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Turbulence modeling is a critical component in numerical simulations of industrial flows
based on Reynolds-averaged Navier-Stokes (RANS) equations. However, after decades of
efforts in the turbulence modeling community, universally applicable RANS models with
predictive capabilities are still lacking. Large discrepancies in the RANS-modeled Reynolds
stresses are the main source that limits the predictive accuracy of RANS models. Identifying
these discrepancies is of significance to possibly improve the RANS modeling. In this work,
we propose a data-driven, physics-informed machine learning approach for reconstructing
discrepancies in RANS modeled Reynolds stresses. The discrepancies are formulated as
functions of the mean flow features. By using a modern machine learning technique based
on random forests, the discrepancy functions are trained by existing direct numerical
simulation (DNS) databases and then used to predict Reynolds stress discrepancies in
different flows where data are not available. The proposed method is evaluated by two
classes of flows: (1) fully developed turbulent flows in a square duct at various Reynolds
numbers and (2) flows with massive separations. In separated flows, two training flow
scenarios of increasing difficulties are considered: (1) the flow in the same periodic hills
geometry yet at a lower Reynolds number and (2) the flow in a different hill geometry
with a similar recirculation zone. Excellent predictive performances were observed in both
scenarios, demonstrating the merits of the proposed method.
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I. INTRODUCTION

A. RANS models as workhorse tool in industrial CFD

Computational fluid dynamics (CFD) simulations have been widely used in aerospace,
mechanical, and chemical industries to support engineering design, analysis, and optimization.
Two decades ago when large eddy simulations (LES) started gaining popularity with the increasing
availability of computational resources, it was widely expected that LES would gradually displace
and eventually replace Reynolds-averaged Navier-Stokes (RANS) equations in industrial CFD
workflows for decades to come. In the past two decades, however, while LES-based methods
(including resolved LES, wall-modeled LES, and hybrid LES/RANS methods) did gain widespread
applications, and the earlier hope certainly did not diminish, the predicted time when these methods
would replace RANS has been significantly delayed. This observation is particularly relevant in light
of the recent discussions on the ending of the “Moore’s law era” with transistor sizes approaching
their theoretical lower limit [1,2]. RANS solvers, particularly those based on standard eddy viscosity
models (e.g., k-ε [3], k-ω [4,5], S-A [6], and SST k − ω [7]), are still and will remain the dominant tool
for industrial CFD in the near future. This is likely to be true even in mission critical applications such
as aircraft design. Interestingly, even the advanced RANS models such as Reynolds stress transport
models [8] and explicit algebraic Reynolds stress models [9] have not seen much development in
the past few decades. These advanced models are computationally more expensive and less robust
compared to the standard eddy viscosity RANS models. As such, it is still practically important to
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further develop the standard RANS models for industrial CFD applications. However, improving
the predictive capabilities of these models is critical yet technically challenging.

B. Progress and challenges in data-driven turbulence modeling

While traditional development of turbulence models has focused on incorporating more physics
to improve predictive capabilities, an alternative approach is to utilize data. In the past few years, a
number of data-driven approaches have been proposed. Researchers have investigated the use of both
offline data (i.e., existing direct numerical simulation (DNS) data for flows different from that to be
predicted [10–12]) and online data (streamed monitoring data from the flow to be predicted [13–15]).
Dow and Wang [10] used DNS data from a plane channel flow to infer the full-field discrepancy in the
turbulent viscosity νt modeled by the k-ω model. To predict flows in channels with wavy boundaries,
they modeled the (logarithmic) discrepancies of νt in the new flows as Gaussian random fields, with
the discrepancy field inferred above as mean. Duraisamy and co-workers [11,16] introduced a
full-field multiplicative discrepancy term β into the production term of the transport equations of
turbulent quantities (e.g., ν̃t in the SA model and ω in the k-ω models). They used DNS data to
calibrate and infer uncertainties in the β term. It is expected that the inferred discrepancy field
can provide valuable insights to the development of turbulence model and can be used to improve
RANS predictions in similar flows. Xiao et al. [13] used sparse velocity measurements (online data)
to infer the full-field discrepancies �τα in the RANS-predicted Reynolds stress tensors, or more
precisely the physical projections thereof (turbulent kinetic energy, anisotropy, and orientations).
Throughout this paper it is understood that τα indicates the physical projections and not the individual
components of the Reynolds stress tensor. Good performance was demonstrated on several canonical
flows including flow past periodic hills and flow in a square duct [13].

All three approaches [10,11,13] discussed above can be considered starting points toward the
same destination: the capability of predictive turbulence modeling by using standard RANS models
in conjunction with offline data. To this end, the respective discrepancies terms (� log νt , β, and
�τα) are expected to be extrapolated to similar yet different flows. These contributions are all
relatively recent, and much of the research is still on-going. Duraisamy et al. [16,17] performed
a priori studies to show the potential universality of their discrepancy term β among a class of
similar flows, but their performances in a posteriori tests, i.e., using the calibrated discrepancy in
one flow to predict another flow, have yet to be demonstrated. Dow and Wang [10] extrapolated
the logarithmic discrepancies � log νt calibrated in the plane channel flow to flows in channels
with slightly wavy walls, where velocity predictions were made. Similarly, further pursuing the
approach of Xiao et al. [13], Wu et al. [18] showed that the Reynolds stress discrepancy calibrated
with sparse velocity data can be extrapolated to flows at Reynolds number more than an order of
magnitude higher than that in the calibration case. The extrapolated discrepancy has lead to markedly
improved predictions of velocities and other quantities of interest (QoIs), showing the potential of the
approach in enabling data-driven predictive turbulence modeling. However, an intrinsic limitation
in the approach of Wu et al. [18] is that they inferred the functions f (x)

α : x �→ �τα , or simply
denoted as �τα(x), in the space of physical coordinates x. Therefore, strictly speaking they only
demonstrated that the discrepancy �τα can be extrapolated to flows in the same geometry at the
same location. Consequently, their attempts of extrapolation to the flow in a different geometry (e.g.,
from a square duct to a rectangular duct) encountered less success. The approach of Dow and Wang
[10] would share the same limitation since they built Gaussian random fields indexed by the physical
coordinates x.

C. Motivation of the proposed approach

A natural extension that overcomes the key limitation in the calibration-prediction approach of
Wu et al. [18] is to build such functions in a space of well-chosen features q instead of physical
coordinates x. Despite its limitations, a key factor in the success of the original approach is that the
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Reynolds stress discrepancies are formulated on its projections, such as the anisotropy parameters
(ξ and η) and orientation (ϕi) of the Reynolds stresses, and not directly on the individual components.
These projections are normalized quantities [18]. We will retain these merits in the current approach
and thus use data to construct functions �τα(q) instead of �τα(x). This extension would allow
the calibrated discrepancies to be extrapolated to a much wide range of flows. In other words,
the discrepancies of the RANS-predicted Reynolds stresses can be quantitatively explained by
the mean flow physics. Hence, these discrepancies are likely to be universal quantities that can be
extrapolated from one flow to another, at least among different flows sharing the same characteristics
(e.g., separation). As such, discrepancies in Reynolds stress projections are suitable targets to build
functions for.

