1; M]], (9)

where ‖.‖ stands for the Euclidean distance. The ratio of the distances in m and m + 1 dimensions
for Yi is

ai,m = ‖Yi(m + 1) − YN (i,m)(m + 1)‖
‖Yi(m) − YN (i,m)(m)‖ . (10)
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FIG. 11. E1(m) (black circle) and E2(m) (blue square) computed from raw (dashed line) and LP filtered
(solid line) signal y∗

p . fp = 100 Hz. The large-scale dynamics associated with the LP filtered signal show a
chaotic signature.

Finally E(m) is computed:

E(m) = 1

M

∑
i

ai,m. (11)

For convenience, its evolution is evaluated through E1(m),

E1(m) = E(m + 1)

E(m)
, (12)

and if ∃m\∀k � m,E1(k + 1) = E1(k) then m is the minimum embedding dimension. In parallel
the mean difference between the raw data E∗(m) is evaluated with respect to m, relating to N (m)
obtained in Eq. (9):

E∗(m) = 1

M

∑
i

|y∗
p(i + mJ ) − y∗

p[N (i,m) + mJ ]|. (13)

In the same manner as in Eq. (12), the evolution is analyzed through E2(m):

E2(m) = E∗(m + 1)

E∗(m)
, (14)

and if ∃k\E2(k) �= 1 then the signal is deterministic; otherwise it is stochastic.
As shown in Fig. 11, the raw signal appears stochastic but the LP filtered one is indeed

deterministic, confirming the results obtained with the structure function. The minimum embedding
dimension seems to be m = 19. It should be noted that a new delay J is computed for the filtered
data.

Thus the complete large-scale bimodal dynamics of such a fully turbulent wake are well composed
of a stochastic part and a deterministic part as recently proposed in Ref. [30]. In the following sections,
we characterize the chaotic behavior of these dynamics through the analysis of the LP filtered signal
directly denoted as y∗

p(t).

C. Largest Lyapunov exponent

There are many ways to characterize and quantify chaos. Among the most popular quantities,
one can cite the correlation dimension [42], which gives an estimate of the system complexity, and
characteristic exponents, which give an estimate of the level of chaos in the dynamical system. In this
section, we focus on the Lyapunov exponent. The spectrum of Lyapunov exponents is well known
for detecting and quantifying chaotic systems from the experimental time series [43]. Indeed, chaos
exists if a system is sensitive to its initial conditions. Thus the principle consists in following the
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FIG. 12. 〈ln(d(t))〉i=1..M and exponential approximation e0.018t (black dashed line). fp = 100 Hz.

evolution of the distance d between two initial neighboring state vectors in the phase space. For a
chaotic attractor, the distance d exponentially increases in time at an average rate equal to the largest
Lyapunov exponent (LLE) λ1 [44]:

d(t) = d(0) expλ1t . (15)

We apply Rosenstein’s algorithm [45,46], rather than Wolf’s algorithm [43], to our LP filtered
N -point time series {y∗

p(i)}i=1...N , due to its efficiency on small data sets. We use the M state vectors
{Yi}i=1...M and their closest neighbor {YN (i)}i=1...M as previously. Then we compute the distance
evolution,

di(j ) = ‖Yi+j − YN (i)+j‖, (16)

where j = [[fpt]] verifies i + j � M and N (i) + j � M . The distance d(t) is approximated by
averaging over i the distances di(j ):

d(j ) = 〈di(j )〉i . (17)

By taking the logarithm of Eq. (17) with respect to j the slope, extracted through a least-square
fit, gives directly the LLE. The distance d(t) computed for our LP filtered data is given in Fig. 12 and
it appears to follow Eq. (15) for small t , typically t ∈ [0; 1] (in second). The LLE is thus computed
in this range.

The estimated positive LLE is λ1 = 0.018 ± 0.003 s−1. The relative error is due to the main
difficulty of defining the right linear region of the curve to fit. The low-frequency dynamics associated
with large-scale structures can thus be considered as a weak chaotic strange attractor.