With the function targets identified, two challenges remain: (1) to identify a set of mean flow
features based on which the discrepancies functions �τα(q) can be constructed and (2) to choose a
suitable method for constructing such functions. Duraisamy and co-workers [17] identified several
features and used a neural network to construct functions for the multiplicative discrepancy term.
Ling and Templeton [12] provided a richer and much more complete set of features in their
pioneering work, and they evaluated several machine learning algorithms to predict point-based
binary confidence indicators of RANS models [12]. Ling et al. [19] further used machine learning
techniques to predict the Reynolds stress anisotropy in jets in crossflow. Based on the success
demonstrated by Ling and co-workers [12,19], we will use machine learning to construct the
functions �τα(q) in the current work. Specifically, we will examine a class of supervised machine
learning techniques, where the objective of the learning is to build a statistical model from data
and to make predictions on a response based on one or more inputs [20]. This is in contrast to
unsupervised learning, where no response is used in the training or prediction, and the objective is to
understand the relationship and structure of the input data. Unsupervised learning will be explored
as an alternative approach in future works.

D. Objective, scope, and vision of this work

The objective of this contribution is to present an approach to predict Reynolds stress modeling
discrepancies in new flows by utilizing data from flows with similar characteristics as the prediction
flow. This is achieved by training regression functions of Reynolds stress discrepancies with the
DNS database from the training flows.

In light of the consensus in the turbulence modeling community that the Reynolds stresses are
the main source of model-form uncertainty in RANS simulations [5,21,22], the current work aims
to improve the RANS modeled Reynolds stresses. In multiphysics applications the QoIs might well
be the Reynolds stresses and/or quantities that directly depend thereon. In these applications the
current work is significant by itself in that it would enable the use of standard RANS models in
conjunction with an offline database to provide accurate Reynolds stress predictions. Moreover, the
improvement of Reynolds stresses enabled by the proposed method is an important step towards
a data-driven turbulence modeling framework. However, the Reynolds stresses corrected by the
constructed discrepancy function from DNS databases cannot necessarily guarantee obtaining
improved mean flow fields. There are a number of challenges associated with propagating the
improvement of Reynolds stresses through RANS equation to the mean velocity field, which will be
addressed in future works.

The rest of this paper is organized as follows. Section II introduces the components of the
predictive framework, including the choice of regression inputs and responses as well as the machine
learning technique used to build the regression function. Section III shows the numerical results to
demonstrate the merits of the proposed method. Further interpretation of the feature importance and
its implications to turbulence model development are discussed in Sec. IV. Finally, Sec. V concludes
the paper.
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II. METHODOLOGY

A. Problem statement

The overarching goal of the current and companion works is a physics-informed machine learning
(PIML) framework for predictive turbulence modeling. Here, “physics-informed” is to emphasize
the attempt to account for the physical domain knowledge in every stage of machine learning. The
problem targeted by the PIML framework can be formulated as follows: given high-fidelity data (e.g.,
Reynolds stresses from DNS or resolved LES) from a set {Ti}Ni=1 of N training flows, the framework
shall allow for using standard RANS turbulence models to predict a new flow P for which data are
not available. The flows Ti for which high-fidelity simulation data are available are referred to as
training flows, and the flow P to be predicted is referred to as test flow. The lack of data in test flows
is typical in industrial CFD simulations performed to support design and optimization. Furthermore,
we assume that the training flows and the test flow have similar complexities and are dominated
by the same characteristics, such as separation or shock–boundary layer interaction. This scenario
is common in the engineering design process, where the test flow is closely related to the training
flows. Ultimately, the envisioned machine learning framework will be used in scenarios where the
training flows consist of a wide range of elementary and complex flows with various characteristics
and the test flow has a subset or all of them. However, the latter scenario is much more challenging
and is outside the scope of the current study. Considering that the proposed method is a completely
new paradigm, we decided to take small steps by starting from the closely related flows and to
achieve the overarching goal gradually.

B. Summary of proposed approach

In the proposed approach we utilize training data to construct functions of the discrepancies
(compared to the DNS data) in the RANS-predicted Reynolds stresses and use these functions to
predict Reynolds stresses in new flows. The procedure is summarized as follows:

(1) Perform baseline RANS simulations on both the training flows and the test flow.
(2) Compute the feature vector field q(x), e.g., pressure gradient and streamline curvature, based

on the RANS-predicted mean flow fields for all flows.
(3) Compute the discrepancies field �τα(x) in the RANS modeled Reynolds stresses for the

training flows based on the high-fidelity data.
(4) Construct regression functions fα : q �→ �τα for the discrepancies based on the training data

prepared in Step 3.
(5) Compute the Reynolds stress discrepancies for the test flow by querying the regression

functions. The Reynolds stresses can subsequently be obtained by correcting the baseline RANS
predictions with the evaluated discrepancies.

In machine learning terminology the discrepancies �τα here are referred to as responses or
targets, the feature vector q as input, and the mappings fα : q �→ �τα as regression functions. A
regression function fα maps the input feature vector q to the response �τα , and the term “function”
shall be interpreted in a broad sense here. That is, depending on the regression technique used, it can
be either deterministic (e.g., for linear regression) or random (e.g., Gaussian process) [20,23], and it
may not even have an explicit form. In the case of random forests regression used in this work [24],
the mapping does not have an explicit expression but is determined based on a number of decision
trees.

In the procedure described above, after the baseline RANS simulations in Step 1, the input feature
fields are computed in Step 2, the training data are prepared in Step 3, and the regression functions are
constructed in Step 4. Finally, the regression functions are evaluated to make predictions in Step 5.
It is worth noting that in each stage domain knowledge is incorporated, e.g., physical reasoning for
identification of input features and consideration of realizability constraints of Reynolds stress in
learning-prediction process. Each component is discussed in detail below. The choice of features

034603-4



PHYSICS-INFORMED MACHINE LEARNING APPROACH . . .

TABLE I. Nondimensional flow features used as input in the regression. The normalized feature qβ is
obtained by normalizing the corresponding raw features value q̂β with normalization factor q∗

β according to
qβ = q̂β/(|q̂β | + |q∗

β |) except for β = 3. Repeated indices imply summation for indices i, j , k, and l but not for
β. Notations are as follows: Ui is mean velocity, k is turbulent kinetic energy (TKE), u′

i is fluctuation velocity,
ρ is fluid density, ε is the turbulence dissipation rate, S is the strain rate tensor, � is the rotation rate tensor, ν is
fluid viscosity, d is distance to wall, � is unit tangential velocity vector, D denotes material derivative, and Lc

is the characteristic length scale of the mean flow. ‖ · ‖ and | · | indicate matrix and vector norms, respectively.

Feature Normalization
(qβ ) Description Raw feature (q̂β ) factor (q∗

β )

q1 Ratio of excess rotation rate to strain rate (Q criterion) 1
2 (‖�‖2 − ‖S‖2) ‖S‖2

q2 Turbulence intensity k 1
2 UiUi

q3 Wall-distance based Reynolds number min (
√

kd

50ν
,2) not applicablea

q4 Pressure gradient along streamline Uk
∂P

∂xk

√
∂P

∂xj

∂P

∂xj
UiUi

q5 Ratio of turbulent time scale to mean strain time scale k

ε

1
‖S‖

q6 Cratio of pressure normal stresses to shear stresses
√

∂P

∂xi

∂P

∂xi

1
2 ρ

∂U2
k

∂xk

q7 Nonorthogonality between velocity and its gradient [28] |UiUj
∂Ui

∂xj
|

√
UlUl Ui

∂Ui

∂xj
Uk

∂Uk

∂xj

q8 Ratio of convection to production of TKE Ui
dk

dxi
|u′

j u
′
kSjk|

q9 Ratio of total to normal Reynolds stresses ‖u′
iu

′
j‖ k

q10 Streamline curvature |D�
Ds

| where � ≡ U/|U|, 1
Lc

Ds = |U|Dt

aNormalization is not necessary as the Reynolds number is nondimensional.

and responses are presented in Secs. II C and II D, respectively, and the machine learning algorithm
chosen to build the regression function is introduced in Sec. II E.

C. Choice of mean flow features as regression input

As has been pointed out in Sec. I, mean flow features are better suited as input of the regression
function than physical coordinates as they allow the constructed functions to predict flows in different
geometries. Ling and Templeton [12] proposed a rich set of twelve features based on clear physical
reasoning. The set of features used in the present study mostly follow their work, except that we
excluded the feature “vortex stretching” (input 8 in Table II of Ref. [12]). This feature is present
only in three-dimensional flows, but the test cases presented here are two-dimensional flow. We
excluded two additional features related to linear and nonlinear eddy viscosities (features 6 and
12 in Ref. [12]). These quantities were specifically chosen for evaluating qualitative confidence
indicators of RANS predictions and, in our opinion, are not suitable input for regression functions of
Reynolds discrepancies. Finally, experiences in the turbulence modeling communities suggest that
mean streamline curvature has important influences on the predictive performance of RANS models
[25]. Therefore, curvature is included as an additional feature. The complete list of the mean flow
features chosen as regression inputs in this work is summarized in Table I.

In choosing the mean flow features as regression inputs, we have observed a few principles in
general. First, the input and thus the obtained regression functions should be Galilean invariant.
Quantities that satisfy this requirement include all scalars and the invariants (e.g., norms) of vectors
and tensors. An interesting example is the pressure gradient along streamlines (see feature q4 in
Table I). While neither velocity Uk nor pressure gradient dP/dxk (both being vectors) is Galilean-
invariant by itself and thus is not a suitable input, their inner product Uk

dP
dxk

is. Second, since the truth
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of the mean flow fields in the test flows are not available, an input should solely utilize information
of the mean flow field produced by the RANS simulations [12]. Therefore, all of the adopted features
are based on RANS-predicted pressure P , velocity U, turbulent kinetic energy k, and distance d

to the nearest wall. Finally, to facilitate implementation and avoid ambiguity, only local quantities
(i.e., cell- or point-based quantities in CFD solvers) of the flow field are used in the formulation of
features, with the distance d to nearest wall being a notable exception. This principle is similar to
that in choosing variables for developing turbulence models [25].

The interpretation of most feature variables are evident from the brief descriptions given in the
table, but a few need further discussions. First, feature q1 (Q criterion) is based on the positive
second invariant Q of the mean velocity gradient ∇U, which represents excess rotation rate relative
to strain rate [26]. For incompressible flows, it can be computed as Q = 1

2 (‖�‖2 − ‖S‖2), where �

and S are rotation rate and strain rate tensors, respectively; ‖�‖ =
√

tr(��T ) and ‖S‖ =
√

tr(SST ),
with superscript T indicating tensor transpose and tr indicating trace. The Q criterion is widely used
in CFD simulations as a post-processing tool to identify vortex structures for the visualization of
flow structures [27]. Second, the wall-distance based Reynolds number Red = √

kd/ν in q3 is an
indicator to distinguish boundary layers from shear flows. This is an important feature because RANS
models behave very differently in the two types of flows. This quantity is frequently used in wall
functions for turbulence models. Third, feature q7 defines the deviation from orthogonality between
the velocity and its gradient [28], which indicates the deviation of the flow from parallel shear flows
(e.g., plane channel flows). Since most RANS models are calibrated to yield good performance
on parallel shear flows, this deviation is usually correlated well with large discrepancies in RANS
predictions. However, since it only accounts for misalignment angle and not the velocity magnitude,
in regions with near-zero velocities this quantity becomes the angle formed by two zero-length
vectors and is thus mostly noise. Finally, we remark that most of the features in Table I including
the Q criterion and wall-distance based Reynolds number are familiar to CFD practitioners.

Most of the features presented in Table I are formulated as ratios of two quantities of the
same dimension, either explicitly (q1, q5, q6, q8, q9) or implicitly (q2 and q3). Hence, they are
nondimensional by construction. Features q4 and q7 involve inner product of vectors or tensors, and
thus they are normalized by the magnitude of the constituent vectors or tensors. Finally, feature q10

(streamline curvature) is normalized by 1/Lc, where Lc is the characteristics length scale of the
mean flow, chosen to be the hill height H (see Fig. 6) in the numerical examples.

We followed the procedure of Ling and Templeton [12] to normalize the features. Except for
feature q3, each element qβ in the input vector q is normalized as

qβ = q̂β

|q̂β | + |q∗
β | , where β = 1,2,4, . . . ,10, (1)

where the summation on repeated indices is not implied, q̂β are raw values of the features, and q∗
β

are the corresponding normalization factors. This normalization scheme limits the numerical range
of the inputs within [−1,1] and thus facilitates the regression. The normalization is not needed for
feature q3 (wall-distance based Reynolds number) since it is already in a nondimensional form and
in a limited range [0,2].

It can be seen that the choices of features and normalization factors heavily rely on physical
understanding of the problem (turbulence modeling). That is, in the present data-driven modeling
framework, the data are utilized only after physical reasoning from the modeler has been applied.
This task can be a burden in certain applications. It is worth noting that the recent work of Ling
et al. [29] aimed to relieve the modeler from such burdens by using a basis of invariants of tensors
relevant in the specific application (e.g., strain rate S in turbulence modeling). Their work has the
potential to systematically construct the input features based on raw physical variables and thus
makes data-driven modeling even “smarter.”
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D. Representation of Reynolds stress discrepancies as responses

In Sec. I C the Reynolds stress discrepancies �τ have been identified as the responses for the
regression functions. The response quantities should also be based on Galilean invariant quantities
due to the same consideration as in the feature choice. As such, individual components of the
Reynolds stresses or the discrepancies based thereon are not suitable, but those based on their
eigenvalues or invariants are preferred. In turbulence modeling, the Lumley triangle has been widely
used for the analysis of turbulence states related to realizability [30]. It is formulated based on the
second and third invariants (II and III ) of the anisotropy tensor. Recently, Banerjee et al. [31]
proposed an improved formulation in which the eigenvalues of the anisotropy tensor are mapped
to barycentric coordinates as opposed to the variants II and III as in the Lumley triangle. An
important advantage of their formulation is that the mapping to barycentric coordinates is linear,
which is in contrast to the nonlinear mapping to invariants II and III . Therefore, barycentric
coordinates provide a nondistorted visual representation of anisotropy and are easier for imposing
realizability constraints. The formulation of discrepancy starts with the eigen-decomposition of the
Reynolds stress anisotropy tensor A:

τ = 2k
(

1
3 I + A

) = 2k
(

1
3 I + V�VT

)
(2)

where k is the turbulent kinetic energy, which indicates the magnitude of τ ; I is the second-
order identity tensor; and V = [v1,v2,v3] and � = diag[λ1,λ2,λ3] with λ1 + λ2 + λ3 = 0 are the
orthonormal eigenvectors and eigenvalues of A, respectively, indicating its shape and orientation.