D. Correlation dimension

The fractal dimension (or Hausdorff dimension) D of a strange attractor can be rigorously
approximated by its correlation dimension D2 which is directly computed from experimental time
series according to the works of Ref. [42]. The previous M state vectors {Yi}i=1...M are also used to
compute the correlation integral function C(τ ), defined as

C(τ ) = 2

M(M − 1)

M∑
i=1

M∑
j=i+1


(τ − ‖Yi − Yj‖), (18)

where 
 is the Heaviside function. The correlation dimension D2 can be derived from the correlation
integral function C(τ ), which scales as a power law for small τ :

C(τ ) ∝ τD2 , (19)

The correlation integral function of our LP filtered signal y∗
p is computed using the Grassberger-

Procaccia method improved in Ref. [47], where the authors normalize the Euclidean distance in
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FIG. 13. Correlation integral function C(τ ) of LP filtered y∗
p and power-law approximation ∝τ 2.17 (black

dashed line) in logarithmic scale.

Eq. (18) by the embedding dimension m. Figure 13 shows the resulting correlation integral function
in logarithmic scale.

Regarding the whole experimental signals we obtain D2 = 2.17 ± 0.01, which verifies D2 �
2 log N [48]. The correlation dimension is computed over two decades. Furthermore we verify
again the low-dimensional aspect of the dynamics using the phase randomization test provided by
Ref. [28]: For a stochastic signal the correlation dimension does not change when its Fourier phases
are randomized.

Displayed in Fig. 14, the computed correlation dimension after phase randomizing of our signal
is clearly different: D2,rand = 3.23 ± 0.01, which is indicative of chaotic dynamics.

E. Telegraph-like signal

Another interesting way to characterize chaotic oscillator is to analyze the properties of its auto-
correlation function (ACF). The ACF of a given function f (t) is defined as �f (τ ) = 〈f (t)f (t + τ )〉T ,
where 〈.〉T stands for the time averaging. The ACF is normalized by �f (0). The ACF of a random
process has different properties depending on the nature of the system. Among the most popular
models used to describe the behavior of many applied random systems, one can cite the noisy
harmonic oscillations and the telegraph signal [49]. The model of telegraph signal is particularly
well suited to describe the statistics of random switching of a bimodal system in the presence of
noise, which is a close description of the bimodal wake. One can distinguish two main kinds of
telegraph signals, namely, the random and quasirandom telegraph signals. The random telegraph
signal is characterized by a Poisson distribution of switching moments while quasirandom telegraph
signal corresponds to random switching between two equiprobable states (probability of switching
events equal to 1

2 ). For instance, the latter is very well suited to the Lorenz attractor [49].
To characterize our time series as telegraph signals, the first step is then to define two states as

the symmetric spanwise positions of the pressure centers as y∗ = ±y∗
C2

. From our time series, it is

FIG. 14. Correlation integral function C(τ ) of LP filtered y∗
p after randomizing its Fourier phases and

power-law approximation ∝τ 3.23 (black dashed line) in logarithmic scale.
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FIG. 15. Part of the telegraph signal Y ∗
p (t) (blue) obtained for the pressure barycenter spanwise position

y∗
p(t) (black). For clarity the telegraph signal is plotted with a 0.25 factor. Here, y∗

C2
= 3.64×10−2 ± 1×10−4.

then possible to construct a telegraph-like signal Y ∗
p such as

Y ∗
p (t) =

{
−y∗

C2
if y∗

p(t) � 0

y∗
C2

if y∗
p(t) > 0

. (20)

Figure 15 shows a part of the LP filtered signal y∗(t) together with the resulting telegraph signal
Y ∗

p (t).
The normalized ACF �y∗

p
(τ ) and �Y ∗

p
(τ ) are computed for the raw signal and the LP filtered one.

According to Ref. [49], the ACF approximation of a random telegraph signal, �R(τ ), is given by by
the following function:

�R(τ ) = e−2n1|τ |, (21)

where n1 corresponds to the mean switching frequency, while the ACF of a random telegraph signal
can be linearly approximated on short times by the following function �QR(τ ):

�QR(τ ) =
{

1 − |τ |
ξ0

if |τ | < ξ0

0 if |τ | � ξ0
, (22)

where ξ0 corresponds to the minimal residence time in one state, denoted Tmin. �y∗
p
(τ ), �Y ∗

p
(τ ), and

the ACF approximations are plotted in Fig. 16.
Figure 16(a) shows that �R(n1 = 0.45) is a good approximation of the ACF of the telegraph

signal obtained from the raw data. The computed mean switching frequency n1 = 0.45 Hz is close

FIG. 16. Normalized autocorrelation functions of the pressure barycenter spanwise position �y∗
p