In the barycentric triangle, the eigenvalues λ1, λ2, and λ3 are mapped to the barycentric coordinates
(C1,C2,C3) as follows:

C1 = λ1 − λ2, (3a)

C2 = 2(λ2 − λ3), (3b)

C3 = 3λ3 + 1, (3c)

with C1 + C2 + C3 = 1. As shown in Fig. 1, the barycentric coordinates of a point indicate the
portion of areas of three subtriangles formed by the point and with edges of barycentric triangle.
For example, a point located on the top vertex corresponds to C3 = 1 while a point located on the
bottom edge has C3 = 0. Similar to the Lumley triangle, all realizable turbulences are enclosed in
the barycentric triangle (or on its edges) and have positive barycentric coordinates C1, C2, and C3.
The barycentric triangle has been used by Emory et al. [32] as a mechanism to impose realizability
of Reynolds stresses in estimating uncertainties in RANS simulations.

Placing the triangle in a Cartesian coordinate system ξ ≡ (ξ,η), the location of any point within
the triangle is a convex combination of those of the three vertices, i.e.,

ξ = ξ 1cC1 + ξ 2cC2 + ξ 3cC3 (4)

where ξ 1c, ξ 2c, and ξ 3c denote coordinates of the three vertices of the triangle. An advantage
of representing the anisotropy of Reynolds stress in the barycentric coordinates is that it has a
clear physical interpretation, i.e., the dimensionality of the turbulence state [33]. Typically, the
standard-RANS-predicted Reynolds stress at a near-wall location is located close to the isotropic,
three-component state (vertex 3C-I) in the barycentric triangle, while the true stress is near the
two-component limiting states (bottom edge). Moreover, the spatial variations from the near-wall
region to the shear flow region are indicated as arrows in Fig. 1. It is clear that the trend of spatial
variation predicted by a standard RANS model is opposite to that of the actual trend.

The three mutually orthogonal, unit-length eigenvectors v1, v2, and v3 indicate the orientation
of the anisotropy tensor. They can be considered a rigid body and thus their orientation has three
degrees of freedom, although they have nine elements in total. We use the Euler angle with the
z-x ′-z′′ convention to parametrize the orientation following the convention in rigid body dynamics
[34]. That is, if a local coordinate system x-y-z spanned by the three eigenvectors of V was initially
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2-component

3C-I (3-component isotropic)

(2-component 
axisymmetric)

1C
(1-component)

2C-I
Wall

Outer layer

Wall

Outer layer

Standard RANS

Truth

FIG. 1. The barycentric triangle that encloses all physically realizable states of Reynolds stress [31,33]. The
position within the barycentric triangle represents the anisotropy state of the Reynolds stress. Typical mapped
locations of near-wall turbulence states are indicated with predictions from standard RANS models near the
isotropic state (vertex 3C-I), and the actual locations are indicated near the bottom edge (2C-I). The typical
RANS-predicted trend of spatial variation from the wall to shear flow and the corresponding actual trend are
indicated with arrows.

aligned with the global coordinate system (X-Y -Z), the current configuration could be obtained by
the following three consecutive intrinsic rotations about the axes of the local coordinate system:
(1) a rotation about the z axis by angle ϕ1, (2) a rotation about the x axis by ϕ2, and (3) another
rotation about its z axis by ϕ3. The local coordinate axes usually change orientations after each
rotation.

In summary, the Reynolds stress tensor is projected to six physically interpretable, Galilean
invariant quantities representing the magnitude (k), shape (ξ , η), and orientation (ϕ1, ϕ2, ϕ3). They
are collectively denoted as τα . The actual values of these quantities can be written as baseline RANS
predictions corrected by the corresponding discrepancy terms, i.e.,

log2 k = log2 k̃rans + � log2 k, (5a)

ξ = ξ̃ rans + �ξ, (5b)

η = η̃rans + �η, (5c)

ϕi = ϕ̃i
rans + �ϕi, for i = 1,2,3. (5d)

The discrepancies (� log2 k, �ξ , �η, �ϕ1, �ϕ2, �ϕ3, denoted as �τα with α = 1,2, . . . ,6) in the
six projections of the Reynolds stress tensor are responses of the regression functions. We utilize
data consisting of pairs of (q,�τα) from training flow(s) to construct the functions fα : q �→ �τα . It
is assumed that the discrepancies in six quantities �τα are independent, and thus separate functions
are built for each of them. This simplification is along the same lines as that made in previous works
[35].

E. Random Forests for building regression functions

With the input (mean flow features q) and responses (Reynolds stress discrepancies �τα)
identified above, a method is needed to construct regression functions from training data and to make
predictions based on these functions. Supervised machine learning consists of a wide variety of such
methods including K-nearest neighbors [36], linear regression and its variants (e.g., Lasso) [37],
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FIG. 2. Schematic of a simple regression tree in a two-dimensional feature space (pressure gradient along
streamline dp/ds and wall-distance based Reynolds number Red ), showing (a) the stratification of feature space
and (b) the corresponding regression tree built from the training data. The response is the discrepancy �η in
the barycentric triangle of the RANS-predicted Reynolds stress. When predicting the discrepancy for a given
feature vector q̃, the tree model in (b) is traversed to identify the leaf, and the mean of the training data is taken
as the prediction �η(q̃).

Gaussian processes [23], tree-based methods (decision trees, random forests, bagging) [24], neural
networks [38], and support vector machines [39], among others. A major consideration in choosing
the regression method is the high dimensionality of the feature space, which is typically 10 or higher
in our application. The curse of dimensionality makes such methods as K-nearest neighbors, linear
regression, and Gaussian processes not suitable. A secondary consideration, which we believe is
also important for turbulence modeling applications, is the capability to provide predictions with
quantified uncertainties as well as physical insights (e.g., on the importance of each of the features
and their interactions). After evaluating a number of existing machine learning techniques in light
of these criteria, we identified random forests [24] as the optimal approach for our purposes, which
is an ensemble learning technique based on decision trees.

In simple decision tree learning, a treelike model is built to predict the response variable by
learning simple if-then-else decision rules from the training data. Decision trees have the advantage
of being easy to interpret (e.g., via visualization) and implement. They are also computationally
cheap. However, they tend to overfit the data and lack robustness. That is, a small change in the
training data can result in large changes in the built model and its predictions. Random forests learning
is an ensemble learning technique proposed by Ho [40] and Briemann [24,41] that overcomes these
shortcomings of simple decision trees. Since these techniques are generally not familiar to readers
in the fluid dynamics community, here we use an illustrative example in the context of turbulence
modeling to explain the algorithm.

A simple decision tree model is illustrated in Fig. 2. For clarity we consider an input with
only two features: pressure gradient dp/ds (normalized and projected to the streamline tangential)
and wall-distance based Reynolds number Red = C

1/4
μ d

√
k/ν, as defined in Table I. It can be also

interpreted as wall distance in viscous units. The response is the discrepancy �η of the vertical
coordinate in the barycentric triangle of the RANS-predicted Reynolds stress (see Fig. 1). During
the training process, the feature space is successively divided into a number of boxes (leafs) based
on the training data [shown as points in the dp/ds - Red plane in Fig. 2(a)]. In the simplest decision
tree model used for regression, the feature space is stratified with the objective of minimizing
the total in-leaf variances of the responses at each step, a strategy that is referred to as a greedy
algorithm. After the stratification, a constant prediction model is built on each leaf. When predicting
the response �η for a given feature vector q, the constructed tree model in Fig. 2(b) is traversed
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to identify the leaf where q is located, and the mean response on the leaf is taken as the prediction
�η(q).

The tree model has a clear physical interpretation in the context of turbulence modeling. For
example, it is well known that a standard isotropic eddy viscosity model has the largest discrepancy
when predicting anisotropy in the viscous sublayer (Red � 5). This is because the truth is located on
the bottom, corresponding to a combination of one- or two-component turbulence, while a typical
isotropic eddy viscosity model would predict an isotropic state located on the top vertex (see Fig. 1).
In contrast, far away from the wall within the outer layer (Red > 50), the RANS-predicted anisotropy
is rather satisfactory. Therefore, the first two branches divide the space into three regions based on
the feature Red : outer layer (region 1), viscous sublayer (region 2), and buffer layer (regions 3 and
4). In the buffer layer the pressure gradient plays a more important role than in the outer and viscous
layers. Larger pressure gradients correspond to larger discrepancies, which can be explained by the
fact that favorable pressure gradients (negative dp/ds values) tend to thicken the viscous sublayer
[42], which leads to larger discrepancies in η. Therefore, a further division splits the buffer layer
states to two regions in the feature space, i.e., those with strong (region 3) and mild (region 4)
pressure gradients.

A simple regression tree model described above tends to overfit for a high-dimensional input
space, i.e., yielding models that explain the training data very well but predict poorly for unseen
data. In general the decision trees do not have the same level of predictive accuracy as other modern
regression methods. However, by aggregating a large number of trees (ideally with minimum
correlation), the predictive performance can be significantly improved and the overfitting can be
largely avoided. In random forests an ensemble of trees is built with bootstrap samples (i.e.,
sampling with replacement) drawn from the training data [20]. Moreover, when building each
tree, it utilizes only a subset of M � Nq randomly chosen features among the Nq features, which
reduces the correlation among the trees in the ensemble and thus decreases the bias of the ensemble
prediction.

Random forest regression is a modern machine learning method with predictive performance
comparable to other state-of-the-art techniques [37]. In decision tree models the maximum depth
of trees must be limited (e.g., by pruning the branches far from the root) to ensure a sufficient
number of training points (e.g., 5) on each node. In contrast, in random forests, one can build
each tree to its maximum depth by successive splitting the nodes until only one training data point
remains on each leaf. While each individual tree built in this manner may suffer from overfitting
and has large prediction variances, the use of ensemble largely avoids both problems. Moreover,
random forest regression is simple to use with only two free parameters, i.e., the number Nrf of
trees in the ensemble and the number M of selected features. In this work we used an ensemble
of Nrf = 100 trees and the a subset of features (i.e., M = 6) to build each tree. As a standard
practice in statistical modeling, we performed cross-validations to optimize these parameters and
performed sensitivity analysis to ensure that the predictions are not sensitive to the parameter
choices.

III. NUMERICAL RESULTS

Almost all industrial flows involve some characteristics (e.g., strong pressure gradient, streamline
curvature, and separation) that break the equilibrium assumption of RANS model. Therefore, we
have these challenges in mind when developing the data-driven approach. In this study, we focus
on the cases where training and test flows have similar characteristics. Specifically, we evaluate
the proposed method on two classes of flows: (1) fully developed turbulent flows in a square duct
at various Reynolds numbers and (2) flows with massive separations. The flow in a square duct
at Reynolds number Re = 3500 and the flow in a channel with periodic hills at Reynolds number
Re = 10 595 are chosen as the prediction (test) flows for the respective flow classes. The square
duct flow has an in-plane secondary flow pattern induced by the normal stress imbalance, while the
periodic-hill flow features a recirculation bubble, nonparallel shear layer and mean flow curvature.
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FIG. 3. Domain shape for the flow in a square duct. The x coordinate represents the streamwise direction.
Secondary flows induced by Reynolds stress imbalance exist in the y-z plane. Panel (b) shows that the
computational domain covers a quarter of the cross section of the physical domain. This is due to the symmetry
of the mean flow in both y and z directions as shown in panel (c).

All these characteristics are known to pose challenges for RANS based turbulence models, and thus
large model-form discrepancies exist in the RANS-modeled Reynolds stresses. In the two test flows,
the relative importance of Reynolds stress projections to the mean flow prediction are different.
The Reynolds stress anisotropy plays an important role in obtaining the accurate secondary mean
motion in the duct flow [43]. In contrast, the anisotropy is less important to predict the mean flow
in the periodic-hill case, where the turbulent shear stress component is more essential to obtain
an accurate mean velocity field [44]. Therefore, we use these two types of flows to highlight the
improvements in the different Reynolds stress components that are important for the predictions
of QoIs in the respective flow classes. In both cases, all RANS simulations are performed in an
open-source CFD platform, OpenFOAM, using a built-in incompressible flow solver simpleFOAM

[45]. Mesh convergence studies have been performed.

A. Turbulent flows in a square duct

1. Case setup

The fully developed turbulent flow in a square duct is a challenging case for RANS-based
turbulence models, since the secondary mean motion cannot be captured by linear eddy viscosity
models (e.g., k-ε, k-ω), and even the Reynolds stress transport models (RSTM) cannot predict it
well [44]. In this test, we aim to improve the RANS-modeled Reynolds stresses of the duct flow at
Reynold number Re = 3500 by using the proposed PIML approach. The training data are obtained
from DNS simulations [46] of the duct flows in the same geometry but at lower Reynolds numbers
Re = 2200, 2600, and 2900. The DNS data of the prediction flow (Re = 3500) are reserved for
comparison and are not used for training. The geometry of this flow case is shown in Fig. 3. The
Reynolds number is based on the edge length D of the square duct and the bulk velocity Ub. All
lengths presented below are normalized by D/2.

The baseline RANS simulations are performed for all training and test flows. The purpose is
twofold: to obtain the mean flow feature fields q(x) as inputs and to obtain the discrepancies of
Reynolds stress by comparing with the DNS data. To enable the comparison, the high-fidelity data
are interpolated onto the mesh of the RANS simulation. The Launder-Gibson RSTM [47] is adopted
to perform the baseline simulations, since all the linear eddy viscosity models are not able to capture
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FIG. 4. Barycentric map of the predicted Reynolds stress anisotropy for the test flow (Re = 3500), learned
from the training flows (Re = 2200, 2600, and 2900). The prediction results on two streamwise locations at
y/H = 0.25 and 0.75 are compared with the corresponding baseline (RSTM) and DNS results in panels (a)
and (b), respectively.

the mean flow features of the secondary motions. The y+ of the first cell center is kept less than 1
and thus no wall model is applied. As indicated in Fig. 3, only one quadrant of the physical domain
is simulated owing to the symmetry of the mean flow with respect to the center lines along y and
z axes. A no-slip boundary condition is applied on the walls, and a symmetry boundary condition is
applied on the symmetry planes.