(black
solid line) and of the resulting telegraph-like signal �Y ∗

p
(blue dotted line) for (a) the raw signal and (b) the

LP filtered one, together with their respective ACF approximations: �R(n1 = 0.45) and �QR(ξ0 = 4.3) (red
dashed line).
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FIG. 17. (a) PDF of the switching time tswitch for the raw data (black solid line) together with a Poisson
distribution (parameter set to 0.86, blue dashed line) and (b) probabilities of switching at times T multiple to
ξ0 = 4.3 for the LP filtered signal.

to the measured one fswitch = 0.56 Hz. One can see in Fig. 16(b) that the ACF of the telegraph-like
signal extracted from the LP filtered time series is well approximated by the linear function
�QR(ξ0 = 4.3). From the linear approximation we find ξ0 = 4.3 s, which is similar to our filtered
experimental results Tmin = 3.6 s. The same ACF approximation is obtained for the Lorenz attractor
described by Eq. (1) [49].

Furthermore, the PDF of the switching times tswitch of the raw time series is given in Fig. 17(a),
revealing itself close to a Poisson distribution whose parameter is 0.86 s. The mean switching time,
which is the parameter of the Poisson distribution, is of the same order as the residential time TRSB

seen previously. Regarding the corresponding LP filtered data, the probability of switching P (T )
occurring at times T multiple to ξ0 is computed in Fig. 17(b). The results show that the probability
of switching at time T = ξ0 is P (ξ0) = 0.56, agreeing with the ACF approximation of Eq. (22).
Reference [49] obtained P (ξ0) = 0.52 for the Lorenz system of Eq. (1), which is also close to 0.5
as expected for such a strange chaotic attractor.

V. CONCLUSIONS AND PERSPECTIVES

The dynamics of the near wake behind a square-back bluff body are characterized by the time
evolution of its intensity recirculation barycenter and the spatially averaged rear pressure barycenter.
Both quantities track large-scale structures and exhibit strong bimodal distributions characteristic
of a random switching process between two states. Their respective spanwise dynamics are highly
anticorrelated (phase opposition). Plotting the trajectories of the pressure barycenter over the rear
part of the model, similar to a Poincaré section, stochastic behavior is first observed. But applying the
same process to the low-frequency signal reveals a chaotic aspect of the dynamics. The instantaneous
pressure barycenter circles around two stable areas acting like strange attractors and randomly
switches from one attractor to the other. We characterize the chaotic dynamics of these barycenters
by reconstructing their phase space and computing the largest Lyapunov exponent and the correlation
dimension. All of these elements tend to describe the dynamics of a complex 3D turbulent wake
as a weak chaotic system. Apart from its fundamental interest, this result is also of great practical
interest. Indeed, if the wake dynamics can be modeled as a chaotic attractor, it opens the path to
many closed-loop control strategies which have been first tested on simple chaotic systems such
as the Lorenz system [50,51]. Recently, a machine learning control based on the low-pass filtered
signal of the rear pressure of the Ahmed body has been successfully performed [52] and a similar
one based on the low-frequency dynamics of the wake can be envisioned [53].
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and R. K. Niven, Cluster-based reduced-order modeling of a mixing layer, J. Fluid Mech. 754, 365 (2014).