2. Prediction results

We first investigate the prediction performance on the Reynolds stress anisotropy tensor, since
its accuracy is important to capture the secondary flow. Figure 4 shows PIML-corrected anisotropy
in a barycentric triangle compared with baseline and DNS results. The comparisons are performed
on two representative lines at y/H = 0.25 and 0.75 on the in-plane cross section [Fig. 3(b)]. The
two lines are indicated in the insets at the upper left corner of each panel. The arrows denote the
order of sample points plotted in the triangle, which is from the bottom wall to the outer layer.
The general trends of spatial variations of the DNS Reynolds stress anisotropies are similar on both
lines. That is, from the wall to the outer layer, the Reynolds stress starts from the two-component
limiting states (bottom edge of the triangle) toward three-component anisotropic states (middle area
of the triangle). This trend is captured by the baseline RSTM to some extent, especially in the
regions away from the wall. However, significant discrepancies still can be observed in the near-wall
region. Very close to the wall, the DNS Reynolds stress is nearly the two-component limiting
state. This is because the velocity fluctuations in the wall-normal direction are suppressed by the
blocking of the bottom wall. Moreover, before approaching three-component anisotropic states, the
DNS-predicted anisotropy first moves toward the one-component state (1C) as away from the wall.
In contrast, the RANS-predicted anisotropy near the wall is closer to the two-component isotropic
state (2C-I), and it approaches toward the three-component anisotropic state directly. Therefore,
in the near-wall region there are large discrepancies between the RANS predicted Reynolds stress
anisotropy and the DNS result, particularly in the horizontal coordinate ξ . By correcting the baseline
RSTM results with the trained discrepancy function, the predicted anisotropy of Reynolds stress
is significantly improved. For both lines, the predicted anisotropy (circles) agrees well with the
DNS results (squares). Especially on the line y/H = 0.75, the PIML-predicted anisotropy is almost
identical to the DNS data.
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FIG. 5. Profiles of normal components (a) τyy and (b) τzz of corrected Reynolds stress with the discrepancy
model. The profiles are shown at four streamwise locations y/H = 0.25, 0.5, 0.75, and 1. Corresponding DNS
and baseline (RSTM) results are also plotted for comparison.

Significant improvement of the PIML-predicted anisotropy can be seen from the barycentric maps
shown in Fig. 4. Similar improvements have also been demonstrated in the other physical projections
(TKE and orientations) of the PIML-corrected Reynolds stresses. Therefore, it is expected that the
Reynolds stress tensor components should be also improved over the RSTM baseline. In the six
tensor components, two normal stress components τyy and τzz are among the most important ones
to the mean velocity field since the normal stress imbalance (τyy − τzz) is the driving force of the
secondary flow [43]. Figures 5(a) and 5(b) show the profiles of normal components τyy and τzz

of the Reynolds stress reconstructed from the PIML-corrected physical projections. Corresponding
baseline (RSTM) and DNS results are also plotted for comparison. Both τyy and τzz are overestimated
by the RSTM over the entire domain. The discrepancy of the RSTM-predicted τyy is large near the
wall and decreases when moving away from the wall. In contrast, τzz is significantly overestimated far
from the wall but the discrepancy decreases toward the wall. As a result, the RSTM-predicted normal
stress imbalance is markedly inaccurate, which leads to unreliable secondary mean flow motion. As
expected, the PIML predictions nearly overlap with the DNS results for both τyy and τzz and show
considerable improvements over the RSTM baseline. In fact, the improvements are observed in all
the tensor components, which are omitted here for brevity. The results shown above demonstrate
excellent performance of the proposed PIML framework by using RSTM as the baseline.

B. Turbulent flows with massive separations

1. Case setup

The turbulent flow in a channel with periodic hills is another challenging case for RANS models
due to the massive flow separations leeward of the hill. Here, we examine two training scenarios
with increasing difficulty levels. In the first scenario the training flows have the same geometry as
the test (prediction) flow but are different in Reynolds numbers. In the second scenario the training
flows differ from the prediction case not only in Reynolds numbers but also in geometry.

Four training flows with DNS/LES data to build random forest regressors are summarized in
Table II. In the first scenario two flows PH1400 and PH5600 are used for training, both of which are
flows over periodic hills (same in geometry) at Re = 1400 and Re = 5600 (different in Reynolds
numbers), respectively. For the second scenario, the training data are obtained from two different
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TABLE II. Database of training flows to predict flow past periodic hills at Re = 10595. The Reynolds
numbers are defined based on the bulk velocity Ub at the narrowest cross section in the flow and the crest/step
height H .

Training flow scenario Training flow & symbol High fidelity data

Scenario I Periodic hills, Re = 1400 (PH1400) DNS by Breuer et al. [48]
Periodic hills, Re = 5600 (PH5600) DNS by Breuer et al. [48]

Scenario II Wavy channel, Re = 360 (WC360) DNS by Maaß et al. [49]
Curved backward facing step, Re = 13200 (CS13200) LES by Bentaleb et al. [50]

flows: one in a channel with a wavy bottom wall at Re = 360 and one over a curved backward facing
step at Re = 13200, indicated as flows WC360 and CS13200, respectively.

A schematic of the flow geometry and RANS-predicted velocity contour for each case are
presented in Fig. 6. The dimensions of each case are normalized with the respective hill heights
H . Although the geometries of the training flows are different, all three flows share a similar
characteristic as the test flow, i.e., separation on the leeward side of the hill or step. However,

y
General f

(a)

(b)

(c)

low direction

Hill 
height

10

y

y

FIG. 6. Computational domain and velocity field of each case in the training flow database. The velocity
contours and streamlines are obtained from the baseline RANS simulations. The dimensions of each case are
normalized with the respective hill heights H . Note that periodic boundary conditions are applied on the flows
in panels (a) and (b) in the streamwise direction, but not for the flow in panel (c). (a) Periodic hills (Re = 1400
and 5600, results from latter are shown), (b) wavy channel (Re = 360), and (c) curved backward facing step
(Re = 13200).
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the separation bubbles are different in size and shape. The flow over periodic hills has a stronger
separation compared to the other two due to the steeper slope of the hill. Relatively mild separation
can be observed in the flow over the wavy channel. For all cases, both high-fidelity data and
RANS-predicted results are available. The high-fidelity data are obtained from DNS or resolved
LES simulations, which have been reported in literature (see references in Table II). The DNS data
for flows PH1400 and PH5600 are only available on vertical lines at eight streamwise locations
x/H = 1,2, . . . ,8. On the other hand, full-field high-fidelity results are available for flows WC360
and CS13200, but only the lower part of the channel is adequately resolved. Since the separated flow
is of interest in this study, only the data in the separation region (i.e., the region below y/H = 1.2)
are included.

In this test, the performance of the proposed PIML framework is evaluated on standard RANS
models. Specifically, the baseline RANS predictions are obtained by using the two-equation
Launder-Sharma k-ε model [3]. The reason for choosing standard turbulence models here is because
of two considerations. First, the standard RANS models are the dominant tools for industrial
CFD applications, while other sophisticated RANS models have been rarely used. Therefore, it
is more significant to improve the widely used standard RANS models. Second, we understand
that improvement of the Reynolds stresses starting from a standard RANS model is challenging.
Nonetheless, this challenging scenario also can better explore the capability of a machine learning
approach.

2. Prediction results

The functional forms of discrepancies in the six physical projections of Reynolds stress are learned
from the training flows, as mentioned in Sec. III B 1, and are used to correct the RANS-predicted
Reynolds stress field of the test flow (PH10595). However, since the baseline RANS model used in
this case is the standard eddy viscosity model, the Reynolds stress anisotropy cannot be accurately
predicted. Therefore, the baseline RANS-predicted anisotropy is unphysical and is significantly
different from the DNS result (see Fig. 1). Nonetheless, after the correction by using the discrepancy
function learned from the training flows, the anisotropy of the test flow shows an excellent agreement
with the DNS results [51]. The improvements are observed in the both training scenarios I and II,
demonstrating that the discrepancy function even in the standard RANS-predicted anisotropy does
exist and can be learned from the closely related flows based on the mean flow features q. As
mentioned above, in the periodic-hill flow, the correctness of Reynolds stress anisotropy is of
little consequence to the prediction of the mean velocity, and the correct shear stress component and
magnitude of the Reynolds stress are most important to obtain an accurate mean flow field. Therefore,
the anisotropy prediction results are omitted here, and only the turbulence kinetic energy (TKE) and
shear stress component of the PIML-corrected Reynolds stress are presented and discussed in detail.

The comparison of the TKE profiles of the baseline, DNS, and PIML-predicted results in the
training scenario I are shown in Fig. 7. The TKE predicted by the baseline RANS model has notable
discrepancies compared to the DNS result, particularly in the region with nonparallel free shear
flow (y/H = 0.8 to 1.5). The poor performance of the RANS model in such a region is typical
in these flows [13]. The RANS model underestimates the turbulence intensity along the free shear
at y/H = 1, especially near the leeward side of the hill (x/H = 1 to 2). In the upper channel
(y/H = 1.5 to 2.5), the DNS TKE is slightly smaller than the baseline RANS prediction. The
profiles of TKE corrected by the PIML-predicted discrepancy � log2 k are significantly improved.
The peaks along the streamwise free shear in the DNS profiles are well captured in the corrected
results with the random forest prediction. It can be seen that the predicted TKE profiles (solid lines)
nearly overlap with the DNS results (dashed lines). This clearly indicates that the TKE discrepancies
can be learned from the data of the training flows.

It is also of interest to investigate the tensor components τij of Reynolds stress, which are
more relevant for predicting velocities and other QoIs of the flow fields. For the plane shear flows,
the turbulent shear stress τxy is important to predict the velocity field. Figure 8 compares the
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FIG. 7. Magnitude (turbulence kinetic energy) of the corrected Reynolds stress for the test flow (PH10595)
learned from cases with with same geometry but at different Reynolds numbers (PH1400 and PH5600). The
profiles are shown at eight streamwise locations x/H = 1,2, . . . ,8. Corresponding baseline and DNS results
are also plotted for comparison. The hill profile is vertically exaggerated by a factor of 1.3.

turbulence shear component τxy of predicted Reynolds stress with the DNS. As expected, significant
improvements are observed compared to the baseline results, which underestimate the peak of τxy

on the leeward hill side but overestimate it on the windward hill side. As shown in Fig. 8, the profiles
of predicted τxy agree well with the DNS results.

The results above demonstrate that the discrepancy function of Reynolds stress in its physical
projections (i.e., magnitude, shape, and orientation) trained from the flows at Re = 2800 and 5600
can be used to predict the Reynolds stress field of the flow at Re = 10 595. Significant improvements
are observed in the predicted Reynolds stress compared to the baseline RANS results. Although in
this scenario the training and test flows are quite similar (with the same geometry), and the success
of extrapolation has been demonstrated in physical space by Wu et al. [18], it should not be taken
for granted that the accurate prediction is also guaranteed in feature space. Since the regressions
are performed in the ten-dimensional feature space and there is no direct reference to the physical
coordinates, success is not trivially expected a priori.
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FIG. 8. Predicted turbulence shear stress for the test flow (PH10595) learned from the flows with the same
geometry but at different Reynolds numbers (PH1400 and PH5600). The profiles are shown at eight streamwise
locations x/H = 1,2, . . . ,8. Corresponding baseline and DNS results are also plotted for comparison. The hill
profile is vertically exaggerated by a factor of 1.3.
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FIG. 9. Magnitude (turbulence kinetic energy) of the corrected Reynolds stress for the test flow (PH10595)
learned from cases with different geometries and at different Reynolds numbers (WC360 and CS13200). The
profiles are shown at eight streamwise locations x/H = 1,2, . . . ,8. Corresponding baseline and DNS results
are also plotted for comparison. The hill profile is vertically exaggerated by a factor of 2.4.

We investigate a more challenging scenario where the training flows have different geometries
from the prediction case. This scenario is also more realistic in the context of using RANS simulation
to support engineering design and analysis. Specifically, the data are more likely to be available for
a few flows with specific Reynolds numbers and geometries, but predictions are needed for similar
flows yet at different Reynolds numbers and with modified geometries.

The comparison of the TKE profiles on eight lines is shown in Fig. 9. Note that only the
domain below y/H = 1.2 is investigated due to the lack of reliable high-fidelity training data in
the upper channel region. This inadequacy of data quality can be exacerbated when the Reynolds
stress is decomposed to its physical projections. Moreover, the flow separation is the phenomenon
of concern in this study, and thus we only focus on the recirculation region. In Fig. 9, the random
forest predicted TKE (solid lines) is significantly improved over the baseline results (dotted lines)
and better agrees with the DNS profiles (dash-dotted lines). The agreement is particularly good in
the region from the center of recirculation bubble (x/H = 2) to the beginning of flow contraction
(x/H = 6). Nonetheless, the PIML-predicted TKE does not show any improvement and even
deteriorates compared to the baseline results near the windward side of the hill (x/H > 7), where
the flow starts to contract. As shown in Fig. 9, the predicted TKE is markedly overestimated at
x/H = 8. This is because the flow features in the contraction region (x/H > 7) are not supported
in the training set, since the contracted flow does not exist in the training flow CS13200 [Fig. 6(c)]
and is much weaker in the training flow WC360 [Fig. 6(b)] due to the mild slope of wavy bottom in
this geometry.

Finally, we compare the predicted turbulent shear stress τxy with the DNS profiles in Fig. 10.
Similar to the results of TKE, the PIML-predicted turbulent shear stress τxy shows notable
improvements in the recirculation region. However, deterioration occurs in the flow contraction
region. At x/H = 7 and 8, the magnitudes of turbulent shear stresses are overestimated with
the correction based on the predicted discrepancies. This is consistent with the results observed
in physical projections of Reynolds stress. Such a small region with abnormal Reynolds stress
corrections (artificial peaks or bumps) can introduce large errors into the velocity predictions.

In general, the physical projections (i.e., magnitude, shape, and orientation) of Reynolds stress
corrected by random forest predicted discrepancies are still significantly improved with the training
flows in different geometries (WC360 and CS13200). The Reynolds stress is markedly improved in
the separated flow region, but not in the contracted flow region. This is because the features in training
flows cannot well support the predicted flow, and thus more extrapolations are expected. Although
the improvement is less significant compared to that in scenario I, the random forest predictions
in this more realistic scenario are still satisfactory, demonstrating the merits of the proposed PIML
framework.
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FIG. 10. Predicted turbulence shear stress for the test flow (PH10595) learned from the flows with
different geometries and at different Reynolds numbers (WC360 and CS13200). The profiles are shown at
eight streamwise locations x/H = 1,2, . . . ,8. Corresponding baseline and DNS results are also plotted for
comparison. The hill profile is vertically exaggerated by a factor of 2.4.