034604-16

http://link.aps.org/supplemental/10.1103/PhysRevFluids.2.034604
https://doi.org/10.1016/0167-2789(89)90075-4
https://doi.org/10.1016/0167-2789(89)90075-4
https://doi.org/10.1016/0167-2789(89)90075-4
https://doi.org/10.1016/0167-2789(89)90075-4
https://doi.org/10.1016/0167-2789(92)90100-2
https://doi.org/10.1016/0167-2789(92)90100-2
https://doi.org/10.1016/0167-2789(92)90100-2
https://doi.org/10.1016/0167-2789(92)90100-2
https://doi.org/10.1017/jfm.2016.495
https://doi.org/10.1017/jfm.2016.495
https://doi.org/10.1017/jfm.2016.495
https://doi.org/10.1017/jfm.2016.495
https://doi.org/10.1103/RevModPhys.57.617
https://doi.org/10.1103/RevModPhys.57.617
https://doi.org/10.1103/RevModPhys.57.617
https://doi.org/10.1103/RevModPhys.57.617
https://doi.org/10.1007/BF01053745
https://doi.org/10.1007/BF01053745
https://doi.org/10.1007/BF01053745
https://doi.org/10.1007/BF01053745
https://doi.org/10.1103/PhysRevA.33.1134
https://doi.org/10.1103/PhysRevA.33.1134
https://doi.org/10.1103/PhysRevA.33.1134
https://doi.org/10.1103/PhysRevA.33.1134
https://doi.org/10.1016/j.jmp.2014.09.001
https://doi.org/10.1016/j.jmp.2014.09.001
https://doi.org/10.1016/j.jmp.2014.09.001
https://doi.org/10.1016/j.jmp.2014.09.001
https://doi.org/10.1016/0167-2789(91)90222-U
https://doi.org/10.1016/0167-2789(91)90222-U
https://doi.org/10.1016/0167-2789(91)90222-U
https://doi.org/10.1016/0167-2789(91)90222-U
https://doi.org/10.1016/S0167-2789(97)00118-8
https://doi.org/10.1016/S0167-2789(97)00118-8
https://doi.org/10.1016/S0167-2789(97)00118-8
https://doi.org/10.1016/S0167-2789(97)00118-8
https://doi.org/10.1103/PhysRevA.45.3403
https://doi.org/10.1103/PhysRevA.45.3403
https://doi.org/10.1103/PhysRevA.45.3403
https://doi.org/10.1103/PhysRevA.45.3403
https://doi.org/10.1103/PhysRevE.71.066208
https://doi.org/10.1103/PhysRevE.71.066208
https://doi.org/10.1103/PhysRevE.71.066208
https://doi.org/10.1103/PhysRevE.71.066208
https://doi.org/10.1016/j.ymssp.2010.05.015
https://doi.org/10.1016/j.ymssp.2010.05.015
https://doi.org/10.1016/j.ymssp.2010.05.015
https://doi.org/10.1016/j.ymssp.2010.05.015
https://doi.org/10.1103/PhysRevLett.50.346
https://doi.org/10.1103/PhysRevLett.50.346
https://doi.org/10.1103/PhysRevLett.50.346
https://doi.org/10.1103/PhysRevLett.50.346
https://doi.org/10.1016/0167-2789(85)90011-9
https://doi.org/10.1016/0167-2789(85)90011-9
https://doi.org/10.1016/0167-2789(85)90011-9
https://doi.org/10.1016/0167-2789(85)90011-9
https://doi.org/10.1016/0167-2789(93)90009-P
https://doi.org/10.1016/0167-2789(93)90009-P
https://doi.org/10.1016/0167-2789(93)90009-P
https://doi.org/10.1016/0167-2789(93)90009-P
https://doi.org/10.1143/PTP.77.1
https://doi.org/10.1143/PTP.77.1
https://doi.org/10.1143/PTP.77.1
https://doi.org/10.1143/PTP.77.1
https://doi.org/10.1098/rspa.1990.0010
https://doi.org/10.1098/rspa.1990.0010
https://doi.org/10.1098/rspa.1990.0010
https://doi.org/10.1098/rspa.1990.0010
https://doi.org/10.1016/S0378-4371(03)00199-7
https://doi.org/10.1016/S0378-4371(03)00199-7
https://doi.org/10.1016/S0378-4371(03)00199-7
https://doi.org/10.1016/S0378-4371(03)00199-7
https://doi.org/10.1017/jfm.2014.355
https://doi.org/10.1017/jfm.2014.355
https://doi.org/10.1017/jfm.2014.355
https://doi.org/10.1017/jfm.2014.355


CHAOTIC DYNAMICS OF LARGE-SCALE STRUCTURES IN . . .

[51] F. Guéniat, L. Mathelin, and M. Y. Hussaini, A statistical learning strategy for closed-loop control of fluid
flows, Theor. Comput. Fluid Dyn. 30, 497 (2016).

[52] R. Li, D. Barros, J. Borée, O. Cadot, B. R. Noack, and L. Cordier, Feedback control of bimodal wake
dynamics, Exp. Fluids 57, 158 (2016).

[53] N. Gautier, J.-L. Aider, T. Duriez, B. R. Noack, M. Segond, and M. Abel, Closed-loop separation control
using machine learning, J. Fluid Mech. 770, 442 (2015).

034604-17

https://doi.org/10.1007/s00162-016-0392-y
https://doi.org/10.1007/s00162-016-0392-y
https://doi.org/10.1007/s00162-016-0392-y
https://doi.org/10.1007/s00162-016-0392-y
https://doi.org/10.1007/s00348-016-2245-2
https://doi.org/10.1007/s00348-016-2245-2
https://doi.org/10.1007/s00348-016-2245-2
https://doi.org/10.1007/s00348-016-2245-2
https://doi.org/10.1017/jfm.2015.95
https://doi.org/10.1017/jfm.2015.95
https://doi.org/10.1017/jfm.2015.95
https://doi.org/10.1017/jfm.2015.95