IV. DISCUSSION

A. Feature importance and insight for turbulence modeling

In addition to the predictive capability of the regression model, it is also important to interpret
the functional relation between the mean flow features and the discrepancies of the RANS modeled
Reynolds stresses. For example, it is useful to find the most important features for the Reynolds stress
discrepancy in each of its physical projections (i.e., magnitude k, shape ξ,η, and orientation ϕi), and
how each of these features impacts the regression response. Identification of such a correlation or
causal relationship enables modelers to improve the RANS turbulence models. The random forest
regressor used in the proposed PIML framework can also shed light on this issue by calculating
the feature importance, which is a measure to evaluate the relative importance of a feature variable
for predicting response variables [24]. The bar plots of the importance of feature vector q with
respect to the discrepancies �η and � log2 k are shown in Figs. 11(a) and 11(b), respectively. For
discrepancy �η in the anisotropy, feature q3 (i.e., wall distance based Reynolds number Red ) is
the most important one. As discussed in Sec. II C, Red is the wall distance normalized by the
approximate viscous unit. Therefore, the result of feature importance is consistent with the PIML

(a) (b)

FIG. 11. Feature importance of random forest regressors (a) for �η and (b) for � log2 k for scenario I (i.e.,
training flows in the same geometry; see Table II). The features qi (i = 1 to 10) are denoted by their respective
abbreviations. Turb Intensity denotes the turbulence intensity (feature q2), and Re_d is the wall distance based
Reynolds number (feature q3). For the full name list of features, see Table I.
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prediction, which has shown that the discrepancy �η is notably dependent on the distance away
from the wall [51]. Figure 11(b) shows that the most important feature for predicting discrepancy
� log2 k of turbulence kinetic energy is feature q2, turbulence intensity.

It is demonstrated that the random forest used in the proposed framework can interpret the
relationship between the features and the response to a certain extent, although the feature importance
has its limitation due to bias introduced under certain conditions [52,53]. In the machine learning
community, improving interpretability of a random forest is an active research topic; e.g., several
improvements of the importance measure have been proposed [53–55]. Moreover, in addition to
calculating the feature importance, it is also helpful to examine the interactions among features,
which have important implications for the interpretation of the regression models. As the base
learner in random forest is a decision tree, which can capture the feature interactions, it is possible
to further investigate the interacting relationship among mean flow variables. Breiman et al. have
studied feature interaction in the random forest method [24], but more research is still ongoing. A
better understanding of the physics behind the regression model for Reynolds stress discrepancies
has a profound implication for RANS turbulence modeling. Therefore, to explore the correlation
or causal relationship between the mean flow features and the discrepancies of RANS modeled
Reynolds stress is an important and promising extension of the proposed framework.

B. Success and limitation of the current framework

The objective of the proposed framework is to improve the baseline RANS-predicted Reynolds
stresses of a flow where high-fidelity (e.g., DNS, LES, experimental) data are not available. The main
novelty lies in using machine learning techniques to find the functional forms of Reynolds stress
discrepancies with respect to mean flow features by learning from the existing offline database of
the closely related flows. Numerical simulation results have demonstrated the feasibility and merits
of the framework. Moreover, the excellent performance of the PIML predicted Reynolds stress in
not only the anisotropy but also in the TKE and turbulent shear stress shows the fact that Reynolds
stress discrepancies can be extrapolated even to complex flows sharing similar characteristics. This
finding is noteworthy by itself.

The improvement of the RANS-predicted Reynolds stress is considered a viable and promising
path toward obtaining better predictions of velocities and other quantities of interest. However, due
to a few limitations of the current framework, the improvement of the propagated velocities from
the corrected Reynolds stress field cannot be guaranteed. A small region with abnormal Reynolds
stress corrections (e.g., nonsmoothness or artificial peaks) can introduce large errors to the velocity
predictions. For example, the small wave-number variations in Reynolds stresses are visible in
Fig. 10. These fluctuations, despite being small in amplitude, can lead to abnormal behaviors in the
divergence term and thus in the predicted velocities. These abnormal predictions of Reynolds stress
corrections can be caused by several factors. First, the features in certain regions of the prediction
flow may not be well supported in the training flows, e.g. the contraction region of periodic-hill flow
mentioned in Sec. III B. Second, the random forest regression used here only provides pointwise
estimations but cannot consider the spatial information of the Reynolds stress field. Therefore, the
smoothness of the prediction cannot be guaranteed. Finally, although the input feature space is
constructed based on physical reasoning, it is possible that the input features are not rich enough,
and thus the randomness in the ensemble of the trained decision trees is significant.

V. CONCLUSION

In this work, we proposed a physics-informed machine learning approach to reconstruct Reynolds
stresses modeling discrepancies by utilizing DNS databases of training flows sharing characteristics
similar to those of the flow to be predicted. For this purpose, we formulated discrepancies of Reynolds
stresses (or more precisely their magnitudes and the shape and orientation of the anisotropy) as target
functions of mean flow features, and used modern machine learning techniques based on random
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forest regression to learn the functions. The obtained functions are then used to predict Reynolds
stress discrepancies in new flows. To evaluate the performance of the proposed approach, the method
is tested by two classes of flows: (1) fully developed turbulent flows in a square duct at various
Reynolds numbers and (2) flows with massive separations. In the separated flows, two training flow
scenarios of increasing difficulties are considered: In the less challenging scenario, data from two
flows in the same periodic hill geometry at lower Reynolds numbers (Re = 2800 and 5600) are used
for training. In a more challenging scenario, the training data come from separated flows in different
geometries (wavy channel and curved backward facing step). In all test cases the corrected Reynolds
stresses are significantly improved compared to the baseline RANS predictions, demonstrating the
merits of the proposed approach. In the scenario where the training flows and the prediction flow
have different geometries, the improvement is not as drastic as in the the scenario with the same
geometry. This is expected since the prediction involves more extrapolations in the feature space for
this more challenging scenario. In other words, compared to the first scenario where the training and
prediction flows have identical geometry, the prediction flow is less “similar” to the training flows
in this scenario. The extent to which the training and prediction flows are “similar” to each other
can be assessed a priori based on their respective RANS predicted mean flow field, and methods for
such assessment are presented in companion publications [56,57].

As the inaccuracy in modeled Reynolds stresses is the dominant source of model-form uncertainty
in RANS simulations, the proposed method for improving RANS-predicted Reynolds stresses is an
important step towards the goal of enabling predictive capabilities of RANS models. Moreover, the
random forests regression technique adopted in this work can provide physical insights regarding
the relative importance of mean flow features that contributed to the discrepancies in the RANS
predicted Reynolds stresses. This information can be used to assist future model development in
that developers can devise models that are aware of and correctly respond to these flow features.
However, a number of challenges need to be tackled before the improved Reynolds stresses can be
used to predict more accurate quantities of interests that are needed in engineering design (e.g., draft
and lift coefficients). This topic will be investigated in future research [58].
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